Handset Development




Introduction

» Quick Survey, are you comfortable with...
Java
NET
Obijective-C / Cocoa
C
C++

» Every platform is still relevant today



General Thoughts

Handset development is awesome!
Debugging is super painful
Emulator != device
There is no console (generally)

Handsets are more buggy than desktops
“Bleeding Edge” hurts (and changes a lot)
Handset experience doesn’t generalize



Summary

Play to your strengths or be
willing to work hard to catch up.



Philosophy of Mobile Development
» NOT just porting a desktop application

» Many new constraints
Battery life
Environmental
User Interface / Form Factor

» Platform often dictates architecture



iPhone

» Language — _
cingular = 10:36 AM =
. . Lorem ipsum dolor sit amet, consetetur
Objective-C et o s s o]
M ENE™MmEE YN
C/C++ | gooouoooBa
gooGaooan
T apgoponte
» Why? = N -

Sexy new device
Easy to deploy your app (to the world)
Fairly standard and powerful devices

Hot market, full of early adopters, blah blah blah
Powerful APl / Framework



iPhone

» Why Not?
New buggy platform
Restrictive SDK
Manual memory management
Fairly small market
NDA, limited support
No IMS support



iPhone

» Workflow
Centers around Xcode, gdb, and Interface Builder

Initial setup is a headache

Application distribution is not very timely
Not bad, could be much better

A lot to learn for non mac developers



Android

» Language
Java, tweaked

» Why?
Big backers (OHA)
Java based, fairly friendly
Muti-phone / vendor / open-ish



Android

» Why not?
No devices until (earliest) mid-September + delays
Java based—incomplete implementation, some bugs
Totally inconsistent abilities... maybe
The SDK is a bit limited
Custom widgets somewhat difficult
No IMS support



Android

» Workflow
Nifty eclipse environment
Good debugger

Emulator (as of previous SDK) can get into Weird States
that don't fix themselves on reset

Emulator lacks some important features (like a mic!)



JavaME

» Language
JavaME

» Why?
JME has great docs
Garbage collection
Friendly learning curve
Deploying to test is easier than most others

Lots of optional APIs you can use (depending on the
phone)



JavaME

» Why Not?
“Write once, debug everywhere”

45 VMs, 600 phone variants, 2 QA engineers

One of the slowest solutions (in part because of the VM,
In part because of the devices)

Unimpressive default Ul toolkit
No local SQL db by default as in Android/iPhone
Deploying (to the world) is harder than iPhone / Android




JavaME

» IMS Support
Ericson has a set of APIs to make SIP & IMS a bit easier

Ericson also provides sample code

Probably the best of the lot but we haven't done much
with it, all our previous work was with a toolkit from NSN

which is no longer maintained

» Workflow
NetBeans and Eclipse both provide great environments to
develop in
Sun device emulators are pretty good (for emulators)



Windows Mobile

» Language
NET (C#)

» Why?
MSDN docs are generally pretty good
Fairly mature platform

Market penetration—WinMo has good coverage in
enterprise environments (in the US)



Windows Mobile

» IMS Support
NSN libraries
Reasonable docs and sample code

» Why Not?
Desktop shoved onto a mobile phone



Other

Series60

Low level hackery
Fast
Access to pretty much everything
Large learning curve

BREW
OpenMoko / LinMo









