
TCP/IP Sockets in Java:
Practical Guide for
Programmers

Kenneth L. Calvert

Michael J. Donahoo

Computer Chat

! How do we make computers talk?

! How are they interconnected?

Internet Protocol (IP)

Internet Protocol (IP)

! Datagram (packet) protocol

! Best-effort service

! Loss

! Reordering

! Duplication

! Delay

! Host-to-host delivery

IP Address

! 32-bit identifier

! Dotted-quad: 192.118.56.25

! www.mkp.com -> 167.208.101.28

! Identifies a host interface (not a host)

192.18.22.13 209.134.16.123

Transport Protocols

 Best-effort not sufficient!

! Add services on top of IP

! User Datagram Protocol (UDP)
! Data checksum

! Best-effort

! Transmission Control Protocol (TCP)
! Data checksum

! Reliable byte-stream delivery

! Flow and congestion control

Ports

Identifying the ultimate destination
! IP addresses identify hosts

! Host has many applications

! Ports (16-bit identifier)

192.18.22.13

 Port 80 25 23

Application WWW E-mail Telnet

Sockets

! Identified by protocol and local/remote
address/port

! Applications may refer to many sockets

! Client: Initiates the connection

! Server: Passively waits to respond

Clients and Servers

Client: Bob

“Hi. I’m Bob.”

“Nice to meet you, Jane.”

Server: Jane

“Hi, Bob. I’m Jane”

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

Server starts by getting ready to receive client connections…

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

!"#$"#!%&'"()*"#$!%&')+),"-)!"#$"#!%&'"(. *"#$/%#(0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

2%#). 1 1 0)3

))))!%&'"()&4,(!%&')+)))*"#$!%&'56&&"7(. 0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

Server is now blocked waiting for connection from a client

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

Later, a client decides to talk to the server…

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

!%&'"()*%&'"()+),"-)!%&'"(. *"#$"#8)*"#$/%#(0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

9:(7:(!(#"6;)%:()+)*%&'"(5< "(9:(7:(!(#"6; . 0 1

%:(5- #=(". >?("@:22"#0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

!%&'"()&4,(!%&')+)))*"#$!%&'56&&"7(. 0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Communicate

%# Close the connection

Server

"# Create a TCP socket

$# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

A,7:(!(#"6;)=,)+)&4,(!%&'5< "(A,7:(!(#"6; . 0 1

#"&$B*<!=C")+)=,5 #"6D. >?("@:22"#0 1

TCP Client/Server Interaction

Client

"# Create a TCP socket

$# Establish connection

%# Communicate

)# Close the connection

Server

"# Create a TCP socket

$# Bind socket to a port

%# Set socket to listen

)# Repeatedly:

&# Accept new connection

'# Communicate

(# Close the connection

close(sock); close(clntSocket)

TCP Tidbits

Client
out.write(“Hello Bob”)

in.read() -> “Hi Jane”

Server

in.read() -> “Hello ”

in.read() -> “Bob”

out.write(“Hi ”)

out.write(“Jane”)

! Client knows server address and port

! No correlation between send() and recv()

Closing a Connection

! close() used to delimit communication

! Analogous to EOF

Client
out.write(string)

while (not received entire string)

in.read(buffer)

out.write(buffer)

close(socket)

Server

in.read(buffer)

while(client has not closed connection)

out.write(buffer)

in.read(buffer)

close(client socket)

Constructing Messages

…beyond simple strings

TCP/IP Byte Transport

! TCP/IP protocols transports bytes

! Application protocol provides semantics

Application

TCP/IP

byte stream

Application

TCP/IP

byte stream

Here are
some bytes.
I don’t know
what they

mean.

I’ll pass
these to
the app.
It knows

what to do.

Application Protocol

! Encode information in bytes

! Sender and receiver must agree on
semantics

! Data encoding

! Primitive types: strings, integers, and etc.

! Composed types: message with fields

Primitive Types

! String

! Character encoding: ASCII, Unicode, UTF

! Delimit: length vs. termination character

M o m \n

 3 77 111 109

 0 77 0 111 0 109 0 10

! Integer

! Strings of character encoded decimal digits

! Advantage: 1. Human readable

2. Arbitrary size

! Disadvantage: 1. Inefficient

2. Arithmetic manipulation

Primitive Types

 49 55 57 57 56 55 48 10

 ‘1’ ‘7’ ‘9’ ‘9’ ‘8’ ‘7’ ‘0’ \n

Primitive Types

! Integer

! Native representation

! Network byte order (Big-Endian)

! Use for multi-byte, binary data exchange

! htonl(), htons(), ntohl(), ntohs()

 0 0 92 246 4-byte
two’s-complement
integer

23,798

246 92 0 0Big-Endian

Little-Endian

Message Composition

! Message composed of fields

! Fixed-length fields

! Variable-length fields

shortshortinteger

\n1 2ei kM

