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Abstract

The overheads in a parallel system that limit its scalability need to be
identified and separated in order to enable parallel algorithm design
and the development of parallel machines. Such overheads may be
broadly classified into two components. The first one is intrinsic to
the algorithm and arises due to factors such as the work-imbalance
and the serial fraction. The second one is due to the interaction
between the algorithm and the architecture and arises due to latency
and contention in the network. A top-down approach to scalability
study of shared memory parallel systems is proposed in this re-
search. We define the notion of overhead functions associated with
the different algorithmic and architectural characteristics to quan-
tify the scalability of parallel systems; we isolate the algorithmic
overhead and the overheads due to network latency and contention
from the overall execution time of an application; we design and im-
plement an execution-driven simulation platform that incorporates
these methods for quantifying the overhead functions; and we use
this simulator to study the scalability characteristics of five appli-
cations on shared memory platforms with different communication
topologies.

1 Introduction

Scalability is a notion frequently used to signify the “goodness” of
parallel systems, where the term parallel system is used to denote
an application-architecture combination. A good understanding of
this notion may be used to: select the best architecture platform for
an application domain, predict the performance of an application
on a larger configuration of an existing architecture, identify appli-
cation and architectural bottlenecks in a parallel system, and glean
insight on the interaction between an application and an architecture
to understand the scalability of other application-architecture pairs.
In this paper, we develop a framework for studying the inter-play
between applications and architectures to understand their implica-
tions on scalability. Since real-life applications set the standards for
computing, it is meaningful to use such applications for studying the
scalability of parallel systems. We call such an application-driven
approach a top-down approach to scalability study. The main thrust
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of this approach is to identify the important algorithmic and archi-
tectural artifacts that impact the performance of a parallel system,
understand the interaction between them, quantify the impact of
these artifacts on the execution time of an application, and use these
quantifications in studying the scalability of the system.

The main contributions of our work can be summarized as fol-
lows: we define the notion of overhead functions associated with the
different algorithmic and architectural characteristics; we develop
a method for separating the algorithmic overhead; we also isolate
the overheads due to network latency (the actual hardware trans-
mission time in the network) and contention (the amount of time
spent waiting for a resource to become free in the network) from the
overall execution time of an application; we design and implement
a simulation platform that quantifies these overheads; and we use
this simulator to study the scalability of five applications on shared
memory platforms with three different network topologies.

Performance metrics such as speedup [2], scaled speedup [11],
sizeup [25], experimentally determined serial fraction [12], and
isoefficiency function [13] have been proposed for quantifying the
scalability of parallel systems. While these metrics are extremely
useful for tracking performance trends, they do not provide ade-
quate information needed to understand the reason why an applica-
tion does not scale well on an architecture. The overhead functions
that we identify, separate, and quantify in this work, help us over-
come this inadequacy. We are not aware of any other work that
separates these overheads (in the context of real applications), and
believe that such a separation is very important in understanding
the interaction between applications and architectures. The growth
of overhead functions will provide key insights on the scalability of
a parallel system by suggesting application restructuring, as well as
architectural enhancements.

Several performance studies address issues such as latency, con-
tention and synchronization. The scalability of synchronization
primitives supported by the hardware [3, 15] and the limits on inter-
connection network performance [1, 16] are examples of such stud-
ies. While such issues are extremely important, it is necessary to
put the impact of these factors into perspective by considering them
in the context of overall application performance. There are studies
that use real applications to address specific issues like the effect of
sharing in parallel programs on the cache and bus performance [10]
and the impact of synchronization and task granularity on parallel
system performance [6]. Cypher et al. [9] identify the architectural
requirements such as floating point operations, communication, and
input/output for message-passing scientific applications. Rothberg
et al. [18] conducta similar study towards identifying the cache and
memory size requirements for several applications. However, there
have been very few attempts at quantifying the effects of algorithmic
and architectural interactions in a parallel system.

This work is part of a larger project which aims at understanding



the significant issues in the design of scalable parallel systems using
the above-mentioned top-down approach. In our earlier work, we
studied issues such as task granularity, data distribution, schedul-
ing, and synchronization, by implementing frequently used parallel
algorithms on shared memory [21] and message-passing [20] plat-
forms. In [24], we illustrated the top-down approach for the scala-
bility study of message-passing systems. In this paper, we conduct
a similar study for shared memory systems. In a companion pa-
per [23] we evaluate the use of abstractions for the network and
locality in the context of simulating cache-coherent shared memory
multiprocessors.

The top-down approach and the overhead functions are elabo-
rated in Section 2. Details of our simulation platform, SPASM
(Simulator for Parallel Architectural Scalability Measurements),
which quantifies these overhead functions are also discussed in this
section. The characteristics of the five applications used in this
study are summarized in Section 3, details of the three shared mem-
ory platforms are presented in Section 4, and the results of our study
with their implications on scalability are summarized in Section 5.
Concluding remarks are presented in Section 6.

2 Top-Down Approach

Adhering to the RISC ideology in the evolution of sequential ar-
chitectures, we would like to use real world applications in the
performance evaluation of parallel machines. However, applica-
tions normally tend to contain large volumes of code that are not
easily portable and a level of detail that is not very familiar to some-
one outside that application domain. Hence, computer scientists
have traditionally used parallel algorithms that capture the inter-
esting computation phases of applications for benchmarking their
machines. Such abstractions of real applications that capture the
main phases of the computation are called kernels. One can go
even lower than kernels by abstracting the main loops in the com-
putation (like the Lawrence Livermore loops [14]) and evaluating
their performance. As one goes lower, the outcome of the evalu-
ation becomes less realistic. Even though an application may be
abstracted by the kernels inside it, the sum of the times spent in the
underlying kernels may not necessarily yield the time taken by the
application. There is usually a cost involved in moving from one
kernel to another such as the data movements and rearrangements
in an application that are not part of the kernels that it is comprised
of. For instance, an efficient implementation of a kernel may need
to have the input data organized in a certain fashion which may not
necessarily be the format of the output from the preceding kernel in
the application. Despite its limitations, we believe that the scalabil-
ity of an application with respect to an architecture can be captured
by studying its kernels, since they represent the computationally
intensive phases of an application. Therefore, we have used kernels
in this study.

Parallel system overheads (see Figure 1) may be broadly classi-
fied into a purely algorithmic component (algorithmic overhead),
and a component arising from the interaction of the algorithm and
the architecture (interaction overhead). The algorithmic overhead
is quantified by computing the time taken for execution of a given
parallel program on an ideal machine such as the PRAM [26] and
measuring its deviation from a linear speedup curve. A real exe-
cution could deviate significantly from the ideal execution due to
overheads such as latency, contention, synchronization, scheduling
and cache effects. These overheads are lumped together as the
interaction overhead. In an architecture with no contention over-
head, the communication pattern of the application would dictate
the latency overhead incurred by it. Thus the performance of an
application (on an architecture devoid of network contention) may
lie between the ideal curve and the real execution curve (see Figure
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Figure 1: Top-down Approach to Scalability Study

1). Therefore, to fully understand the scalability of a parallel sys-
tem it is important to isolate the influence of each component of the
interaction overhead on the overall performance.

The key elements of our top-down approach for studying the
scalability of parallel systems are:

� experiment with real world applications

� identify parallel kernels that occur in these applications

� study the interaction of these kernels with architectural features
to separate and quantify the overheads in the parallel system

� use these overheads for predicting the scalability of parallel
systems.

2.1 Implementing the Top-Down Approach

Scalability study of parallel systems is complex due to the several
degrees of freedom that they exhibit. Experimentation, simulation,
and analytical models are three techniques that have been commonly
used in such studies. But it is well-known that each has its own
limitations. The main focus of our top-down approach is to quantify
the overheads that arise from the interaction between the kernels
and the architecture and their impact on the overall execution of the
application. Experimentation on real architectures does not allow
studying the effects of changing individual architectural parameters
on the performance. It is not clear that analytical models can
realistically capture the complex and dynamic interactions between
applications and architectures. Therefore, we use simulation for
quantifying and separating the overheads.

Our simulation platform (SPASM), to be presented in the next
sub-section, provides an elegant set of mechanisms for quantify-
ing the different overheads we discussed earlier. The algorithmic
overhead is quantified by computing the time taken for execution
of a given parallel program on an ideal machine such as the PRAM
[26] and measuring its deviation from a linear speedup curve. The
interaction overhead is also separated into its component parts. We
currently do not address scheduling overheads1. Accesses to vari-
ables in a shared memory system may involve the network, and the

1We do not distinguish between the terms, process, processor and thread, and use
them synonymously in this paper.



physical limitations of the network tend to contribute to overheads
in the execution. These overheads may be broadly classified as
latency and contention, and we associate an overhead function with
each. The Latency Overhead Function is thus defined as the total
amount of time spent by a processor waiting for messages due to
the transmission time on the links and the switching overhead in
the network assuming that the messages did not have to contend
for any link. Likewise, the Contention Overhead Function is the
total amount of time incurred by a processor due to the time spent
waiting for links to become free by the messages. Shared memory
systems normally provide some synchronization support that is as
simple as an atomic read-modify-write operation, or may provide
special hardware for more complicated operations like barriers and
queue-based locks. While the latter may save execution time for
complicated synchronization operations, the former is more flexi-
ble for implementing a variety of such operations. For reasons of
generality, we assume that only the test&set operation is supported
by shared memory systems. We also assume that the memory mod-
ule (at which the operation is performed), is intelligent enough to
perform the necessary operation in unit time. With such an as-
sumption, the only network overhead due to the synchronization
operation (test&set) is a roundtrip message, and the overheads for
such a message are accounted for in the latency and contention
overhead functions described earlier. The waiting time incurred by
a processor during synchronization operations is accounted for in
the CPU time which would manifest itself as an algorithmic over-
head. The statistics (CPU time, latency overhead, and contention
overhead) are quantified and presented for each interesting mode of
the program execution (see Section 2.2).

Constant problem size (where the problem size remains un-
changed as the number of processors is increased), memory con-
strained (where the problem size is scaled up linearly with the
number of processors), and time constrained (where the problem
size is scaled up to keep the execution time constant with increasing
number of processors) are three well-accepted scaling models used
in the study of parallel systems. Overhead functions can be used
to study the growth of system overheads for any of these scaling
strategies. In our simulation experiments, we limit ourselves to the
constant problem size scaling model.

2.2 SPASM

SPASM is an execution-driven simulator written in CSIM. As with
other recent simulators [5, 7, 17], the bulk of the instructions in the
parallel program is executed at the speed of the native processor
(SPARC in this study) and only the instructions (such as LOADS
and STORES) that may potentially involve a network access are
simulated. The input to the simulator are parallel applications
written in C. These programs are pre-processed (to label shared
memory accesses), the compiled assembly code is augmented with
cycle counting instructions, and the assembled binary is linked with
the simulator code. The system parameters that can be specified to
SPASM are: the number of processors (p), the clock speed of the
processor, the hardware bandwidth of the links in the network, and
the switching delays.

2.2.1 Metrics

SPASM provides a wide range of statistical information about the
execution of the program. It gives the total time (simulated time)
which is the maximum of the running times of the individual parallel
processors. This is the time that would be taken by an execution of
the parallel program on the target parallel machine. Speedup using
p processors is measured as the ratio of the total time on 1 processor
to the total time on p processors.

Ideal time is the total time taken by a parallel program to execute
on an ideal machine such as the PRAM. It includes the algorithmic
overhead but does not include the interaction overhead. SPASM
simulates an ideal machine to provide this metric. As we mentioned
in Section 2, the difference between the linear time and the ideal
time gives the algorithmic overhead.

SPASM quantifies both the latency overhead function as well as
the contention overhead function seen by a processor as described
in Section 2. This is done by time-stamping messageswhen they are
sent. At the time a message is received, the time that the message
would have taken in a contention free environment is charged to the
latency overhead function while the rest of the time is accounted
for in the contention overhead function. Though not relevant to
this study, it is worthwhile to mention that SPASM provides the
latency and contention incurred by a message as well as the latency
and contention that a processor may choose to see. Even though
a message may incur a certain latency and contention, a processor
may choose to hide all or part of it by overlapping computation with
communication. Such a scenario may arise with a non-blocking
messageoperation on a message-passingmachine or with a prefetch
operation on a shared memory machine. But for the rest of this paper
(since we deal with blocking load/store shared memory operations),
we assume that a processor sees all of the network latency and
contention.

SPASM also provides statistical information about the network.
It gives the utilization of each link in the network and the average
queue lengths of messages at any particular link. This information
can be useful in identifying network bottlenecks and comparing
relative merits of different networks and their capabilities.

It is often useful to have the above metrics for different modes
of execution of the algorithm. Such a breakup would help identify
bottlenecks in the program, and also help estimate the potential gain
in performance that may be possible through a specific hardware or
software enhancement. SPASM provides statistics grouped together
for system-defined as well as for user-defined modes of execution.
The system-defined modes are:

� NORMAL: A program is in the NORMAL mode if it is not
in any of the other modes. An application programmer may
further define sub-modes if necessary.

� BARRIER: Mode corresponding to a barrier synchronization
operation.

� MUTEX: Even though the simulated hardware provides only a
test&set operation, mutual exclusion lock (implemented using
test-test&set [3]) is available as a library function in SPASM.
A program enters this mode during lock operations. With this
mechanism, we can separate the overheads due to the synchro-
nization operations from the rest of the program execution.

� PGM SYNC: Parallel programs may use Signal-Wait seman-
tics for pairwise synchronization. A lock is unnecessary for
the Signal variable since only 1 processor writes into it and
the other reads from it. This mode is used to differentiate such
accesses from normal load/store accesses.

The total time for a given application is the sum of the execution
times for each of the above defined modes. The execution time for
each program mode is the sum of the computation time, the latency
overhead and the contention overhead observed in the mode. The
metrics identified by SPASM quantify the algorithmic overhead and
the interesting components of the interaction overhead. Computa-
tion time in the NORMAL mode is the actual time spent in local
computation in an application. The sum of latency and contention
overheads in the NORMAL mode is the actual time incurred for or-
dinary data accesses. For the BARRIER and PGM SYNC modes,



the computation time is the wait time incurred by a processor in
synchronizing with other processors that results from the algorith-
mic work imbalance. The computation time in the MUTEX mode
is the time spent in waiting for a lock and represents the serial part
in an application arising due to critical sections. For the BARRIER
and MUTEX modes, the computation time also includes the cost
of implementing the synchronization primitive and other residual
effects due to latency and contention for prior accesses. In all
three synchronization modes, the latency and contention overheads
together represent the actual time incurred in accessing synchro-
nization variables.

3 Application Characteristics

Three of the applications (EP, IS and CG) are from the NAS parallel
benchmark suite [4]; CHOLESKY is from the SPLASH benchmark
suite [19]; and FFT is the well-known Fast Fourier Transform al-
gorithm. EP and FFT are well-structured applications with regular
communication patterns determinable at compile-time, with the
difference that EP has a higher computation to communication ra-
tio. IS also has a regular communication pattern, but in addition
it uses locks for mutual exclusion during the execution. CG and
CHOLESKY are different from the other applications in that their
communication patterns are not regular (both use sparse matrices)
and cannot be determined at compile time. While a certain number
of rows of the matrix in CG is assigned to a processor at compile
time (static scheduling), CHOLESKY uses a dynamically main-
tained queue of runnable tasks. The reader is referred to [22] for
further details of the applications.

4 Architectural Characteristics

Since uniprocessor architecture is getting standardized with the
advent of RISC technology, we fix most of the processor charac-
teristics by using a 33 MHz SPARC chip as the baseline for each
processor in a parallel system. Such an assumption enables us
to make a fair comparison of the relative merits of the interest-
ing parallel architectural characteristics across different platforms.
Input-output characteristics are beyond the purview of this study.

We use three shared memory platforms with different intercon-
nection topologies: the fully connected network, the binary hy-
percube and the 2-D mesh. All three networks use serial (1-bit
wide) unidirectional links with a link bandwidth of 20 MBytes/sec.
The fully connected network models two links (one in each direc-
tion) between every pair of processors in the system. The cube
platform connects the processors in a bidirectional binary hyper-
cube topology and uses the e-cube algorithm for routing. The 2-D
mesh resembles the Intel Touchstone Delta system. Links in the
North, South, East and West directions, enable a processor in the
middle of the mesh to communicate with its four immediate neigh-
bors. Processors at corners and along an edge have only two and
three neighbors respectively. Equal number of rows and columns
is assumed when the number of processors is an even power of 2.
Otherwise, the number of columns is twice the number of rows (we
restrict the number of processors to a power of 2 in this study).
Messages in the mesh are routed along the row until they reach
the destination column, upon which they are routed along the col-
umn. Messages on all three platforms are circuit-switched using a
wormhole routing strategy and the switching delay is assumed to
be negligible.

The simulated shared memory hierarchy is CC-NUMA (Cache
Coherent Non-Uniform Memory Access). Each node in the sys-
tem has a sufficiently large piece of the globally shared memory
such that for the applications considered, the data-set assigned to
each processor fits entirely in its portion of shared memory. There

is also a 2-way set-associative private cache (64KBytes with 32
byte blocks) at each node that is maintained sequentially consistent
using an invalidation-based fully-mapped directory-based cacheco-
herence scheme. The memory access time is assumed to be 5 CPU
cycles, while the cache access time is assumed to be 1 CPU cycle.

5 Performance Results

In this section, we present results from our simulation experiments
showing the growth of the overhead functions with respect to the
number of processors and their impact on scalability. The simulator
allows one to explore the effect of varying other system parameters
such as link bandwidth and processor speed on scalability. Since
the main focus of this paper is an approach to scalability study, we
have not dwelled on the scalability of parallel systems with respect
to specific architectural artifacts to any great extent in this paper.
We also briefly describe the impact of problem sizes on the system
scalability for each kernel.

Figures 2, 3, 4, 5 and 6 show the “ideal" speedup curves (section
2) for the kernels EP, IS, FFT, CG and CHOLESKY, as well as the
speedup curves for these kernels on the three hardware platforms.
There is negligible deviation from the ideal curve for the EP kernel
on the three hardware platforms; a marginal difference for FFT and
CG; and a significant deviation for IS and CHOLESKY. For each
of these kernels, we quantify the different interaction overheads
responsible for the deviation during each execution mode of the
kernel. Only the results for IS, FFT and CHOLESKY are discussed
in this section due to space constraints. Details on the other kernels
can be found in [22].
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Figure 2: EP: Speedup
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Figure 4: FFT: Speedup
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Figure 5: CG: Speedup
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Figure 6: CHOLESKY: Speedup

In the following subsections, we show for each kernel the execu-
tion time, the latency, and the contention overhead graphs for the
mesh platform. The first shows the total execution time, while the
latter two show the communication overheads ignoring the com-
putation time. In each of these graphs, we show the curves for
the individual modes of execution applicable for a particular ker-
nel. We also present for each kernel the latency and contention
overhead curves on the three architecture platforms. The latency
overhead in the NORMAL mode (i.e. due to ordinary data access)
is determined by the memory reference pattern of the kernel and
the network traffic due to cache line replacement. With sufficiently

large size cache at each node, it is reasonable to assume that this
latency overhead is only due to the kernel, and thus is expected to
be independent of the network topology. Due to the vagaries of
the synchronization accesses, it is conceivable that the correspond-
ing latency overheads could differ across network platforms for the
other modes. However, in our experiments we have not seen any
significant deviation. As a result, the latency overhead curves for
all the kernels look alike across network platforms. On the other
hand, it is to be expected that the contention overhead will increase
as the connectivity in the network decreases. This is also confirmed
for all the kernels.

5.1 IS

For this kernel, there is a significant deviation from the ideal curve
for all three platforms (see Figure 3). The overheads may be an-
alyzed by considering the different modes of execution. In this
kernel, NORMAL and MUTEX are the only significant modes of
execution (see Figure 7). The network accesses in the NORMAL
mode are for ordinary data transfer, and the accesses in MUTEX
are for synchronization. The latency and contention overheads in-
curred in the MUTEX mode is higher than in the NORMAL mode
(see Figures 8 and 9). As a result of this, the total execution time in
the MUTEX mode surpasses that in the NORMAL mode beyond
a certain number of processors (see Figure 7), which also explains
the dip in the speedup curve for mesh (see Figure 3).
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Figure 7: IS: Mode-wise Execn. Time (Mesh)
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Figure 9: IS: Mode-wise Contention (Mesh)
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Figure 10: IS: Latency and Contention (Full)
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Figure 11: IS: Latency and Contention (Cube)
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Figure 12: IS: Latency and Contention (Mesh)

Figures 10, 11 and 12. show the latency and contention overheads
for the three hardware platforms. In IS, since every processor needs
to access the data of all other processors,and since the data is equally
partitioned among the executing processors, the number of accesses
to remote locations grows as (p�1)=p. This explains the flattening
of the latency overhead curve for all three network platforms as p
increases. On the mesh network the contention overhead surpasses
the latency overhead at around 18 processors. Table 1 summarizes
the overheads for IS obtained by interpolating the datapoints from
our simulation results.

IS Full Cube Mesh
Comp. Time (ms) 129:3=p0:7 129:3=p0:7 129:3=p0:7

Latency (ms) 13:2(1� 1
p
) 13:2(1� 1

p
) 13:2(1� 1

p
)

Contention (ms) Negligible 4:0 logp 0:9p

Table 1: IS : Overhead Functions

Parallelization of this kernel increases the amount of work to be
done for a given problem size (see [22]). This inherent algorith-
mic overhead causes a deviation of the ideal curve from the linear
curve (see Figure 3). This is also confirmed in Table 1, where
the computation time does not decrease linearly with the number
of processors. This indicates the kernel is not scalable for small
problem sizes. As can be seen from Table 1, the contention over-
head is negligible and the latency overhead converges to a constant
with a sufficiently large number of processors on a fully connected
network. Thus for a fully connected network, the scalability of this
kernel is expected to closely follow the ideal curve. For the cube
and mesh platforms, the contention overhead grows logarithmically
and linearly with the number of processors, respectively. Therefore,
the scalability of IS on these two platforms is likely to be worse
than for the fully connected network. From the above observations,
we can conclude that IS is not very scalable for the chosen problem
size on the three hardware platforms. However, if the problem is
scaled up, the coefficient associated with the computation time will
increase thus making IS more scalable.

5.2 FFT

The algorithmic and interaction overheads for the FFT kernel are
marginal. Thus the real execution curves for all three platforms
as well as the ideal curve are close to the linear one as shown in
Figure 4. The execution time is dominated by the NORMAL mode
(Figure 13). The latency and contention overheads (Figures 14 and
15) incurred in this mode are insignificant compared to the total



execution time, despite the growth of contention overhead with
increasing number of processors.
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Figure 13: FFT: Mode-wise Execn. Time (Mesh)
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Figure 14: FFT: Mode-wise Latency (Mesh)
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Figure 15: FFT: Mode-wise Contention (Mesh)

The communication in FFT has been optimized as suggested in
[8] into a single phase where every processor accesses the data of
all the other processors in a skewed manner. The number of such
non-local accesses incurred by a processor grows asO((p�1)=p2)
with the number of processors, and the latency overhead curves for
all three networks reflect this behavior. As a result of skewing the
communication among the processors, the contention is negligible
on the full (Figure 16) and the cube (Figure 17) platforms. On the
mesh (Figure 18), the contention surpasses the latency overhead at

around 28 processors. Table 2 summarizes the overheads for FFT
obtained by interpolating the datapoints from our simulation results.
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Figure 16: FFT: Latency and Contention (Full)
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Figure 17: FFT: Latency and Contention (Cube)
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Figure 18: FFT: Latency and Contention (Mesh)

With marginal algorithmic overheads and decreasing number of
messages exchanged per processor (latency overhead), the con-
tention overhead is the only artifact that can cause deviation from
linear behavior. But with skewed communication accesses, the con-
tention overhead has also been minimized and begins to show only
on the mesh network where it grows linearly (see Table 2). Thus we
can conclude that the FFT kernel is scalable for the fully-connected
and cube platforms. For the mesh platform, it would take 200 pro-
cessors before the contention overhead starts dominating for the



FFT Full Cube Mesh
Comp. Time (s) 2:5=p 2:5=p 2:5=p
Latency (ms) 49:9=p0:9 49:9=p0:9 49:9=p0:9

Contention (us) Negligible Small 63:5p

Table 2: FFT : Overhead Functions

64K problem size. With increase in problem size (N ), the local
computation that performs a radix-2 Butterfly is expected to grow
as O((N=p) log(N=p)) while the communication for a processor
is expected to grow as O(N(p� 1)=p2). Hence, increase in data
size will increase its scalability on all hardware platforms.

5.3 CHOLESKY

The algorithmic overheads for CHOLESKY cause a significant de-
viation from linear behavior for the ideal curve as shown in Figure
6. An examination of the execution times (Figure 19) shows that the
bulk of the time is spent in the NORMAL mode which performs the
actual factorization. The communication overheads in the NOR-
MAL mode for the data accesses of the sparse matrix outweigh the
accesses for synchronization variables (Figures 20 and 21). Thus
the time spent in the MUTEX mode (which represents dynamic
scheduling and accesses to critical sections) is insignificant com-
pared to the NORMAL mode Although, the contention overhead
in the NORMAL mode increases quite rapidly with the number of
processors the overall impact of communication on the execution
time is insignificant (see Figure 19).

As with FFT, the number of non-local memory accesses made
by a processor decreases with increasing number of processors
explaining a decreasing latency overhead. The contention over-
head is negligible for the fully-connected network (Figure 22) and
grows with increasing processors for the cube (Figure 23), becom-
ing more dominant than the latency overhead for the mesh (Figure
24) at around 20 processors. Table 3 summarizes the overheads
for CHOLESKY obtained by interpolating the datapoints from our
simulation results.
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Figure 19: CHOLESKY: Mode-wise Execn. Time (Mesh)
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Figure 20: CHOLESKY: Mode-wise Latency (Mesh)
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Figure 21: CHOLESKY: Mode-wise Contention (Mesh)
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Figure 22: CHOLESKY: Latency and Contention (Full)
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Figure 23: CHOLESKY: Latency and Contention (Cube)
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Figure 24: CHOLESKY: Latency and Contention (Mesh)

CHOLESKY Full Cube Mesh
Comp. Time (s) 3:9=p0:8 3:9=p0:8 3:9=p0:8

Latency (s) 1:2=p0:9 1:2=p0:9 1:2=p0:9

Contention (ms) Negligible Constant 39:9 log p

Table 3: CHOLESKY : Overhead Functions

The deviation of the ideal from the linear curve (Figure 6) indi-
cates that the kernel is not very scalable for the chosen problem size
due to the inherent algorithmic overhead as in IS. As can be ob-
served from Table 3, the latency decreases with increasing number
of processors and the scalability of the real execution would thus be
dictated by the contention overhead. The contention on the fully-
connected and cube networks is negligible thus projecting speedup
curves that closely follow the ideal speedup curve for these plat-
forms. On the other hand, the contention grows logarithmically on
the mesh making this platform less scalable. With increasing prob-
lem sizes, the coefficient associated with the computation time in the
above table is likely to grow faster than the coefficients associated
with the communication overheads (verified by experimentation).
Hence, an increase in problem size would enhance the scalability
of this kernel on all hardware platforms.

6 Concluding Remarks

We used an execution-driven simulation platform to study the scala-
bility characteristics of EP, IS, FFT, CG, and CHOLESKY on three
shared memory platforms, respectively, with a fully-connected,
cube, and mesh interconnection networks. The simulator allows
for the separation of the algorithmic and interaction overheads in a
parallel system. Separating the overheads provided us with some
key insights into the algorithmic characteristics and architectural
features that limit the scalability for these parallel systems. Algo-
rithmic overheads such as the additional work incurred in paral-
lelization could be a limiting factor for scalability as observed in IS
and CHOLESKY. In shared memory machines with private caches,
as long as the applications are well-structured to exploit locality, the
key determinant to scalability is network contention. This is par-
ticularly true for most commercial shared memory multiprocessors
which have sufficiently large caches.

We have illustrated the usefulness as well as the feasibility of
our top-down approach for understanding the scalability of parallel
systems. This approach can be used to study the impact of other
system parameters (such as link bandwidth and processor speed) on
scalability and provide guidelines for application design as well as
evaluate architectural design decisions.
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