TCP/IP Sockets in Java:
Practical Guide for
* Programmers

Kenneth L. Calvert
Michael J. Donahoo

i Computer Chat

= How do we make computers talk?

#

= J =
- =l - —

= How are they interconnected?

Internet Protocol (IP)

i Internet Protocol (IP)

= Datagram (packet) protocol

= Best-effort service
= LOSS
= Reordering
= Duplication
= Delay

= Host-to-host delivery

i IP Address

= 32-bit identifier
= Dotted-quad: 192.118.56.25
= www.mkp.com -> 167.208.101.28

= Identifies a host interface (not a host)

Y —

=

m / 2]
— 209.134.16.123

192.18.22.13

i Transport Protocols

Best-effort not sufficient!

= Add services on top of IP

= User Datagram Protocol (UDP)
= Data checksum
= Best-effort
= Transmission Control Protocol (TCP)
= Data checksum
= Reliable byte-stream delivery
= Flow and congestion control

i Ports

Identifying the ultimate destination
= IP addresses identify hosts

= Host has many applications

= Ports (16-bit identifier)
Application WWW E-mail Telnet

Port SVNSI /2'3
_——
192.18.22.13

i Sockets

= Identified by protocol and local/remote
address/port

= Applications may refer to many sockets

Applications

i Clients and Servers

a Client: Initiates the connection

Client: Bob Server: Jane

“Hi. I'm Bob.”

>

<—— "Hi, Bob. I'm Jane”

“Nice to meet you, Jane.” >

= Server: Passively waits to respond

i TCP Client/Server Interaction

Server starts by getting ready to receive client connections...

Client Server
. Create a TCP socket - Create a TCP socket
-.n - Communicate ~« Repeatedly:
- Close the connection =r Accept new connection

o Communicate
wr Close the connection

i TCP Client/Server Interaction

ServerSocket servSock = new ServerSocket(servPort);

~r Create a TCP socket ra - Create a TCP socket
- Communicate < Repeatedly:
-+ Close the connection = Accept new connection

or Communicate
wr Close the connection

i TCP Client/Server Interaction

for (;;) {
Socket clntSock =

Client
~ Create a TCP socket
»«v. Communicate
-« Close the connection

servSock.accept();

Server
~ Create a TCP socket
=an Repeatedly:
=n Accept new connection
g+ Communicate
nr Close the connection

i TCP Client/Server Interaction

Server is now blocked waiting for connection from a client

Client
-« Create a TCP socket
=« Communicate
-t Close the connection

Server
-« Create a TCP socket
nah Repeatedly:
=r Accept new connection
9= Communicate
nr Close the connection

i TCP Client/Server Interaction

Later, a client decides to talk to the server...

Client
~ Create a TCP socket
»«v. Communicate
-« Close the connection

Server
~ Create a TCP socket
=an Repeatedly:
=n Accept new connection
g+ Communicate
nr Close the connection

i TCP Client/Server Interaction

Socket socket = new Socket(server, servPort):

Client
r=t Create a TCP socket
=« Communicate
-t Close the connection

Server
-« Create a TCP socket
nah Repeatedly:
=r Accept new connection
9= Communicate
nr Close the connection

i TCP Client/Server Interaction

OutputStream out = socket.getOutputStream();
out.write(byteBuffer);

Client Server
. Create a TCP socket - Create a TCP socket
san - Communicate < Repeatedly:
-« Close the connection =n Accept new connection

o Communicate
wr Close the connection

i TCP Client/Server Interaction

Socket cIntSock = servSock.accept();
- Create a TCP socket - Create a TCP socket
=an Communicate = Repeatedly:
- Close the connection =r Accept new connection

or Communicate
wr Close the connection

=D

3@

i TCP Client/Server Interaction

-

SNGS)

InputStream in = cIntSock.getlnputStream();

recvMsgSize = in.read(byteBuffer):

Client
Create a TCP socket
Communicate
Close the connection

r=an

BaD

Server
Create a TCP socket
Repeatedly:
= Accept new connection
g Communicate
nr Close the connection

i TCP Client/Server Interaction

=D

E)

BaD
Bwh

e

close(sock);

Client
Create a TCP socket
Establish connection
Communicate
Close the connection

=)
BD
BD

g

close(cIntSocket)

Server
Create a TCP socket
Bind socket to a port
Set socket to listen
Repeatedly:
= Accept new connection
g+ Communicate
e Close the connection

i TCP Tidbits

= Client knows server address and port
= No correlation between send () and recv ()

Client Server
out.write("Hello Bob™)
in.read() -> “Hello ”
in.read() -> “Bob”
out.write("Hi ")
out.write(“Jane”)
in.read() -> “Hi Jane”

i Closing a Connection

= close() used to delimit communication
= Analogous to EOF

Client Server

out.write(string)
in.read(buffer)

while (not received entire string) while(client has not closed connection)
in.read(buffer) out.write(buffer)
out.write(buffer) in.read(buffer)

close(socket)

close(client socket)

* Constructing Messages

...beyond simple strings

i TCP/IP Byte Transport
= TCP/IP protocols transports bytes

Application Application

byte|stream

byte|stream
Here are

some bytes.
I don't know
what they

I'll pass
these to
the app.
It knows
what to do.

= Application protocol provides semantics

i Application Protocol

= Encode information in bytes

= Sender and receiver must agree on
semantics

= Data encoding
= Primitive types: strings, integers, and etc.
= Composed types: message with fields

i Primitive Types

= String
= Character encoding: ASCII, Unicode, UTF
= Delimit: length vs. termination character

0 77 | O 111 | O 109 | O 10

M 0 m \n

3 77 111 109

i Primitive Types

= Integer

= Strings of character encoded decimal digits
49 | 55 | 57| 57 |5 | 55 |48 | 10
‘177 9 9 g 77 0 \n

= Advantage: 1. Human readable
2. Arbitrary size
= Disadvantage: 1. Inefficient

2. Arithmetic manipulation

i Primitive Types

= Integer
= Native representation

Little-Endian | 0 0 92 246 4-byte

23,798 two’s-complement
integer

Big-Endian | 246 | 92 0 0

= Network byte order (Big-Endian)
= Use for multi-byte, binary data exchange
= htonl(), htons(), ntohl(), ntohs()

i Message Composition

= Message composed of fields
= Fixed-length fields

integer

short

short

= Variable-length fields

M

k

S

