
Handset Development



Introduction
 Quick Survey, are you comfortable with…

 Java
 .NET
 Objective-C / Cocoa
 C
 C++

 Every platform is still relevant today



General Thoughts
 Handset development is awesome!
 Debugging is super painful

 Emulator != device
 There is no console (generally)

 Handsets are more buggy than desktops
 “Bleeding Edge” hurts (and changes a lot)
 Handset experience doesn’t generalize



Summary

Play to your strengths or be
willing to work hard to catch up.



Philosophy of Mobile Development
 NOT just porting a desktop application

 Many new constraints
 Battery life
 Environmental
 User Interface / Form Factor

 Platform often dictates architecture



iPhone
 Language

 Objective-C
 C/C++

 Why?
 Sexy new device
 Easy to deploy your app (to the world)
 Fairly standard and powerful devices
 Hot market, full of early adopters, blah blah blah
 Powerful API / Framework



iPhone
 Why Not?

 New buggy platform
 Restrictive SDK
 Manual memory management
 Fairly small market
 NDA, limited support
 No IMS support



iPhone
 Workflow

 Centers around Xcode, gdb, and Interface Builder
 Initial setup is a headache
 Application distribution is not very timely
 Not bad, could be much better
 A lot to learn for non mac developers



Android
 Language

 Java, tweaked

 Why?
 Big backers (OHA)
 Java based, fairly friendly
 Muti-phone / vendor / open-ish



Android
 Why not?

 No devices until (earliest) mid-September + delays
 Java based—incomplete implementation, some bugs
 Totally inconsistent abilities... maybe
 The SDK is a bit limited
 Custom widgets somewhat difficult
 No IMS support



Android
 Workflow

 Nifty eclipse environment
 Good debugger
 Emulator (as of previous SDK) can get into Weird States

that don't fix themselves on reset
 Emulator lacks some important features (like a mic!)



JavaME
 Language

 JavaME

 Why?
 JME has great docs
 Garbage collection
 Friendly learning curve
 Deploying to test is easier than most others
 Lots of optional APIs you can use (depending on the

phone)



JavaME
 Why Not?

 “Write once, debug everywhere”
 45 VMs, 600 phone variants, 2 QA engineers

 One of the slowest solutions (in part because of the VM,
in part because of the devices)

 Unimpressive default UI toolkit
 No local SQL db by default as in Android/iPhone
 Deploying (to the world) is harder than iPhone / Android



JavaME
 IMS Support

 Ericson has a set of APIs to make SIP & IMS a bit easier
 Ericson also provides sample code
 Probably the best of the lot but we haven't done much

with it, all our previous work was with a toolkit from NSN
which is no longer maintained

 Workflow
 NetBeans and Eclipse both provide great environments to

develop in
 Sun device emulators are pretty good (for emulators)



Windows Mobile
 Language

 .NET (C#)

 Why?
 MSDN docs are generally pretty good
 Fairly mature platform
 Market penetration—WinMo has good coverage in

enterprise environments (in the US)



Windows Mobile
 IMS Support

 NSN libraries
 Reasonable docs and sample code

 Why Not?
 Desktop shoved onto a mobile phone



Other
 Series60

 Low level hackery
 Fast
 Access to pretty much everything
 Large learning curve

 BREW
 OpenMoko / LinMo






