
SABRE: A client based technique for mitigating the buffer
bloat effect of adaptive video flows

Ahmed Mansy
Georgia Institute of

Technology

amansy@cc.gatech.edu

Bill Ver Steeg
Cisco

versteb@cisco.com

Mostafa Ammar
Georgia Institute of

Technology

ammar@cc.gatech.edu

ABSTRACT
HTTP adaptive video streaming is an emerging technology
that aims to deliver video quality to clients in a manner that
accommodates available bandwidth and its fluctuations. In
this scheme, a video stream is split at the server into small
video files encoded at multiple bitrates. The video is com-
posed at the client by downloading these files over HTTP
and TCP. Although there are some efforts to standardize
media representation for this technology, adaptation tech-
niques remain an open area for development. Recently, an
alarm was raised by a study about the interaction between
TCP congestion control algorithms and large buffers on the
Internet. Queuing delays when these buffers are full can
reach several hundreds of milliseconds in a phenomenon that
was dubbed buffer bloat. In this paper we use measurements
on a testbed to demonstrate and quantify the buffer bloat
effect of HTTP adaptive streaming. We show that in a typ-
ical residential setting a single video stream can easily cause
queuing delays up to one second and even more hence seri-
ously degrading the performance of other applications shar-
ing the home network. We develop SABRE (Smooth Adap-
tive Bit RatE), a scheme that can be implemented by the
client to mitigate this problem. We implemented SABRE in
the VLC player. Using our testbed, we show that our tech-
nique can reduce buffer occupancy and significantly diminish
the buffer bloat effect without affecting the experience of the
video viewer.

Categories and Subject Descriptors
H.5.1 [Information Systems]: Multimedia Information
Systems - Video(e.g., tape, disk, DVI)

General Terms
Design, Performance, Algorithms

Keywords
DASH, buffer bloat, TCP, client based technique

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys’13, February 26-March 1, 2013, Oslo, Norway.
Copyright 2013 ACM 978-1-4503-1894-5/13/02...$15.00.

1. INTRODUCTION
Dynamic Adaptive Streaming over HTTP (DASH) [13] is a
new important standard for video streaming on the Internet.
In this approach, a video stream is split into small video seg-
ments of equal length and each segment is encoded in multi-
ple bitrates. The video server is basically a web server that
hosts video files representing these segments along with a
manifest file that describes the segments and their bitrates.
When starting a streaming session, a DASH video client
first downloads the manifest file to learn about the available
bitrates. After that, it downloads video segments usually
starting with the lowest available bitrate. While download-
ing video segments, the client estimates the available band-
width and adapts among the different video profiles accord-
ingly. Each segment is specified using an HTTP get request
and is downloaded over HTTP running on top of TCP.

A DASH player usually has a playout buffer and it always
tries to keep it full. When a client starts a DASH stream-
ing session, the player downloads video segments as fast as
possible until it fills the buffer; this phase is called the ini-
tial buffering phase. After that, the client downloads a new
video chunk every n seconds, where n is usually equal to the
length of the video segment (n is usually in the range from 2
to 10 seconds). The client behaves this way in order to keep
the video buffer full; this is called the steady state phase.
The client behavior in this phase is called the On/Off be-
havior. This is because it downloads a video segment (On)
then waits for a while (Off), and so on.

Excessive buffering of network devices on the Internet is a
well known problem which has been studied in different con-
texts [5, 11]. This problem was reintroduced recently by
Gettys and Nichols in [8] under the name buffer bloat. In
that study, the authors collected evidence to show that the
Internet can suffer from significant congestion due to the
existence of large buffers at different network devices. As a
result, traffic can experience very high queuing delays that
can reach several hundreds of milliseconds and sometimes
even more than a second. High delays can be very harmful
to many applications on the Internet such as VoIP, interac-
tive games, and e-commerce.

The root cause of the buffer bloat problem is the way TCP
(Transmission Control Protocol) works. In order for TCP
to achieve the best throughput, it keeps a send buffer of
approximately the bandwidth delay product (BDP) of the
path between the source and the destination. This means

that the maximum number of bytes in flight TCP can have
is equal to the BDP. In addition, TCP uses packet losses to
detect congestion. When TCP detects packet loss, it realizes
that the path is congested and backs off to a lower transmis-
sion rate. While it is important for TCP to detect packet
loss in a timely manner, large network buffers can store a
large number of packets before loss can occur and hence loss
detection is significantly delayed. This causes TCP to over-
estimate the BDP and consequently send larger bursts of
data that fill the large buffers and cause high delays.

The steady state behavior of DASH can be simply described
as a periodic download of small files (video segments) over
HTTP. Since HTTP runs over TCP, we expect DASH video
flows to have a buffer bloat effect. To the best of our knowl-
edge, this effect has not been measured or quantified by any
previous studies.

In this paper, we make two contributions. First, we show
through a set of experiments in a testbed that a single DASH
stream can cause significant delays to other ongoing appli-
cations sharing the home network in a typical residential
setting. Our setting considers the common case when the
bottleneck link is in the home access link and large tail-drop
buffers exist in residential routers.

In order to mitigate this problem we present as a second con-
tribution a technique, SABRE (Smooth Adaptive Bit RatE),
that enables a video client to smoothly download video seg-
ments from the server while not causing significant delays
to other traffic sharing the link. Our scheme is based on
a simple and effective idea that can be implemented in the
application layer of any DASH player. The idea uses a tech-
nique to dynamically adjust the flow control TCP window
(rwnd) in a DASH client. By doing that, we manage to con-
trol the burst size going from the server to the client and
effectively reduce the average queue size of the home router.
We implemented SABRE in the VLC DASH plugin [10] and
evaluated it using testbed experiments. Our results show
that SABRE can significantly improve queuing delay over
traditional On/Off video players.

The rest of the paper is organized as follows. In section
2 we introduce the experimental setup with results show-
ing the buffer bloat effect of DASH video flows. In section
3 we show experimentally how Active Queue Management
(AQM), often cited as a solution to buffer bloat problems, is
not a workable solution in this context. Our SABRE tech-
nique is described in section 4 along with some evaluation
results. We present some results when two clients share the
same bottleneck link in section 5. We conclude the paper in
section 6.

2. THE BUFFER BLOAT EFFECT OF ABR

FLOWS
In order to measure the significance of the buffer bloat ef-
fect of DASH video flows, we set up a testbed in the lab that
mimics real world secnarios. In this section we describe this
testbed along with the results of some experiments. These
results show that HTTP adaptive video flows induce signifi-
cant queuing delays that can reach hundreds of milliseconds.
All results throughout this paper were obtained using this
testbed.

Figure 1: Experimental testbed

2.1 Experimental setup
Our testbed is shown in figure 1. The testbed consists of
two workstations, two network switches, and a laptop. The
workstations and the laptop are running operating system
Ubuntu 12.04 LTS. The first workstation on the left acts as
a remote HTTP video server and it runs a standard Apache
webserver. The webserver hosts a video dataset that was ob-
tained from a published DASH dataset [9]. The dataset in-
cludes a video of resolution 1280×1920 that is encoded into
six different bitrates ranging from 2.04Mbps to 4.1 Mbps.
The second worksation (in the middle) mimics a residen-
tial router that connects the client to the remote server.
The laptop represents a video client that uses a VLC player
equipped with a DASH plugin [10] to stream video from the
server.

The linux traffic control tool tc is used on the router ma-
chine to emulate a bottleneck link between the client and the
server. The bottleneck bandwidth is set to 6Mbps, this is a
common value in a residential DSL setting. The tc tool is
also used to setup a tail-drop queue at the router of length
256 packets in order to emulate real residential gateways.
The same tool will be used later to setup other Active Queue
Management (AQM) techniques at the router. In addition,
the netem tool is used to add a round trip time of 100ms

between the router and the video server.

In this experiment we are interested in measuring the queu-
ing delay experienced by VoIP traffic while a DASH stream-
ing session is taking place. We emulate VoIP traffic by using
iperf [1] to send UDP traffic from the video server to the
client. We use UDP traffic of a constant bitrate of 80Kbps
with small packets of 150 bytes each, this is similar to Skype
voice traffic [6].

The one way queuing delay of UDP packets is measured
in the following manner. Wireshark [3] is used to capture

UDP traffic at both the router and the client. Assume t
(R)
0

and t
(R)
i are the timestamps when the first and the ith UDP

packets were received at the router. Moreover, assume that

t
(c)
0 and t

(c)
i are the timestamps when the first and the ith

UDP packets were received at the client. Then the queuing
delay of the ith UDP packet can be computed using the
formula

d(i) = (t
(c)
i − t

(c)
0)− (t

(R)
i − t

(R)
0)

Note that computing the queuing delay in this way does not
require synchronizing the clocks of both the client and the
router machines.

100 150 200 250 300 350

0
10

20
30

40
50

Time (sec)

R
at

e
(M

bp
s)

(a) Data rate on the server link

100 150 200 250 300 350

0
20

0
40

0
60

0
80

0

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queueing delay of UDP traffic

100 150 200 250 300 350

0
20

0
40

0
60

0

Time (sec)

W
in

do
w

 s
iz

e
(K

B
)

RWND
BIF

(c) Bytes-in-flight (BIF) and receiver window (rwnd)

Figure 2: On/Off video client with tail-drop queue
at the router

2.2 Measuring buffer bloat
In this experiment we set the capacity of the bottleneck link
to 6Mbps. We first start UDP traffic then after five sec-
onds we start streaming the video. In addition to computing
queuing delay as described above, we use Wireshark [3] to
capture incoming video traffic at the router. This enables
us to compute the data rate on the link between the video
server and the router, we call it the server link. In figures
2(b) and 2(a) we plot the queuing delay of UDP packets and
data rate on the server link respectively. In these two figures
we have a new sample every 100 milliseconds, meaning that
we get 10 samples every second.

We can clearly see from the figures the correlation between
the high data rate points in figure 2(a) and the high queuing
delay points in figure 2(b). For example, during the time
period from t = 95 to t = 100 we can see in figure 2(a) two

large bursts of data with a rate that exceeds 30Mbps. During
the same period we observe that queuing delay approaches
400ms. The explanation is that the huge bursts of video
data fill the queue at the router which causes UDP packets
to experience long delays until the buffer gets drained. This
behavior repeats multiple times at t = 255, 290, 335 and so
on.

In order to understand why we see these large bursts of data
we need to look at the receiver window (rwnd) returned by
the client to the server, and the congestion window (cwnd)
computed at the server. This is because the sender rate is
governed by the value of min(rwnd, cwnd). We extract the
rwnd values from the acknowledgement packets going from
the client to the server. Since the actual value of cwnd can
not be obtained without access to the server TCP code, we
use the bytes-in-flight instead. The bytes-in-flight value is
equal to the number of bytes that have been sent by the
server but still awaiting acknowledgements from the client.
This value is considered to be a lower bound on cwnd. Note
that when bytes-in-flight equals zero, it does not necessarily
mean that cwnd = 0, it could mean that no traffic was sent
during the measurement period (100ms).

We plot both rwnd and bytes-in-flight (BIF) over time in fig-
ure 2(c). We observe that rwnd is almost a constant value of
650KB except at time t = 180 when it drops to zero. The
reason it becomes zero is that the persistent TCP connection
resets periodically around every three minutes. We suspect
this is a default setting in the Apache web server as we ob-
serve this behavior repeatedly. We also observe that rwnd is
always greater than the value of bytes-in-flight. This means
that the burst size sent by the server is completely controlled
by the value of the server congestion window (cwnd). On the
other hand, the bytes-in-flight value varies widely over time
and, as expected, the high data rate bursts in figure 2(a)
correspond to high values of bytes-in-flight in figure 2(c).

Another observation here is that although the VLC player
uses persistent TCP connections, the cwnd value does not
grow continuously from video segment to the next as one
may expect. The reason for that is the On/Off behavior of
the video player. During the off period, the TCP connec-
tion becomes idle until it starts downloading the next video
segment. If this off period is longer than the retransmission
timeout (RTO), then according to TCP congestion control
specification [2], cwnd gets reset to the value of the initial
window (IW). The initial window is typically two TCP seg-
ments which is between 1000 and 3000 bytes.

3. RANDOM EARLY DETECTION (RED)
Before presenting our client based technique, we first con-
sider an Active Queue Management technique, specifically
RED. RED is a technique that looked like it might be able to
solve the buffer bloat problem but has proven to be difficult
to manage and tune.

RED [7] computes an average queue size using a weighted
moving average. In addition, RED is configured with two
parameters, minimum and maximum. When the average
queue size is less than minimum, no packets are marked to
get discarded. When the average queue size is larger than
maximum, all incoming packets are marked to get dropped.

100 150 200 250 300 350

0
5

10
15

20
25

30

Time (sec)

R
at

e
(M

bp
s)

(a) Data rate on the server link

100 150 200 250 300 350

0
10

0
20

0
30

0
40

0

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queuing delay at the router

100 150 200 250 300 350

0
20

0
40

0
60

0

Time (sec)

W
in

do
w

 s
iz

e
(K

B
)

RWND
BIF

(c) Receiver window rwnd, and bytes-in-flight (BIF)

Figure 3: On/Off video client with RED queue at the router

When the queue size is between minimum and maximum,
the probability of discarding a packet increases linearly with
the queue size. Using this policy, RED guarantees that the
queue size does not grow much over maximum.

We repeated the same experiment in section 2 after using the
tc tool to replace the tail-drop queue with a RED queue. We
set the max queue size to 200KB with the minimum and
maximum as 20% and 80% of that value respectively. In
figures 3(a) and 3(b) we plot the data rate on the server link
and the queuing delay of UDP packets respectively.

Although we observe from figure 3(b) that RED manages to
reduce queuing delay compared to the tail-drop queue (figure
2(b)), queuing delay still can be above 150ms for a large
number of measurement intervals. This is still too much
to be acceptable for a VoIP call. The reason queuing delay
reach hundreds of milliseconds even when RED is used in the
router, is that RED does not prevent the server from sending
large bursts of data. This can clearly be seen from the data
rate on the server link in figure 3(a). As explained in section
2, the reason for these large bursts is that rwnd usually stays
at very large values and cwnd occasionally grows to large
values as well, which results in sending large bursts of data.
This can be seen from figure 3(c).

It is worth mentioning here that there could be another con-
figuration for RED with different parameters that could pro-
duce better results. However, this is one of the main disad-
vantages of using RED. Tuning the algorithm to get the best
performance is not an easy job [12]. Moreover, finding the
set of parameters that would optimize the performance for
one type of data flow does not mean that these parameters
would work for all other applications. This is why we believe
that the solution to the high queuing delay problem is by

stopping the server from sending large bursts of data over
short periods of time. That is because once the burst is on
the wire, there is not much that can be done to prevent the
queue from getting full. In the next section we present our
solution to this problem.

4. SABRE
As mentioned earlier, the maximum burst TCP can send at
any point is equal to min(cwnd, rwnd). Hence, one way to
control the size of the burst is to control either cwnd or rwnd,
or both. We know that a TCP sender uses ACKs and packet
loss to increase and decrease the value of cwnd respectively.
AQM algorithms introduce packet loss in the middle boxes
in order to limit the growth of cwnd. On the other hand, it
is very difficult for the client to introduce packet loss from
the application space.

Alternatively, there are multiple ways the client can control
the value of rwnd. It is important to mention here that the
value of rwnd is a function of the empty space at the re-
ceive socket buffer at any point in time. This means that
the size of the socket buffer represents an upper bound on
the value of rwnd. Hence, one way to control the maxi-
mum value of rwnd is to set the value of the receive buffer
at the client. This can be done using the setsockopt call
with the option SO_RCVBUF. However, the DASH player may
not be privileged to make the setsockopt call. This usually
happens when the DASH player is implemented as a plugin
to an existing video player which is the case for the VLC
DASH player [10]. Another issue with this approach is that
setsockopt can be used to set the buffer size only before es-
tablishing the connection. This means that a solution that
dynamically uses setsockopt to set the buffer size will have to
reset the connection everytime it needs to modify the buffer
size. Resetting TCP connections frequently has many dis-

advantages. To name a few; it makes tracing network flows
more difficult, it can be an overhead on the server, and it
may require new key exchange if the flow is encrypted.

Another method to set the size of the receiver socket buffer
is to use the Linux command sysctl to set the system pa-
rameter net.ipv4.tcp_rmem. However, this method has a
system wide effect and it sets the maximum socket buffer
for all TCP connections on the client machine which is un-
desirable.

Below we present SABRE, our technique to control the burst
size from the application layer. First, in section 4.1 we in-
troduce the technique for the unconstrained bandwidth case
when the available bandwidth is constant and higher than
the highest video bitrate. After that, in section 4.2 we de-
velop the full-fledged scheme to work for the general case
when there is variability in the available bandwidth.

4.1 The unconstrained constant bandwidth case
SABRE relies on three key techniques in its operation; HTTP
pipelining, controlling download rate at the application, and
a dual backoff/refill mode of operation. Below we describe in
detail each of these techniques and the operation of SABRE
in steady state.

HTTP pipelining. In steady state, an on/off video client
requests a new video segment every n seconds where n is the
segment length. Usually, the client finishes downloading a
segment before submitting a request to download the next
one. Due to that behavior, the receive socket buffer is always
empty when the client starts downloading a new segment.
In addition, rwnd is typically computed as a function of
the available space in the receiver socket buffer. Although
the exact function varies among different implementations
of TCP, an empty or almost empty receiver socket buffer
will always result in a large value of rwnd. This will usually
cause the large data bursts we saw in section 2. In order
to mitigate this problem we pipeline requests for multiple
video segments. HTTP pipelining allows the client to send
multiple GET requests to the server before having to wait for
them to finish.

The rationale here is that pipelining enough video segments
guarantees that the server will send enough data to always
keep the client receive buffer full. We dynamically compute
the number of segments to pipeline as follows: using the
getsockopt with option SO_RCVBUF, we get the actual size of
the receive buffer, call it rcvbuf bytes. For a video segment
of length s seconds and bitrate r bps, the average segment
size will be rs

8
bytes. Hence the number of HTTP requests

the client should pipeline is 1 + ceil(rcvbuf ∗
8
rs
). In this

formula, the second term is the number of segments to fill
the socket buffer and the additional segment is the one being
read by the video player.

Controlling download rate at the application. Fill-
ing the socket buffer does not guarantee avoiding large data
bursts all the time. If the application reads from the socket
buffer at a high rate, this will drain the buffer quickly which
will cause rwnd to grow to a large value. If we take into
consideration large round-trip times between the client and

the server, rwnd could potentially grow to very large values.
In order to solve this problem, the application has to control
the rate in which it drains the socket buffer.

We know that the socket buffer gets drained by the recv
API call. This means that every time recv is called, part of
the socket buffer gets cleared and hence the value of rwnd
may increase. As a result, controlling the rate in which the
application calls recv will control the rate at which the socket
buffer is drained and in turn will control the growth rate of
rwnd.

As one may expect, traditional On/Off DASH players (in-
cluding the VLC DASH player [10]) call recv as fast as pos-
sible. This causes the socket buffer to get drained as soon as
any data arrives at the client. This in turn causes the value
of rwnd to be always very large as we observed in figures
2(c) and 3(c). On the other hand, it is important to observe
that the video player does not need to read data from the
socket buffer at a rate higher than the video bitrate itself.
This is why we compute the rate of the recv call so that the
achieved download rate at the client at any point in time
is not much higher than the video bitrate streamed by the
client. We call this download rate the target rate.

In order to prevent rwnd from growing large, we distribute
the recv calls uniformly over the segment download time
where the latter is the same as the segment length in seconds.
For example, if the target rate is r bps, the segment length
is s seconds, and the size of the buffer given to the recv call
is buf bits, then the time between consecutive recv calls can
be computed using the formula t = s

(rs)/(buf)
= buf

r
seconds.

This maintains a steady download rate close to r bps for a
period of s seconds, while at the same time controlling the
growth rate of rwnd.

Backoff/refill mode of operation. Remember, however,
that a DASH video player estimates the available bandwidth
on the path between the client and the server while down-
loading video segments. The client then uses the estimated
bandwidth to decide whether it should switch to a higher or
lower video quality or stay at the same video profile. Con-
trolling the rate of the recv calls affects the estimated band-
width by the client. In fact, if the rate of recv calls was
computed to achieve a target rate of r Mbps, we do not
expect the client to estimate the available bandwidth to be
higher than r Mbps. This means that the client will not be
able to switch to higher video bitrates even if there exists
enough bandwidth in the path between the server and the
client.

In order to solve this problem, we modify the video player to
operate in two modes; a refill mode and a backoff mode. The
player enters the refill mode when its playout buffer level
drops below a threshold value refill thresh. In that mode the
player targets a target rate of λ× Rh where λ > 1 and Rh

is the bitrate of the best video profile. The player does not
need to target a higher download rate because its ultimate
goal is to reach the best video profile. At the same time,
targeting a lower download rate may cause the player to
underestimate the available bandwidth and hence not reach
the best video profile.

100 150 200 250 300 350

0
1

2
3

4
5

6
7

Time (sec)

R
at

e
(M

bp
s)

0
20

40
60

80
10

0
P

la
yo

ut
 b

uf
fe

r
le

ve
l (

%
)

Available bandwidth
Download rate
Video bitrate
Playout buffer level(%)

Figure 4: SABRE player: download rate, video bi-
trate, and level of playout buffer at a constant avail-
able bandwidth of 6Mbps

Once the level of the playout buffer exceeds another thresh-
old backoff thresh, the player enters the backoff mode. In
this mode, the player aims at a target rate of δ × R where
0 < δ < 1 and R is the bitrate of the current video profile.
The reason for the player to choose a download rate that
is less than the video bitrate is to prevent over filling the
playout buffer. The player stays in the backoff mode until
the playout buffer gets to the refill thresh and then it enters
the refill mode again.

4.1.1 Experimental results
We implemented the above technique in the VLC DASH
player [10]. In our implementation we set λ = 1.2 and
δ = 0.8. We repeated the experiment we did in section
2 while setting the bandwidth of the bottleneck link to 6
Mbps and we stream the video for 6 minutes. We consider
the results of the steady state behavior starting from t = 90
seconds. Figure 4 shows the computed download rate, the
requested video bitrate, and the level of the playout buffer.
We can clearly see that the player is switching back and
forth between the backoff and refill modes. For example, at
time t = 95 the client enters the backoff mode and sets its
target rate to 0.8×4.1 = 3.3 Mbps. The client stays in this
mode until t = 190, when the playout buffer drops below
85% then it enters the refill mode and sets it target rate to
1.2× 4.1 = 4.92 Mbps.

In figure 5 we plot the data rate on the server link, queuing
delay, and the values of rwnd and bytes-in-flight over time.
Compared to figure 2, we can see from figure 5(a) that bursts
of high data rates do not exist anymore and this is why we
do not see large queuing delays in figure 5(b). Looking at
figure 5(c), we can clearly see that the value of bytes-in-flight
is constantly being pushed down by the value of rwnd. We
can also see that the value of rwnd is now close to 50KB most
of the time. This is a huge reduction compared to figure 2(c)
when rwnd used to be over 600KB. This is because HTTP
pipelining is keeping the socket buffer full all the time which
causes the rwnd to shrink to this low value.

We can also observe that sometimes rwnd grows to large
values for short periods of time, this can be seen in figure 5(c)

100 150 200 250 300 350

0
5

10
15

Time (sec)

R
at

e
(M

bp
s)

(a) Data rate on the server link

100 150 200 250 300 350

0
50

10
0

15
0

Time (sec)
D

el
ay

 (
m

se
c)

(b) Queuing delay

100 150 200 250 300 350

0
20

0
40

0
60

0

Time (sec)

W
in

do
w

 s
iz

e
(K

B
)

RWND
BIF

(c) Receiver window and bytes-in-flight

Figure 5: SABRE video client with tail-drop queue
at the router

0 200 400 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Queuing delay (msec)

C
C

D
F

SABRE.Tail−drop
OnOff.Tail−drop

Figure 6: CCDF of queuing delay, On/Off player vs
SABRE both using a tail-drop queue

between times t = 130 and t = 170. As mentioned earlier,
the exact implementation for computing rwnd is operating
system dependent and it is not clear to us why we observe
such behavior. This transient behavior could possibly result
in receiving large bursts of data which could increase queuing
delay. In section 4.2 we present a technique to mitigate this
problem and to avoid having large queuing delays even if the
socket buffer drops for several seconds.

In order to compare the overall performance of the On/Off
player versus SABRE in the unconstrained bandwidth case,
we plot the CCDF of the queuing delay for both of them in
figure 6. In this figure we see that SABRE manages to keep
queuing delay below 50ms for almost 100% of the time. The
On/Off player, on the other hand, causes queuing delay to
exceed 100ms for about 50% of the time with 15% of the
time being over 400ms.

4.2 The general case
In real network conditions the available bandwidth changes
frequently over time. In this section we describe the opera-
tion of the full-fledged SABRE scheme which uses the tech-
niques described above in addition to adapting to changes
in network conditions while maintaining low queuing delays.

Upon starting the video stream, the player enters the initial
buffering phase. In this phase the player downloads video
segments as fast as possible until it fills a playout buffer of 60
seconds. Once the buffer is full, the player enters the steady
state phase, and this is when SABRE starts its operation. In
both phases, the client computes the download rate of each
video segment after it finishes downloading it. The is done
by dividing the size of the segment (in bits) by the time it
took the client to download it (in seconds). The client then
computes a moving average of these values to estimate the
available bandwidth.

If D(i) is the download rate of segment i then the available
bandwidth BW can be estimated using the formula

BW = αBW + (1− α)D(i)

where 0 < α < 1 is a smoothing parameter. In our imple-
mentation we set α = 0.8. Similar to [4], the player then uses
BW to decide whether it should switch to a different video
profile or stay at the current one. If Ri is the bitrate of the
current segment and BW < kRi, then the client switches
to Ri−1, the next lower video profile. We use k = 1.1 as
a slack parameter to compensate for variability in the com-
puted download rate. If Ri+1 is the bitrate of the next higher
video profile and BW > kRi+1 then the player switches to
Ri+1. The rest of this section describes the operation of
SABRE in steady state.

As described in section 4.1, SABRE pipelines video seg-
ment requests to keep the socket buffer full all the time.
This means that the client is guaranteed to achieve its ob-
jective target rate given that the available bandwidth is
higher than that rate. When the network gets congested and
the available bandwidth becomes less than target rate, the
socket buffer will get drained and the received download rate
will be significantly less than target rate. We identify a con-
gestion event based on the condition BW < γ×target rate,
where 0 < γ < 1 – we use γ = 0.85. When the socket buffer

gets drained due to a congestion event, rwnd will increase
rapidly which will cause queuing delay to increase signifi-
cantly. This increment in delay reaches several hundreds of
milliseconds and can last for several seconds. Once SABRE
detects the congestion event, it can reduce its target rate

which will result in reducing rwnd and hence reduce the
queue size. Due to space limitation we do not show results
for this case.

In order to avoid these large delay spikes we need to be con-
stantly monitoring the socket buffer occupancy level and act
quickly when sudden changes happen. This can be achieved
using the ioctl call with the FIONREAD option. This call re-
turns the number of bytes that can be read at the socket
buffer. Using this number together with the total socket
buffer size (we get the latter from the getsockopt call), we
can periodically compute the occupied part of the socket
buffer. From our experiments, keeping a socket buffer oc-
cupancy level of 75% or more will guarantee to have small
queuing delays.

We compute the occupancy level of the socket buffer every
200ms. This helps us to react fast when sudden variations
happen in the available bandwidth. When the buffer level is
detected to be lower than 75%, we temporarily reduce the
rate of the recv call. Reducing the rate of the recv call al-
lows the socket buffer to refill quickly until it gets back to
the normal level. Once the socket buffer level gets to 75%,
the rate of recv is resumed to its original value. Note that re-
ducing the rate of recv calls can result in reducing the video
segment download rate D(i) computed by the application.
This is because having a lower rate of recv calls means that
the client will need more time to finish downloading the seg-
ment. Depending on how long SABRE has to reduce the
rate of recv, D(i) can vary from the target rate (which can
be 1.2R in the refill mode, where R is the video bitrate) to
θR, where θ is the drop rate of recv – we use θ = 0.5.

Drops in the socket buffer level can happen due to two dif-
ferent events; random drops like the ones observed in section
4.1.1 and drops due to changes in the available bandwidth.
Although SABRE should not react to the first kind, it should
reduce the requested video bitrate in the second. SABRE
distingueshes between these two kinds of events using the fol-
lowing method. A drop event is considered significant only
if it results in a segment download rate D(i) that is less the
video bitrate R. If SABRE detects consecutive significant
events for a certain period of time, this event is considered a
change in the available bandwidth, otherwise it is considered
a random drop in socket buffer. In our implementation we
set this period to 10 seconds.

When SABRE detects a drop in the available bandwidth it
down-shifts to a lower video profile. However, since SABRE
always keeps the socket buffer full, it can not estimate the
new available bandwidth. Instead, SABRE uses a multiplicative-
decrease additive-increase approach to find the best video
profile that fits the new available bandwidth. Let Ri be the
video bitrate at the time when SABRE decided to down-
shift and R0 be the lowest video profile. Then, when a drop
in the available bandwidth is detected, SABRE will follow a
multiplicative-decrease behavior and down-shift to the video
profile Ri/2. SABRE then waits for a stabilization period

100 150 200 250 300 350 400

0
1

2
3

4
5

6
7

Time (sec)

R
at

e
(M

bp
s)

0
20

40
60

80
10

0
P

la
yo

ut
 b

uf
fe

r
le

ve
l (

%
)

Available bandwidth
Download rate
Video bitrate
Playout buffer level(%)

(a) Player adaptation to change in the available bandwidth

100 150 200 250 300 350 400

0
10

0
30

0

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queuing delay

Figure 7: SABRE player with tail-drop queue and
short duration congestion

of wait to probe seconds to see whether or not it needs to
down-shift to a lower profile. If SABRE does not detect any
further drops in the available bandwidth, it starts probing
to see whether it can achieve a higher video profile or not.

SABRE then follows an additive-increase behavior and up-
shifts to the next video profile R1+i/2. Using the same previ-
ous method, SABRE can detect whether or not the available
bandwidth is enough to support the new video profile. Note
here that detecting a drop in the available bandwidth while
streaming a certain video profile is equivalent to detecting an
up-shift to a profile that is higher than the available band-
width. If SABRE manages to up-shift to the higher profile
without detecting a drop in the available bandwidth, it re-
duces the value of wait to probe to half. The idea here is
that the client should probe more aggressively when there is
a lower chance of congestion. On the other hand, if SABRE
detects that it has to down-shift again to a lower profile, it
doubles the value of wait to probe. In our implementation,
we set the default value of wait to probe to 16 seconds and
allow it to reach a maximum of 32 seconds and a minimum
of 4 seconds.

4.2.1 Experimental results
In this section we present results for two cases when the
bottleneck link is congested. In the first case, the client ex-
periences short-lived variations in the available bandwidth

100 150 200 250 300 350 400

0
1

2
3

4
5

6
7

Time (sec)

R
at

e
(M

bp
s)

0
20

40
60

80
P

la
yo

ut
 b

uf
fe

r
le

ve
l (

%
)

Available bandwidth
Download rate
Video bitrate
Playout buffer level(%)

(a) Player adaptation to change in the available bandwidth

100 150 200 250 300 350 400
0

40
0

80
0

12
00

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queuing delay

Figure 8: On/Off player with tail-drop queue and
short duration congestion

for only a few seconds. Our objective here is to study the
effect of short variations on both the queuing delay and the
adaptation logic. In the second case, the available band-
width changes over longer periods of time in the order of
several minutes.

Short-lived variations

We repeated the experiment in section 4.1.1 with the fol-
lowing changes. We start the experiment with the available
bandwidth set to 6 Mbps. The bandwidth of the bottle-
neck link is set to 3 Mbps at times t = 95, 245, 330 for the
duration of 10, 4, 6 seconds respectively. We performed this
experiment twice; once using a SABRE client and the other
using an On/Off client. Since we are interested in the steady
state phase, we do not show results for the initial buffering
phase. In figures 7 and 8 we show results for SABRE and
On/Off clients respectively.

We can see from figure 7(a) that SABRE treated the three
short variations in the available bandwidth as random drop
events and it did not switch to a lower video profile. The
behavior of the On/Off client was similar in figure 8(a) al-
though it switched to lower profiles at time t = 100 when
the drop in the available bandwidth lasted for 10 seconds.
Since the On/Off client uses a moving average to estimate
the available bandwidth, it needs to download multiple video

100 200 300 400 500

0
1

2
3

4
5

6
7

Time (sec)

R
at

e
(M

bp
s)

0
20

40
60

80
10

0
P

la
yo

ut
 b

uf
fe

r
le

ve
l (

%
)

Available bandwidth
Download rate
Video bitrate
Playout buffer level(%)

(a) Player adaptation to change in the available bandwidth

100 200 300 400 500

0
10

0
20

0
30

0
40

0

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queuing delay

Figure 9: SABRE player with tail-drop queue and
long duration congestion

segments with the new available bandwidth before it can act
accordingly.

In figure 7(b) we plot queuing delay over time for the SABRE
client. We can see that delay is always below 20ms except
for the three events when the available bandwidth drops to
3 Mbps. In this case, reducing the rate of the recv calls
prevents large delay spikes from happening, although delay
still increased to about 200ms. This happens in the three
events and the lowest effect was at time t = 245 when the
drop event lasted for only 4 seconds. On the other hand,
we can see queuing delay for the On/Off client in figure
8(b). It is clear that droping the available bandwidth causes
significant increase in delay. This can be seen at times t =
100, 335 when queuing delay jumps to 900ms and 1300ms

respectively.

Long-lived variations

For this case, we repeated the experiment in section 4.1.1
with the following changes. We start the experiment with
the available bandwidth set to 6 Mbps from time t = 0 to
t = 190sec. After that, we change the available bandwidth
to 3 Mbps from t = 190 to t = 380sec, then we set it back
to 6 Mbps until the end of the experiment. We performed
this experiment for both the SABRE client and the On/Off
client. We show results for the SABRE and On/Off clients

in figures 9 and 10 respectively.

In figure 9(a) we can see that SABRE takes less that 10
seconds to detect a change in the available bandwidth at
time t = 200. Once change is detected, SABRE applies the
multiplicative-decrease policy and down-shifts from R5 =
4.1 Mbps to R2 = 3.1 Mbps. Since the new available band-
width is 3 Mbps which is very close to R2, SABRE thinks it
can up-shift to a higher profile. At time t = 220 SABRE de-
cides to up-shift to the next profile R3 = 3.4 Mbps. SABRE
then detects that the available bandwidth is not enough for
the new profile and down-shifts to R1 = 2.45 Mbps at time
t = 230. After a stabilization period of wait to probe = 32
seconds, SABRE up-shifts to R2 = 3.1 Mbps and then up-
shifts again to R3 = 3.4 Mbps. This behavior repeats until
the available bandwidth increases to 6 Mbps at time t = 380.
Since SABRE has to wait for wait to probe every time be-
fore up-shifting to a higher profile, SABRE takes additional
time to recover to the highest video profile R5 = 4.1 Mbps.
In this case SABRE reached R5 at time t = 440 which means
it took an additional 60 seconds after the available band-
width changed to 6 Mbps.

On the other hand, it took the On/Off player only about
10 seconds after the available bandwidth became 6 Mbps to
recover to the highest profile R5 (see figure 10(a)). How-
ever, this comes with a very expensive price in terms of
queuing delay. We can see from figure 10(b) that during
the congestion period from t = 190 to t = 380 queuing de-
lay jumps dramatically over one second while in figure 9(b)
SABRE manages to keep the maximum delay below 200ms

and about 100ms on average.

We also plot the CCDF of queuing delay for both SABRE
and the On/Off player in figure 11. It is clear that while
SABRE manages to keep queuing delay less that 100ms for
about 90% of the time, an On/Off player causes queuing
delay to exceed 200ms about 60% of the time. This delay
can be very disturbing to other applications sharing the same
bottleneck link with the video flow.

5. TWO VIDEO PLAYERS
In this section we present some experimental results when
two clients share the same bottleneck link to the video server.
This typically happens when two persons at the same home
stream different videos. In this study we are interested in
two things; the buffer bloat effect of multiple adaptive video
flows, and the interaction between the adaptation algorithms
in the two clients. Below we present results for three cases:
two On/Off clients, one On/Off and one SABRE, and two
SABRE clients.

In all three experiments we first start one of the two clients,
wait for 20 seconds, and then start the second one. Both
clients run for 300 seconds. Again, we ignore the first 100
seconds of the experiment since we are only interested in
the steady state behavior of the two clients. The bandwidth
of the bottleneck link is set to 6 Mbps. Ideally, each client
should converge to a video profile that occupies its own fair
share of the bandwidth. Since the fair share is 3 Mbps, the
ideal video bitrate for each of the two clients should be 2.45
Mbps. Below we present the observed results for all three
experiments.

100 200 300 400 500

0
1

2
3

4
5

6
7

Time (sec)

R
at

e
(M

bp
s)

0
20

40
60

80
P

la
yo

ut
 b

uf
fe

r
le

ve
l (

%
)

Available bandwidth
Download rate
Video bitrate
Playout buffer level(%)

(a) Player adaptation to change in the available bandwidth

100 200 300 400 500

0
50

0
10

00
15

00

Time (sec)

D
el

ay
 (

m
se

c)

(b) Queuing delay

Figure 10: On/Off player with tail-drop queue and
long duration congestion

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Queuing delay (msec)

C
C

D
F

SABRE.Tail−drop
OnOff.Tail−drop

Figure 11: CCDF of queuing delay, On/Off player
vs SABRE both using a tail-drop queue and long
duration congestion

150 200 250 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time (sec)

R
at

e
(M

bp
s)

OnOff
OnOff
Fair share

Figure 12: Bitrate adaptation when two On/Off
players share a bottleneck link of 6 Mbps

150 200 250 300

0
20

0
60

0
10

00

Time (sec)

D
el

ay
 (

m
se

c)

Figure 13: Queuing delay when two On/Off players
share a bottleneck link of 6 Mbps

150 200 250 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time (sec)

R
at

e
(M

bp
s)

SABRE
OnOff
Fair share

Figure 14: Bitrate adaptation when two players,
On/Off and SABRE, share a bottleneck link of 6
Mbps

150 200 250 300

0
20

0
60

0
10

00

Time (sec)

D
el

ay
 (

m
se

c)

Figure 15: Queuing delay when two players, On/Off
and SABRE, share a bottleneck link of 6 Mbps

Two On/Off clients. Figure 12 shows the requested video
bitrates by the two clients over a period of three minutes.
We can observe that sometimes a client can overestimate
the available bandwidth. This in turn can lead the client
to request a video bitrate that is higher than its fair share.
This can be seen at times t = 180 and t = 230 when one of
the two clients requests a bitrate of 3.4 Mbps.

This behavior is similar to what was observed in [4]. The
reason behind this behavior is the off periods of On/Off
players. During an Off period, the On client can overes-
timate the available bandwidth because it thinks it is the
only one using the link. In figure 13 we plot the queuing de-
lay caused by the two On/Off video flows. We can see that
adding two flows produces much higher delays than what
was observed with a single flow in figure 2(b). The delay
sometimes reaches one second and is over 500ms for about
50% of the time. Having a one way queuing delay close to
a second makes it almost impossible to use the bottleneck
link for anything else.

An On/Off client and a SABRE client. The interac-
tion between an On/Off client and a SABRE client sharing
a bottleneck link is very important to study. The On/Off

150 200 250 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

Time (sec)

R
at

e
(M

bp
s)

SABRE1
SABRE2
Fair share

Figure 16: Bitrate adaptation when two SABRE
players share a bottleneck link of 6 Mbps

150 200 250 300

0
50

10
0

15
0

20
0

Time (sec)

D
el

ay
 (

m
se

c)

Figure 17: Queuing delay when two SABRE players
share a bottleneck link of 6 Mbps

client always probes the link aggressively for the available
bandwidth. On the other hand, SABRE follows a much less
aggressive behavior. It is important to study and understand
whether one of them can cause performance degradations to
the other. In figure 14 we plot the requested video bitrates
by both players over time.

We can see that after the SABRE client detects a conges-
tion event it manages to stabilize at a video bitrate of 2.45
Mbps. The client then periodically tries to shift to the next
video bitrate (3.1 Mbps) but it always fails and goes back
to the previous bitrate (2.45 Mbps). The On/Off client, on
the other hand, settles at a video bitrate of 3.1 Mbps. It
occasionally over-estimates its share of the bandwidth and
shifts to higher bitrate. However, this shift does not last for
a long period and the client falls back to 3.1 Mbps. It is clear
that the On/Off client abuses the conservative behavior of
the SABRE client and settles for a video bitrate higher than
the one used by the SABRE client.

In figure 15 we plot the queuing delay caused by the two
video flows. We can make two observations from this fig-
ure. First, although the delay is high and sometimes reaches
800ms, the combination of a SABRE player and an On/Off
player achieves a lower queuing delay than having two On/Off
clients. Second, a single On/Off player can cause high queu-

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Queuing delay (msec)

C
C

D
F

SABRE−SABRE
SABRE−OnOff
OnOff−OnOff

Figure 18: CCDF of queuing delay for two clients
sharing a bottleneck link of 6 Mbps. Three cases:
two On/Off clients, one On/Off and one SABRE,
and two SABRE clients

ing delays even if SABRE players are sharing the bottleneck
bandwidth with it.

Two SABRE clients. We can see from figure 16 that
the two SABRE clients are competing over the video profile
R2 = 3.1 Mbps. Since the bottleneck link has a bandwidth
of 6 Mbps, it can not accomodate two video flows of 3.1
Mbps each. At time t = 145, both clients converged to
R2 but not for a long time. They both detected that the
available bandwidth is not enough to accomodate their video
profiles and they both down-shifted to R1 = 2.45 Mbps.
Later, one of the two clients up-shifts to R2 and manages
to stay there, while the other client periodically up-shifts
then down-shifts again. In our experiment, the client that
managed to stay at the higher video profile (R2) had more
memory and processing power than the other client. We
suspect this is an important factor in deciding which of the
two clients will win with the higher video profile.

In order to characterize the buffer bloat effect in the three
experiments, we plot the CCDF of queuing delay for the
three experiments in figure 18. We can clearly see that two
SABRE players are much better for the network than having
even a single On/Off player. More specifically, the SABRE
players manage to keep queuing delay below 100ms for about
95% of the time. On the other hand, whenever one On/Off
player gets in the way we get queuing delay over 200ms for
about 70% of the time.

6. CONCLUDING REMARKS
HTTP adaptive video streaming is being adopted by major
content providers as the standard for streaming video on the
Internet. With the wide spread use of this technology among
residential users, it is important to make sure that it does
not affect their Internet experience in a negative way. Recent
studies show that Internet users can suffer from buffer bloat
due the interaction between TCP and large buffers on the
Internet. These studies raise the question whether HTTP
streaming could have such a harmful effect on residential
Internet users.

In this paper we use testbed measurements to show that,
indeed, HTTP adaptive video streaming can be harmful to
other applications sharing the same residential network. Our
results show that even a single video stream can cause up to
one second of queuing delay and it even gets worse when the
home link is congested. We also show that AQM techniques,
a widely believed solution to this problem, do not manage
to eliminate large queuing delays.

In addition, we introduce SABRE, a client based technique
that can be implemented in the video player to mitigate
this problem. We implemented SABRE in the VLC DASH
player. Using testbed experiments, we show that SABRE
manages to significantly reduce queuing delays while not af-
fecting the user viewing experience. We also conduct exper-
iments with two clients sharing the home network to study
the interaction between SABRE and other traditional play-
ers. Our results show that SABRE can coexist with tra-
ditional streaming players without having any performance
penalties.

7. REFERENCES
[1] Iperf. http://iperf.sourceforge.net.

[2] TCP Congestion Control.
http://tools.ietf.org/html/rfc5681.

[3] Wireshark. http://www.wireshark.org.

[4] S. Akhshabi, L. Anantakrishnan, C. Dovrolis, and
A. Begen. What happens when http adaptive
streaming players compete for bandwidth? NOSSDAV
’12, pages 89–94. ACM, 2012.

[5] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing
router buffers. In SIGCOMM ’04, pages 281–292, New
York, NY, USA, 2004. ACM.

[6] D. Bonfiglio, M. Mellia, M. Meo, and D. Rossi.
Detailed analysis of skype traffic. IEEE Transactions
on Multimedia, 11(1):117–127, Jan. 2009.

[7] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM
Transactions on Networking, 1(4):397–413, Aug. 1993.

[8] J. Gettys and K. Nichols. Bufferbloat: dark buffers in
the internet. Commun. ACM, 55(1):57–65, Jan. 2012.

[9] S. Lederer, C. Müller, and C. Timmerer. Dynamic
adaptive streaming over http dataset. In Proceedings
of the 3rd Multimedia Systems Conference, MMSys
’12, pages 89–94, New York, NY, USA, 2012. ACM.

[10] C. Müller and C. Timmerer. A test-bed for the
dynamic adaptive streaming over http featuring
session mobility. In Proceedings of the second annual
ACM conference on Multimedia systems, MMSys ’11,
pages 271–276, New York, NY, USA, 2011. ACM.

[11] R. S. Prasad, C. Dovrolis, and M. Thottan. Router
buffer sizing for tcp traffic and the role of the
output/input capacity ratio. IEEE/ACM Transactions
on Networking, 17(5):1645–1658, Oct. 2009.

[12] P. Ranjan, E. Abed, and R. La. Nonlinear instabilities
in tcp-red. IEEE/ACM Transactions on Networking,
12(6):1079–1092, Dec. 2004.

[13] T. Stockhammer. Dynamic adaptive streaming over
http –: standards and design principles. In Proceedings
of the second annual ACM conference on Multimedia
systems, MMSys ’11, pages 133–144, New York, NY,
USA, 2011. ACM.

