Visual Contextual Awarenessin Wear able Computing

Thad Starner

Bernt Schiele

Alex Pentland

Media Laboratory, Massachusetts I nstitute of Technology
Cambridge, MA 02139
{testarne,bernt,sandy } @mediamit.edu

Abstract

Small, body-mounted video cameras enable a different
style of wearable computing interface. As processing power
increases, awearablecomputer can spend moretimeobserv-
ing its user to provide serendipitous information, manage
interruptions and tasks, and predict future needs without
being directly commanded by the user. This paper intro-
duces an assistant for playing the real-space game Patrol.
This assistant tracks the wearer’s location and current task
through computer vision techniques and without off-body
infrastructure. In addition, this paper continues augmented
reality research, started in 1995, for binding virtual datato
physical locations.

1. Introduction

For most computer systems, even virtual reality systems,
sensing techniques are a means of getting input directly
from the user. However, wearable computers offer aunique
opportunity tore-direct sensing technol ogy towardsrecover-
ing moregenera user context. Wearable computershavethe
potential to “see” asthe user sees, “hear” as the user hears,
and experience the life of the user in a“first-person” sense.
This increase in contextual and user information may lead
to moreintelligent and fluid interfaces that use the physical
world as part of the interface.

The importance of context in communication and inter-
face can not be overstated. Physical environment, time of
day, mental state, and the model each conversant has of
the other participants can be critical in conveying neces-
sary information and mood. An anecdote from Nicholas
Negroponte' sbook “Being Digita” illustratesthis point:

Before dinner, we walked around Mr. Shikanai's
famous outdoor art collection, which during the
daytime doubles as the Hakone Open Air Mu-
seum. At dinner with Mr. and Mrs. Shikanai, we
were joined by Mr. Shikanai's private male sec-

retary who, quite significantly, spoke perfect En-
glish, asthe Shikanaisspokenone at all. The con-
versation was started by Wiesner, who expressed
great interestinthework by Alexander Calder and
told about both MIT’s and hisown persona expe-
riencewiththat great artist. The secretary listened
to the story and then trandated it from beginning
to end, with Mr. Shikanal listening attentively.
At the end, Mr. Shikanai reflected, paused, and
then looked up at us and emitted a shogun-size
"Ohhhh."

Themal e secretary thentrandated: "Mr. Shikanai
says that he too is very impressed with the work
of Calder and Mr. Shikanai’s most recent acqui-
sitionswere under the circumstances of . . . " Wait
aminute. Where did al that come from?

This continued for most of the meal. Wiesner
would say something, it would be trandated in
full, and the reply would be more or less an
"Ohhhh," whichwasthen trand ated into alengthy
explanation. | said to myself that night, if | really
want to build a persona computer, it hasto be as
good as Mr. Shikanai's secretary. It has to be
able to expand and contract signas as a function
of knowing me and my environment so intimately
that | literally can be redundant on most occasions.

There are many subtletiesto thisstory. For example, the
“agent” (i.e. the secretary) sensed the physical location of
the party and the particular object of interest, namely, the
work by Calder. In addition, the agent could attend, parse,
understand, and translate the English spoken by Wiesner,
augmenting Mr. Shikanai’s abilities. The agent aso pre-
dicted what Mr. Shikanai’s replies might be based on a
mode of histastesand personal history. After Mr. Shikanai
consented/specified the response “Ohhhh,” the agent took
an appropriate action, filling in details based on a modd of
Wiesner and Negroponte's interests and what they aready
knew. One can imagine that Mr. Shikanai’s secretary uses
hismodel of hisemployer to perform other functionsaswell.



For example, he can prevent “information overload” by at-
tending to complicated details and prioritizing information
based on its relevancy. In addition, he has the knowledge
and socid graceto know when and how Mr. Shikanai should
be interrupted for other real-time concerns such as a phone
call or upcoming meeting.

Obviously, such a computer interface is more of along
term goal than what will be addressed in this paper. How-
ever, in the following sections we show how computer in-
terfaces may become more contextually aware through ma-
chinevisiontechniques. Section 2 describes theimportance
of object identificationin combining thevirtual environment
of the wearable computer with the physical environment of
the user. Section 3.2 details how the location of the user
may provide salient cuesto hiscurrent context. Thissection
also describes a particular implementation for determining
location without off-body infrastructure in the context of
the real-time, real-space game Patrol. Finaly, a means of
determining the user’s current task in Patrol is discussed in
Section 3.3.

2. ldentification of Relevant Objects

One of the most distinctive advantages of wearable com-
puting is the coupling of the virtual environment with the
physica world. Thus, determining the presenceand location
of physical objectsrelativeto the user isan important prob-
lem. Oncean object isuniquely labeled, the user’ swearable
computer can note its presence or assign virtual properties
to the object. Hypertext links, annotations, or Java-defined
behaviors can be assigned to the object based onitsphysical
location [19, 7, 8]. Thisform of ubiquitous computing [22]
concentrates infrastructuremainly on thewearer as opposed
to the environment, reducing costs and maintenance, and
avoiding some privacy issues.

Objects can be identified in a number of different ways.
With Radio Frequency Identification (RFID), a transmitter
tag with aunique ID is attached to the object to be tracked.
Thisunique ID isread by special devices over ranges from
afew inchesto severa miles depending onthetypeand size
of the tag. Unfortunately, this method requires a signifi-
cant amount of physical infrastructure and maintenance for
placing and reading the tags.

Computer vision providesseveral advantages over RFID.
The most obviousisto obviate the need for expensive tags
for theobjectsto betracked. Another advantage of computer
visionisthat it can adapt to different scales and ranges. For
example, the same hardware and software may recognize
a thimble or a building depending on the distance of the
camera to the object. Computer visionis aso directed. If
the computer identifies an object, the object is known to be
in the field of view of the camera. By aligning the field
of view of the camera with the field of view of the eye, the

computer may observetheobjectsthat arefocusof theuser’s
attention.

Figure 1. Multiple graphical overlays aligned
through visual tag tracking.

In the past, the MIT Wearable Computing Project has
used computer vision identification to create a physically-
based hypertext demonstration platform [19, 5] as shown
in Figure 1. While this system uses the processing power
of an SGI, it maintains the feel of a wearable computer by
sending video to and from the SGI and head-mount wire-
lesdly. In this system, visual “tags’ uniquely identify each
active object. These tags consist of two red squares bound-
ing a pattern of green squares representing a binary number
unique to that room. A similar identification system has
been demonstrated by Nagao and Rekimoto [8] for ateth-
ered, hand-held system. These visual patterns are robust in
the presence of similar background colors and can be dis-
tinguished from each other in the same visua field. Once
an object is identified, text, graphics, or a texture mapped
movie can be rendered on top of the user’svisual field using
a head-up display as shown in Figure 1. Since the visua
tags have a known height and width, the visual tracking
code can recover orientation and distance, providing 2.5D
information to the graphics process. Thus, graphics ob-
jects can be rotated and zoomed to match their counterparts
in the physical world. The result may be thought of as a
physically-realized extension to the World Wide Web.

Thissystem hasbeen used to givemini-tours of theMedia
Lab since1995. Bothactive LED and passivetagshave been
used in the past. Whenever the camera detects a tag, the
computer juxtaposesa small red arrow on top of that object
indicating a hyperlink. If the user isinterested in that link
and turns to see it, the object is labeled with text. Finaly,
if the user approaches the object, 3D graphics or a texture
mapped movie are rendered on the object to demonstrateits
function. Using this strategy, the user is not overwhelmed
uponwalkingintoaroom but can exploreinteresting objects
at leisure.

This idea continues to develop. The DyPERS system
[3] demonstrates how visual tags become unnecessary when
a more sophisticated object recognition system (similar to



what is used in a later section for gesture tracking) is em-
ployed. By determining user location and head orientation
using the Locust indoor location system [18] and inertia
sensors, strong priors can be established on which objects
may bevisible. A similar methodology may be used outside
with GPS. Thislessensthe burden on thevision system from
trying to distinguish between al potentia objects the user
may see over the day to the handful that might be currently
visible.

Such physically-based hypertext systems are appropriate
for tours of a city or a museum. Also, they may create
a sense of community by providing a means to share an-
notations on the physical world asynchronously between
people with similar interests, say architecture students or a
high school biology class. As reliability and accessibility
to wireless networks improves, such systems might be used
for repair, inspection, and maintenance of hidden physical
infrastructure, such as eectrical wiring or plumbing. Sim-
ilarly, AR systems might be used as navigation guides or
task reminders for the mentally handicapped. As recogni-
tion performance increases and the hardware costs decline,
many new applicationswill be found for such contextually-
aware computing.

3. The Patrol Task

The“Patrol task” isan attempt to test techniquesfromthe
laboratory inlessconstrained environments. Patrol isagame
played by MIT studentsevery weekendinacampusbuilding.
The participants are divided into teams denoted by colored
head bands. Each participant starts with a rubber suction
dart gun and a small number of darts. After proceeding to
the second floor to “resurrect” the teams converge on the
basement, mezzanine, and first floors to hunt each other. If
shot with adart, the participant removes hishead band, waits
for fighting to finish, and proceeds to the second floor before
replacing his head band and returning. While there are no
formal goal s besi des shooting membersof other teams, some
players maintain a “kill ratio” of the number of players
he shot versus the number of times he was shot. Others
emphasi ze stealth, team play, or holding “territory.”

Originally, Patrol provided an entertaining way to test
the robustness of wearable computing techniques and ap-
paratus for other projects, such as hand tracking for the
sign language recognizer [20]. However, it quickly became
apparent that the gestures and actions in Patrol provided
a reatively well defined language and goa structure in a
very harsh “red-life” sensing environment. As such, Patrol
becameacontext-sensing project withinitself. Thenext sec-
tions discuss current work on determining player location
and task using only on-body sensing apparatus.

3.1. Apparatus

Sensing for the Patrol task is performed by two hat-
mounted cameras (Figure 2). The larger of the two cam-
eras points downwards to watch the hands and body. The
smaller pointsforward to observe what the user sees. Each
cameraisfitted with thewidest angle lens available. Figure
3 shows sample images from the hat. Both cameras require
an attached “ camera control box” placed in a backpack with
avideo mixer and aHi-8 camcorder. The video mixer com-
bines up to four channes of video into one NTSC signal
by mapping each channd into one of four quadrants of the
screen. The output is then recorded by the Hi-8 camcorder.
Whileit ispossibleto provide enough on-body computation
to run feature detection in rea-time, the reference video
tape is needed for experimental purposes. The resultant
backpack islarger than isdesirable for adaily-usewearable
computer but allows enough maneuverability for the two to
three hours of a Patrol session.

Figure 3. The downward- and forward-looking
Patrol views.

An extended version of the apparatus is currently be-
ing tested. In this system, an identica hat is handed to a
team-mate or opposing player. The two channes of addi-
tional video are sent wirelesdly to thefirst player wherethey
are recorded using the spare channels of the video mixer.
Both instrumented players are fitted with noise-cancelling
close-fitting microphonesto provide two channels of audio.
Eventually, this second perspective may provideinteresting
data on player interaction, but currently the harsh RF envi-
ronment causes a significant amount of noisein the system.



3.2. Location

User location often provides valuable clues to the user’s
context. For example, if the user is in his supervisor's
office, heis probably in an important meeting and does not
want to be interrupted for phone calls or e-mail except for
emergencies. By gathering data over many days, the user’s
motions throughout the day might be modeled. This model
may then be used to predict when the user will be in a
certain location and for how long [9]. Such informationis
invaluable for network caching in case the user’'s wireless
network does not provide coverage everywhere on acampus.

Today, most outdoor positioningis performed inrelation
to the Globa Positioning System (GPS). Differentia sys-
tems can obtain accuraci es of |essthan one meter, and update
rates of one second are common. However, indoor systems
require different methods. Current systems such as active
badges [21, 15, 4, 10] and beacon architectures [6, 14, 18]
require increased infrastructure for higher accuracy. This
increased infrastructure implies increased instalation and
maintenance. However, in the Patrol task, we attempt to de-
terminelocation based solely on theimages provided by the
Patrol hat cameras, which arefixed-cost on-body equipment.

The Patrol environment consists of 14 rooms that are
defined by their strategic importance to the players. The
rooms boundaries were not chosen to simplify the vision
task but are based on thelong standing conventions of game
play. The playing areas include hallways, stairwells, class-
rooms, and mirror image copies of these classrooms whose
similarities and “institutional” decor make the recognition
task difficult. However, four of the possible rooms have
relatively distinct coloration and luminance combinations,
though two of these are not often traveled.

Hidden Markov models (HMM’s) were chosen to repre-
sent theenvironment duetotheir potential languagestructure
and excellent discrimination ability for varyingtimedomain
processes. For example, rooms may have distinct regions or
lighting that can be modeled by the states in an HMM. In
addition, the previous known location of the user helps to
limit his current possible location. By observing the video
stream over severa minutesand knowingthephysical layout
of the building, many possible paths may be hypothesized
and the most probable chosen based on the observed data.
Prior knowledge about the mean time spent in each area may
also be used to weight the probability of a given hypothe-
sis. HMM's fully exploit these attributes. A full review of
HMM'’s is not appropriate here, but the reader should see
[17, 2, 11] for HMM implementation details and tutorials.

Asalfirst attempt, the mean colors of three video patches
are used to congtruct a feature vector in rea-time. One
patch istaken from approximately the center of theimage of
the forward looking camera. The means of the red, green,
blue, and luminance pixel values are determined, creating

a four element vector. This patch varies significantly due
to the continual head motion of the player. The next patch
is derived from the downward looking camera in the area
just to the front of the player and out of range of average
hand and foot maotion. This patch represents the coloration
of thefloors. Finaly, since the nose is dways in the same
place relative to the downward looking camera, a patch is
sampled fromthenose. Thispatch providesahint at lighting
variations as the player moves through aroom. Combined,
these patches provide a 12 element feature vector.

Approximately 45 minutesof Patrol video were analyzed
for this experiment. Processing occurs at 10 frames per
second on an SGI O2. Missed frames are filled by ssimply
repeating the last feature vector up to that point. The video
is then subsampled to six frames per second to create a
manageabl e database size for HMM anaysis. Thevideo is
hand annotated usingaVLAN systemto providethetraining
database and a reference transcription for the test database.
Whenever the player stepsinto anew area, the video frame
number and area name are recorded. Both the data and the
transcription are converted to Entropic’s HTK [23] format
for training and testing.

For this experiment, 24.5 minutes of video, comprising
87 areatransitions, are used for trainingthe HMMs. Aspart
of thetraining, a statistica (bigram) grammar is generated.
This “grammar” is used in testing to weight those rooms
which are considered next based on the current hypothesized
room. Anindependent 19.3 minutesof video, comprising 55
areatransitions, are used for testing. Note that the computer
must segment the video at the area transitions as well as
label the areas properly.

Table 1 demonstratestheaccuracies of the different meth-
ods tested. For informative purposes, accuracy rates are
reported both for testing on the training data and the inde-
pendent test set. Accuracy is calculated by

N-D-S5-1

Ace =
cc N

where N is the total humber of areas in the test set, D
(deletions) is the number of area changes not detected, S
(substitutions) is the number of areas falsely labeled, and I
(insertions) isthenumber of areatransitionsfalsely detected.
Note that, since dl errors are counted against the accuracy
rate, it ispossibleto get large negative accuracies by having
many insertions, as shown by several entries of thetable.
The simplest method for determining the current roomis
to determine the smallest Euclidean distance between atest
feature vector with the means of the feature vectors com-
prising the different room examples in the training set. In
actuality, the mean of 200 video frames surrounding a given
pointin timeiscompared to the room classifications. Since
the average time spent within an area is approximately 600
video frames (or 20 seconds), thiswindow should smooththe



Table 1. Patrol area recognition accuracy

method training set | independent
test set
1-state HMM 20.69% -1.82%
2-state HMM 51.72% 21.82%
3-sate HMM 68.97% 81.82%
4-state HMM 65.52% 76.36%
5-state HMM 79.31% 40.00%
Nearest Neighbor -400% -485.18%

data such that the resulting classification shouldn’'t change
due to small variations in a given frame. However, many
insertions still occur, causing the large negative accuracies
shown in Table 1.

Given the nearest neighbor method as a comparison, itis
easy to see how thetime duration and contextual properties
of the HMM's improve recognition. Table 1 showsthat the
accuracy of the HMM system, when tested on the training
data, improves as more states are used in the HMM. This
resultsfromtheHMM'’ soverfitting thetraining data. Testing
on the independent test set shows that the best model is a
3-state HMM, which achieves 82% accuracy. The topology
for thisHMM isshown in Figure 4. In some cases accuracy
on the test data is better than the training data. This effect
is due to the grammar which limits the possible transitions
betweenareas. Onceawrongturn hasbheen made, thesystem
can pass through many areas before converging again with
the correct path. The longer the test path, the higher the
potentia for being misled for extended periods of time.

sSee

Figure 4. HMM topology for Patrol.

Accuracy is but one way of evaluating the methods. An-
other important attributeis how well the system determines
when the player has entered a new area. Figure 5 com-
pares the 3-state HMM and nearest neighbor methods to
the hand-labeled video. Different rooms are designated by
two letter identifiers for convenience. As can be seen, the
3-state HMM system tendsto bewithin afew seconds of the
correct transition boundarieswhilethe nearest neighbor sys-
tem oscillates between many hypotheses. Changing the size
of the averaging window might improve accuracy for the
nearest neighbor system. However, the constantly changing
pace of the Patrol player necessitates a dynamically chang-
ing window. This constraint would significantly complicate
the method. In addition, a larger window would result in
less distinct transition boundaries between aress.

Reference N N
fs mz ms

HMM X X
fs ! mz ! ms

Nearest Neighbor
' P n oy
—Ht—++++ t t—+ -
fs bs lbmz mz nu bh mz Ib mz ms fs ms
ms bh bh bs bs

4 4 4 4 4 4 4 4 4 4
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30 31 32 33 34 35 36 37 38 39 40
X 100 frames

Figure 5. Typical detection of Patrol area tran-
sitions.

As mentioned earlier, one of the strengths of the HMM
systemisthat it can collect evidence over timeto hypothesize
the player’'s path through several areas. How much differ-
encedoesthisincorporation of context makeon recognition?
To determine this, the test set was segmented by hand, and
each area was presented in isolation to the 3-state HMM
system. At face value this should be a much easier task
since the system does not have to segment the areas as well
as recoghize them. However, the system only achieved 49%
accuracy on thetest data and 78% accuracy on the training
data. This result provides striking evidence of the impor-
tance of using context in thistask and hintsat theimportance
of context in other user activities.

While the current accuracy rate of 82% is good, several
significant improvements can be made. Optical flow or in-
ertial sensors could limit frame processing to those times
when the player is moving forward. This would eliminate
much of the variation, often caused by stand-offsand fire-
fights, between examples of moving through aroom. Sim-
ilarly, the current system could be combined with optical
flow to compensate for driftininertial trackers and pedome-
ters. Windowing the test data to the size of a few average
rooms could improve HMM accuracies as well. Addition-
ally, instead of the average color of video patches, color
histograms could be used as feature vectors. Findly, al
these techniques could be applied to create an automatic
map of a new building as the Patrol player explored it.

3.3. User Tasks

By identifying the user's current task, the computer can
assist actively in that task by displaying timely information
or automatically reserving resources that may be needed
[1, 16, 19]. However, a wearable computer might also take
amore passive role, simply determining the importance of
potentia interruptions(phone, e-mail, paging, etc.) and pre-
senting theinterruptionin the most socially graceful manner
possible. For example, while driving done in an automo-
bile, the system might al ert the user with a spoken summary
of an email. However, during a conversation, the wear-
able computer may present the name of a potential caller
unobtrusively in the user’s head-up display.



In the Patrol scenario, tasks include aiming, shooting,
and reloading. Other user actionssuch as standing, walking,
running, and scanning the environment can be considered
as tasks which may be executed simultaneously with the
previoustasks. Inthissectionwe describeacomputer vision
system for the recognition of such user tasks. The system
is based on a generic object recognition system recently
proposed by Schiele and Crowley [13]. A major result
of their work is that a statistical representation based on
local object descriptors provides a reliable means for the
representation and recognition of object appearances.

Inthecontext of the Patrol datathis system can beused for
recognition of image patches that correspond to particular
motionsof ahand, thegun, aportionof an arm, or any part of
the background. By feeding the calculated probabilities as
feature vectorsto aset of hidden Markov models (HMM’s),
it ispossibleto recognize different user tasks such asaiming
and reloading. Preliminary results are described in the next
section.

3.4. Probabilistic I mage Patch Recognition

Schiele and Crowley [13, 12] presented a technique to
determine the identity of an object in a scene using mul-
tidimensiona histograms of responses of vectors of loca
neighborhood operators. They showed that matching such
histograms can be used to determine the most probabl e ob-
ject, independent of its position, scale and image-plane ro-
tation. Furthermore, they showed the robustness of the ap-
proach to changes in viewpoint.

This technique has been extended to probabilistic ob-
ject recognition [13] in order to determine the probability
of each object in an image based only on multidimensional
receptive field histograms. Experiments showed that only
arelatively smal portion of the image (between 15% and
30%) is needed in order to recognize 100 objects correctly.
In thefollowingwe describe briefly theloca characteristics
and the technique used for probabilistic object recognition.
The system runs at approximately 10Hz on a Silicon Graph-
ics machine O2 using the OpenGL extension for real-time
image convolution.

Local Characteristics based on Gaussian Derivatives:
Multidimensional receptive field histograms can be con-
structed using a vector of any linear filter. Schiele [12] ex-
perimentally compares theinvariant propertiesfor anumber
of receptive fidd functions, including Gabor filter and local
derivative operators. Those experiments showed that Gaus-
sian derivatives provided the most robust and equi-variant
recognition results. Accordingly, in the work described in
this paper we use filters which are based on equi-variant
Gaussian derivatives.
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the first derivative in =z and y—direction is given by:
Dx(z,y) = —5G(z,y) and Dy(z,y) = —%G(x,y)
The Laplace operator is caculated a5 Go.(z,y) =
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Probabilistic Object Recognition: Inthecontext of prob-
abilistic object recognition we are interested in the calcula
tion of the probability of the object O,, given a certain loca
measurement Mj,. This probability p(O,,| M) can be cal-
culated by the Bayesrule:

P(My]O0n)p(On)

PO bO)

with p(0,,) the a priori probability of the object O,,
p(My) theapriori probability of the filter output combina-
tion M, and p(My|O,,) isthe probability density function
of abject O,,, which differs from the multidimensiona his-
togram of an object O,, only by a normalization factor.

Having K independent local measurements My, Mo, .. .,
My we can calculate the probability of each object O,, by:

[T}, p(My)

In our context thelocal measurement M, correspondsto
a single multidimensiona receptive field vector. Therefore
K local measurements M; correspond to K receptive field
vectors which are typically from the same region of the
image. To guarantee theindependence of the different local
measurements we choose the minimal distance d( My, M;)
between two measurements A, and M, sufficiently large
(in the experiments described bel ow we choose the minimal
diSIanced(Mk,Ml) > 20’)

For the experiments we can assume that al objects do
have the same probability p(0,,) = % where N is the
number of objects. Therefore equation (1) simplifiesto:

[T, P(M|On)
2on 11 P(M|Oy)

In the following we assume the a priori probabilities
p(0,,) to be known and use p(My) = >°; p(M|O0;)p(0;)
for the calculation of the a priori probability p( A/} ). Since
the probabilities p( M}, |O,, ) are directly given by the multi-
dimensiona receptive field histograms, equation (1) shows
a calculation of the probability for each object O,, based
on the multidimensional receptive field histograms of the
N objects. Perhaps the most tempting property of equation
(2) isthat we do not need correspondence. That means that

p(On|M1, e

p(On] \ M) @)
k
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Figure 6. Recognition results of 103 objects.

the probability can be calculated for arbitrary pointsin the
image.

Equation (2) has been applied to a database of 103 ob-
jects. Inan experiment 1327 test images of the 103 objects
have been used which include scale changes up to £40%,
arbitrary image plane rotation and view point changes. Fig-
ure6 showsresultswhich were obtained for six-dimensional
histograms, e.g. for thefilter combination Dz — Dy — Lap
at two different scaes (c = 2.0 and = 4.0). The figure
compares probabilistic object recognition and recognition
by histogram matching: ng (chstwo) and N (inter). A vis-
ible object portion of approximately 62% is sufficient for
the recognition of all 1327 test images (the same result is
provided by histogram matching). With 33.6% visibility
the recognition rate is till above 99% (10 errors in total).
Using 13.5% of the object therecognition rateis still above
90%. More remarkably, the recognition rate is 76% with
only 6.8% visibility of the object.

Task recognition with Hidden Markov Models. The
preceding section shortly described a generic object recog-
nition system which is the basis of our computer vision
system for the recognition of user tasks. As mentioned
above, the recognition system is used for the recognition of
image patches which correspond to appearances of ahand, a
portion of an arm or any part of the background. In order to
use the recognition system we define alibrary of 30 images
(grouped into images corresponding to the same action and
chosen arbitrarily from the Patrol data). Each of theimages
are splitinto 4x4 sub-images which are used as image patch
database. 1n the experiment below we define three different
image groups, one of each action. When applied to the in-
coming video stream from the camera, the system cal cul ates
3 groupsx 16 = 48 probabilitiesat 10Hz. This probability
vector isthen used asfeature vector for aset of HMM which
have been trained to recognize different tasks of the user.

Preliminaryresults. Inthefollowingwedescribe prelim-
inary resultsfor therecognition of user tasks such asaiming,

shooting and reloading. Since aiming and shooting are very
similar actions, we consider them as the same task in the
following.

For both actions (ai ming/shooting and rel oading) wetrain
a separate HMM containing 5 states. In order to train the
HMM'’swe annotated 2 minutes of the video data. These 2
minutes contained 13 a ming/shooting actions and 6 rel oad-
ing actions. Everything whichisneither aiming nor shooting
ismodeled by athird class, the “other” class (10 sequences
in total). These actions (aiming, reloading and “other”)
have been separated into atraining set of 7 aiming actions,
4 reloading actions and 3 other sequences for training of the
HMM'’s. Interestingly theactionsareof very different length
(between 2.25sec and 0.3sec). The remaining actions have
been used as test set. Table 2 shows the confusion matrix of
the three action classes.

| | @iming | reloading | “other” |

aiming 6 0 0
reloading 0 1 1
“other” 0 1 6

Table 2. Confusion matrix between aiming,
reloading, and other tasks.

Aimingisrelatively distinctive with respect to rel oading
and “other”, since the arm is stretched out during aiming,
which is probably the reason for the perfect recognition of
the aiming sequences. However, reloading and “other” are
difficult to distinguish, since the reloading action happens
only inavery small region of theimage (close to the body)
and is sometimes barely visible.

These preliminary results are certainly encouraging, but
have been obtained for perfectly segmented data and a very
small set of actions. However, one of theintrinsic properties
of HMM's is that they can deal with unsegmented data
Furthermore the increase of the task vocabulary will enable
the use of languageand context model swhich can beapplied
on different levels and which will help the recognition of
singletasks.

3.5. Use of Patrol Context

While preliminary, the systems described above suggest
interesting interfaces. By using head-up displays, the play-
ers could keep track of each other'slocations. A strategist
can depl oy the team as appropriate for maintaining territory.
If aim and reload gestures are recognized for a particular
player, the computer can automatically aert nearby team
members for aid.

Contextual information can be used more subtly aswell.
For example, if the computer recognizesthat itswearer isin
the middle of a skirmish, it should inhibit al interruptions



and information, except possibly an “X” on the person at
whom the user isaming. Similarly, a simple optical flow
algorithm may beused to determinewhentheplayer isscout-
ing anew area. Again, any interruptionshould beinhibited.
On the other hand, when the user is “resurrecting” or wait-
ing, the computer should provide as much information as
possibleto prepare the user for rgjoining the game.

The model created by the HMM location system above
can aso be used for prediction. For example, the com-
puter can weight the importance of incoming information
depending on where it believes the player will move next.
An encounter among other players several rooms away may
berelevant if the player is moving rapidly in that direction.
In addition, if the player is shot, the computer may predict
the most likely next area for the enemy to visit and dert the
player’steam as appropriate. Such just-in-timeinformation
can beinvaluablein such hectic situations.

4. Conclusion and Future Work

Through body centered camerasand machinevision tech-
niques, several examples of contextually aware interfaces
are presented. By observing context, the computer can aid
in task and interruption management, provide just-in-time
information, and make helpful predictions of future behav-
ior. Whilelarger annotated data setsare necessary to test the
techniques used for the Patrol task, the preliminary results
are promising. Additional methods such as optical flow or
motion differencing may be added to determineif theuseris
standing, walking, running, visually scanning the scene, or
usingthestairs. By usingthenew apparatusto anayzevideo
and audio from two simultaneous partici pants, player inter-
action might be modeled. Hopefully, with development,
such a system will be used to observe and model everyday
user tasks and human to human interactions aswell.
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