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Abstract

The results of experimenting with three parallel algo-
rithms on the Sequent Symmetry architecture and the
BBN Butterfly architecture are reported. The main ob-
jective of this study is to understand the impediments to
the efficient implementation of parallel algorithms, devel-
oped for theoretical models of parallel computation, on
realistic parallel architectures. Scheduling, task granular-
ity, and synchronization are the issues that are explored in
implementing these algorithms on the two architectures.
In the case of BBN Butterfly, which is a distributed shared
memory architecture,data distribution in the distributed
memories is also studied. The key findings are that syn-
chronization is not a significant cost for the algorithms we
studied on the two architectures; the bus is not a bottle-
neck for the configuration of the Sequent machine that we
experimented with; and a fairly simple minded data distri-
bution may be as good as any other on the BBN Butterfly.

1 Introduction

Parallel Computation provides some of the most challeng-
ing problems in computer science. The term parallel com-
putation covers a broad spectrum of research ranging from
purely theoretical models for complexity analysis of par-
allel algorithms, to detailed system performance issues of
large problems that lend themselves to parallel implemen-
tations. Both ends of the spectrum have one thing in com-
mon, namely, to understand the performance potential of
parallel computation. A computation is expressed as a
task graph and the objective is to determine the speedup
that is realizable for the computation. While the theo-
retical models are concerned with the asymptotic limits
of computing in parallel, the system-oriented studies are
concerned with determining the best heuristic mapping
for a computation on a target architecture that would re-
sult in the best (average case) performance. Each study
has its merits and de-merits. The asymptotic limits give
a ceiling for maximum achievable performance for a given
algorithm based on an abstract model of parallel architec-
tures. The average case results are useful for determining
what is achievable in reality.

*This work has been funded in part by NSF grants CCR-
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Understanding the performance of parallel computation
requires a knowledge of the capabilities of the underlying
parallel architecture. Further, the performance limits de-
pend on the mapping of the problem on to the parallel
architecture. Theoretical models abstract away real life
limits such as the number of processors, synchronization
requirements, scheduling and data distribution to derive
the asymptotic limits. On the other hand, system-oriented
studies are so concerned with mapping the algorithm to
real architectures that it is difficult to know from the re-
sults of such studies where the parallelism inherent in the
algorithm has been lost. The aim of this study is to ad-
dress some of the issues in the interface between theory
and architecture, from the point of view of algorithmic
performance.

Parallel algorithms for certain problems theoretically
guarantee a certain amount of speedup. But when these
algorithms are implemented on existing architectures,
the results may not agree with the expected theoretical
speedup. Some inherent features in the algorithm, its im-
plementation, and the hardware capabilities of the ma-
chine together contribute to the slow-down. The parallel
algorithms usually assume a certain minimum number of
processors to be available with an underlying interconnec-
tion topology between them. To implement such algo-
rithms, we may have to make do with a limited number of
processors and simulate the assumed interconnection. The
language run time and the operating system may further
introduce synchronization costs not inherent in the algo-
rithm but are necessary to implement them on the parallel
machine. And lastly, the hardware capabilities like syn-
chronization primitives, memory access times and caching
strategies may introduce further slow-down.

One straightforward way to understand the architec-
tural impact on parallel computation is to implement algo-
rithms with intrinsic parallelism on parallel architectures
and interpret the results with respect to the above factors.
Therefore, we have chosen to perform our experiments on
two parallel machines - the Sequent Symmetry and the
BBN Butterfly - with entirely different architectures. The
Sequent is a bus based shared memory multiprocessor ma-
chine. All processors are identical (in our system, there
are 10 processors) each having a 64K cache memory and
connected to a global shared memory through a single
system bus. Sequent falls into the category of Uniform



Memory Access (UMA) machines in that a user has no a
priori knowledge of the access time for a given memory lo-
cation. The Butterfly on the other hand is a collection of
processors, each with its own local memory. However each
processor can access non-local memories via a multistage
interconnection network. Such non-local accesses are more
expensive than local ones. Thus Butterfly falls into the
category of Non-Uniform Memory Access (NUMA) ma-
chines in that a user has a priori knowledge of access times
to a given memory location based on whether it is local
or non-local.

We have chosen three algorithms - List Ranking, Parallel
Prefix and Optimal Binary Search Tree - each of which
we feel identify a class of problems. List ranking is a
fundamental operation on lists. The problem is: given a
linked list, compute the distance of each cell from the end
of the list. This algorithm is data dependent and thus the
memory access patterns depend on the data placement.
For such a problem, it is expected that data partitioning
would play a vital role on performance, especially when
implemented on a NUMA machine.

The parallel prefix on the other hand is a data oblivious
algorithm implying that the running time of the algorithm
is independent of the input data. The prefix problem takes
as input n elements and gives an n element output, where
the i-th output element is the product of the first ¢ input
elements. If the input data is partitioned appropriately
for such an algorithm, then it is possible to reduce the
amount of accesses to non-local data by a processor.

Optimal binary search tree is another data oblivious al-
gorithm that takes a set of weights (leaf nodes) as input
and constructs a tree of minimal weight. The interest-
ing variation from the other two algorithms is the work
imbalance that is inherent during different phases of the
algorithm.

2 Programming Paradigms And Per-
formance Metrics

There are several ways to implement the above algorithms
on these machines. Both machines provide support for
parallel programming such as the parallel programming
library on the Sequent [11] and the Uniform System [2]
on the Butterfly. In the description that follows, we use
the term task to mean a unit of work and the term pro-
cess to mean a virtual processor. The model of execution
used is single-program-multiple-data wherein each process
independently executes the same code on a different por-
tion of the data (data partitioning). The parent process
forks child processes that execute the parallel algorithm
(works on the data partition assigned to it). During the
course of execution of the child processes, they may need
to synchronize. We use a barrier for this purpose.

2.1 Scheduling

For implementing these algorithms, we define a set of
tasks and let processes work on these tasks. The assign-
ment of a task to a process is called scheduling. This
level of scheduling is from the point of view of algorithms
as opposed to an operating system scheduler that does

resource management'. Our experimental work consid-
ers two types of scheduling. Static scheduling pre-assigns
tasks to processes at compile time. Even though static
scheduling may be easy to program, it may not always be
the most efficient in terms of processor utilization. Dy-
namic scheduling assigns the tasks to processes at run
time and thus has the potential for better processor uti-
lization. However dynamic scheduling may result in extra
synchronization costs because it normally involves accesses
to globally shared queues (critical sections).

For static scheduling, the data partition that each pro-
cess works on is pre-determined. For dynamic scheduling
on the other hand, the chunk of data that a process works
on is determined at run time. The chunks of data that
are ready for execution are in a global queue. When each
process finishes with its chunk, it gets the next piece of
work from this global queue. For the algorithms discussed
in this paper, we simulate the global queue with an atomic
counter.

2.2 Task Granularity and Synchronization

The processes need to synchronize between executions of
successive tasks. If the tasks are too fine grain, then
this synchronization overhead may affect performance. To
study this effect, we decided to vary the task granularity
and study its impact on performance. Task granularity
has two dimensions : computation granularity and data
granularity. The former deals with the amount of compu-
tation that a process needs to do for the particular task
while the latter involves the size of the data partition in
the task. These are important input parameters that need
to be considered to determine the effect of task granularity
and synchronization on performance. The data granular-
ity is varied by changing the number of data elements in
the chunk that is allotted to a process while the compu-
tation granularity is varied by introducing some artificial
work in the place where the process solves the problem for
the chunk allotted to it. The artificial work is an idle loop
and the loop count is used as a measure of the computa-
tion granularity.

2.3 Data Distribution

The above description has applicability to both the Se-
quent and the Butterfly. But on the Butterfly, there is
an added dimension that is worth studying : data dis-
tribution (because of non-uniform memory access). The
data distribution patterns that are included in this study
are : random distribution (a processor may need to access
any memory module for its data chunk), skewed distribu-
tion (in which successive data elements are allocated in
successive virtual processors), and local allocation (where
a processor’s data chunk is locally allocated). Each of
these data distributions generates differing network traf-
fic. Such a study is expected to give us a feel for the effect
of the switch contention and remote memory accesses on
the performance. The corresponding effect for the Sequent

lRecently, several researchers [9, 13, 15] investigate the relative
merits of dynamic and static scheduling policies at the operating
system and application level for multiprocessors.



For log n iterations repeat
In parallel, for ¢ := 1,...,n do
list[¢] .rank < list[7].rank +
list[list[¢].successor].rank;
list[7] .successor «
list[list[¢].successor].successor;

Figure 1: List Ranking Algorithm

is simulated by varying the computation granularity. If
the computation granularity is made small, then there is
more synchronization overhead which in turn generates
more traffic on the bus.

In the discussions that follow, the completion time is
used as a measure of the performance of parallel algo-
rithms. In the Butterfly implementations, the times for
process creation and termination are included in the com-
pletion time, whereas in the Sequent implementations,
they are not. The results for the uniprocessor cases are
obtained by running the multiprocessor parallel algorithm
on a single processor. Hence the speedup using n pro-
cessors refers to the ratio of the completion time of the
parallel algorithm on 1 processor to that on n processors.

3 Related Work

To our knowledge, there are very few experimental stud-
ies that investigate the impact of architectural features on
algorithmic performance. Anderson [10] reports results
of an experimental and analytical study of parallel merge
sort. In this study, implementation of this algorithm on
the Sequent is used to verify the speedup with different
number of processors with respect to the analytical model.
Yew et al. [3], analyze specific parallel programs to iden-
tify the appropriate grain size of parallelism that exists in
these programs. Further they present a simulation study
to measure the impact of synchronization overhead on the
execution of these programs. Lin and Snyder [8] com-
pare message passing and shared memory paradigms for
implementing specific parallel algorithms on shared mem-
ory multiprocessors. Our work is more general in that
we experiment with algorithms that represent classes of
problems and study synchronization, scheduling and task
granularity issues in implementing these algorithms.

4 Observed Results
4.1 List Ranking

A parallel algorithm for the list ranking problem is dis-
cussed in [14, 4]. Figure 1 shows a pseudo-code for this
algorithm.

The algorithm is data dependent. The randomness of
access of the list elements does not favor data partition-
ing. Therefore, it is not known a priori the best way to
partition the data and assign it to the processors. This
feature of the algorithm makes it interesting to study its
performance on architectures, with different organization

and memory access capabilities, like the Sequent and the
Butterfly. The input list (32K on the Sequent and 8K
on the Butterfly) is generated using a standard random
number generator.

4.1.1 Sequent Implementation

The results for static scheduling is shown in Figure 2 which
plots the completion time of the algorithm versus the num-
ber of processors. There is almost a linear improvement in
performance as we increase the number of processors. This
result shows that : (a) the processors are almost always
allocated an equal amount of work, (b) there is negligible
amount of overhead in synchronization (for instance, of a
completion time of 1 second in the 8 processor case, the
total amount of time spent in synchronization is around
10 milliseconds), and (c) the bus may not be a bottleneck
for small number of processors. Increasing the computa-
tion granularity increases the completion time as can be
expected but the shape of the speedup curve remains the
same for a given computation granularity. This trend fur-
ther supports our earlier remark that the bus may not be
a bottleneck for static scheduling. Since the processors
are almost always allocated an equal amount of work be-
tween any two successive synchronization points, there is
negligible time spent waiting at the barrier.

Figure 3 shows the effect of data granularity on perfor-
mance when dynamic scheduling is used on the Sequent.
When it is extremely fine grain, the dynamic scheme per-
forms very poorly compared to the static scheme. Exten-
sive contention for the globally shared queue is the reason
for this behavior. The bus does become a bottleneck in
this case and hence this poor performance is quite un-
derstandable. This experimental result corroborates the
simulation result reported in [7], wherein they show that
lock contention leads to poor performance in bus-based
shared memory multiprocessors. It is also the reason why
the 8 processor performance is much poorer than the 4
or 2 processor case for extremely fine grain data granu-
larity. As the data granularity increases, the performance
improves until it becomes comparable to the static case.
Increasing the data granularity further does not result in
improved performance. In fact, when the data granularity
is increased beyond that of the static case, the completion
time increases which is quite understandable since one or
more processors may be idle between any two barrier syn-
chronization points. For a wide range of chunk sizes, dy-
namic scheduling seems to fare as well as static scheduling.
Over these grains, the contention for the global queue is
almost negligible. It is interesting to note that the dy-
namic scheme does not fare better than the static scheme
at any point. Thus we may conclude that there is equal
load balancing at all points of execution in the static case.

Figure 4 shows the effect of increasing the computation
granularity. The results, as in the static case, are quite
predictable for larger chunk sizes . The interesting ob-
servations are for smaller chunk sizes. It is reasonable to
expect that increasing the computation granularity may
result in poorer performance. However it is seen that
as the computation granularity is increased, the perfor-



mance of the 8 processor case improves. This improve-
ment can be explained with reference to the contention
for the queue (bus traffic). By increasing the computa-
tion granularity, the time between any two successive bus
accesses increases, thus reducing the contention for the
shared queue thereby improving the performance. As the
computation granularity is increased further, the effect of
contention becomes less significant which explains the ob-
served result. The contention effect is quite similar to
what is explained as quiesce?® time in [12]. Note that this
effect is less significant for 2 or 4 processors, which explains
the better performance for 4 processors as compared to the
8 processor case for small data granularity.

4.1.2 Butterfly Implementation

On the Sequent, there is no choice for data placement
since it is a uniform memory access machine. On the
other hand, the list could be allocated in any of the pro-
cessors’ memories on the Butterfly. Thus data partition-
ing is another dimension that makes an interesting study.
Data partitioning is expected to affect performance be-
cause of the non-uniform memory access times. We study
this problem with the three types of data distributions
that we enumerated earlier (see Section 2.3).

Figure 5 shows the performance for static scheduling
for each of these data partitioning schemes. Local allo-
cation seems to have the best performance of the three.
In the local allocation scheme, a processor writes only
to the local memory even though it may read from non-
local memory modules. In the other two schemes, the ac-
cesses (both reads and writes) are purely random. These
results seem to indicate that the way in which we par-
tition data has a significant effect on performance. Of
the other two schemes, random allocation seems to show
better performance than the skewed allocation. For both
these schemes, the 2 processor performance seems to be
worse than the 1 processor case. Increasing the number of
processors results in an interplay of increased computation
power, higher probability of non-local memory accesses
(thus increasing network traffic) and the increased cost of
synchronization. The first is a positive factor while the
latter two have negative effects. Non-local memory access
affects performance in two ways : increased latency and
possible switch contention. Experiments performed with 1
processor with the data distributed among several memory
modules results in much poorer performance compared to
the case where the data is strictly in local memory. This
result leads us to believe that increased latency is the more
dominant factor affecting the performance. In the 2 pro-
cessor case, the negative effects dominate. In general, the
positive effect becomes more prominent for larger num-
ber of processors. But in the skewed allocation scheme,
the performance worsens as we go from 8 to 16 processors.
This is due to the increased likelihood of non-local memory
accesses thus allowing the negative effects to dominate.

2Quiesce time is the time it takes for spurious bus contention
to settle down in a bus-based shared memory multiprocessor upon
the release of a lock.

Figures 6 and 7 show the effect of increasing the com-
putation granularity on the performance for random and
skewed allocation schemes respectively. [t can be seen
that the poorer performance observed in going from 1 to
2 processors (see Figure 5) disappears as the computation
granularity is increased. This result shows that increasing
the computation granularity exploits the additional com-
pute power available with increased number of processors,
offsetting the negative effect due to the network traffic.
The retarding factors that affect the performance in these
two distributions do not have a significant role in the lo-
cal allocation scheme (see Figure 5) even with no added
computation granularity. As can be expected, increasing
the computation granularity merely reinforces the positive
effect.

The effect of varying the data granularity for dynamic
scheduling is shown in Figure 8. Since in this schedul-
ing strategy processors are assigned to tasks at run-time,
the local allocation scheme may not have much meaning.
Therefore only the random and skewed allocation schemes
are considered. Since observed behavior for these two al-
location schemes are similar, only the results for the ran-
dom allocation scheme are presented in Figures 8 and 9.
The performance at low chunk sizes is much worse than
that observed in the static case (see Figure 8). As the
chunk size is increased, the performance approaches that
of static scheduling. This behavior is similar to the ob-
served results for dynamic scheduling on the Sequent. An
interesting observation that shows the effect of network
traffic is the poorer performance for higher chunk sizes for
2 processors as compared to 1 processor. Further, the per-
formance uniformly improves with increasing the number
of processors showing no anomalous behavior as in static
scheduling.

Figure 9 shows the effect of computation granularity on
performance. We only present the results for low chunk
sizes since at higher chunk sizes, the behavior is expected
to be similar to static scheduling. Increasing computation
granularity does not affect network traffic and thus the
performance improves with the increase in the number of
processors for a given computation granularity.

We noted that in dynamic scheduling, the processors
have to access a global shared queue of tasks. The con-
tention that results from this queue has a detrimental ef-
fect (at low chunk sizes) on the performance on the Se-
quent with larger number of processors (see Figure 3).
On the other hand, this contention is not as pronounced
on the Butterfly (see Figure 8). This observation reiter-
ates the fact that the bus on the Sequent is a much more
shared resource than the switch on the Butterfly.

4.2 Parallel Prefix

An algorithm for the parallel prefix problem is discussed in
[6], and Figure 10 gives the pseudo code for this algorithm.

The algorithm is data oblivious. Each phase of the par-
allel part can be performed only after all processors in the
previous phase have completed their task. The recogni-
tion of the end of a phase is by waiting on a barrier. In



Prefix(z,n,s)
If n=1 then s; < 1z
else
in parallel, for i:=1 to n/2 do
Yi & T2i—1 * T2
prefix(y,n/2,ss)
ssg ¢ identity
in parallel, for i:=1 to n do
if ¢ even then s; < s$s;/2
else s; < SS(i—1)/2 * Ti

Figure 10: Parallel Prefix Algorithm

the static scheduling case, each processor knows the part
of the data it has to work on, and all the work is equally
distributed. In the dynamic scheduling case, each pro-
cessor identifies the chunk of data it has to work on, by
using a global counter (see Section 2.1). Experiments in-
clude data sizes of 4K, 16K and 32K elements in the array;
and for the dynamic scheduling case, the data granularity
ranges from 1 to 1K elements. In both cases, computation
granularity is varied as in list ranking (see Section 4.1.1).
Since the experimentation is over a range of data sizes,
only an interesting selection of results is presented in the
subsequent sections.

4.2.1 Sequent Implementation

Figure 11 shows the completion time as a function of the
number of processors for a data size of 32K on the sequent.
It is observed that an almost linear speedup is achieved. In
fact it is interesting to note that results for static schedul-
ing are remarkably similar to the corresponding results
for list ranking (see Figure 2). This confirms our earlier
observation regarding the negligible effect of synchroniza-
tion cost and bus overhead on the performance of these
algorithms.

Figures 12 and 13 present the results for dynamic
scheduling on the Sequent. Figure 13 shows the effect
of increasing computation granularity on the completion
time for fixed low data granularity (chunk size = 1). It is
seen that at low computation granularity the performance
with 8 processors is poorer than with lesser number of
processors. This loss in performance may be attributed
to the overhead of accessing the global counter, i.e., as
the number of processors increase, the contention on the
lock outweighs the added compute power. There is an-
other interesting similarity between the observed results
of list ranking and parallel prefix. With 8 processors, the
completion time decreases with increase in computation
granularity, a result that seems counter-intuitive at first
glance. However, the reason for this phenomenon is ex-
actly similar to the list ranking case (see Section 4.1.1).
Figure 12 shows the effect of varying the data granular-
ity on the completion time as a function of the number
of processors. It is observed that the performance with 8
processors is poorer than lesser number of processors for
data granularity less than 256. With reference to Figure
12, it is also observed that as the data granularity is in-

creased the performance with dynamic scheduling tends to
equal that with static scheduling, but it never does better.

4.2.2 Butterfly Implementation

We experimented with three data distribution schemes in
the case of the parallel prefix problem as in the list ranking
case. The experiments included data sizes of 8K and 16K,
and Figures 14 through 18 present the results for data size
of 8K. The results for data size of 16K are similar. Fig-
ure 14 shows the completion time versus the number of
processors for the three data distributions in the case of
static scheduling. It is seen that local data distribution
scheme performs the best. The performance is almost lin-
ear with the number of processors. This result is to be
expected, since in this problem each processor works on
its local data for the most part. However, note that we
do not see a linear speedup with the number of processors
for the other two distributions. This result is primarily
due to the latency for non-local accesses. Further, there
could be some contribution due to switch contention. The
performance for random distribution is better than that
for skewed distribution, since in the latter case, every lo-
cal access is always followed by a non-local one. It is also
noted that as in list ranking, the 2 processor performance
is worse than the 1 processor case, for these two distri-
butions. With reference to Figures 15 and 16, a behavior
similar to list ranking (see Figures 6 and 7) is observed
when computation granularity is varied for random and
skewed distributions.

The results for dynamic scheduling on the Butterfly are
shown in Figures 18 and 17. Figure 18 shows the effect
of varying the data granularity on the performance. The
observations are very similar to the corresponding results
obtained for list ranking (see Figure 8). Since the mea-
sured times for parallel prefix are quite small, at larger
chunk sizes the trend shown by the shape of the curves is
more important than the absolute numbers.

It is observed that the 16 processor case is consistently
worse than the 8 processor case. This behavior can be
attributed to the detrimental factors (non-local memory
access and contention for the shared queue) that start to
dominate with increased number of processors. With re-
spect to Figure 17, it is seen that as the computation gran-
ularity is increased, the positive factor (increased compute
power) starts to overshadow the detrimental effects. For
example, with a chunk size of 1 and for computation gran-
ularity beyond 40, our experiments indicate that the 16
processor performance is better than the 8 processor per-
formance.

4.3 Optimal Binary Search Tree

A standard dynamic programming algorithm for this prob-
lem computes a 2-dimensional cost matrix as shown in
Figure 19 [1].

This algorithm is data oblivious and traverses one di-
agonal after another (the values for the elements in the
current diagonal depend on the values in the previous di-
agonal). The number of diagonal elements to be computed



For ¢ := 1 to n do
For j := i+1 to n do

J
Ciy & min (Cu + Crrr) + > w

' k=i
Figure 19: Optimal Binary Search Tree Algorithm

in each phase decreases by 1 as we step through the diago-
nals. Therefore, in the static scheduling case we divide the
number of diagonal elements in each phase by the number
of available processors and determine the elements that
each processor has to work on. In the dynamic schedul-
ing case, a global counter is used. Note that, for this
algorithm, the unequal workload at each phase is an addi-
tional detrimental factor when compared to the other two
algorithms.

4.3.1 Sequent Implementation

Figure 20 shows the performance of this algorithm on the
Sequent using static and dynamic scheduling. An almost
linear speedup is observed for static scheduling showing
that the unequal workload is not a significant detrimental
factor.

Figure 21 shows the performance using dynamic
scheduling with respect to chunk size. Unlike the other
two algorithms, the performance worsens as the chunk size
increases with multiple processors. This result can be ex-
plained as follows. In the dynamic scheduling case, the
number of units of work depends on the chunk size and
the number of diagonal elements to be completed. For
example, there are 2 units of work when the chunk size
is 16 and the number of diagonal elements is 31. Thus
for the 4 processor case, 2 processors remain idle, creating
work imbalance. However, with respect to Figure 20, it is
observed that for a given chunk size, dynamic scheduling
does result in speedup with increase in number of proces-
sors.

4.3.2 Butterfly Implementation

Figure 22 shows the performance on the Butterfly using
static and dynamic scheduling with skewed data alloca-
tion scheme. Since the data structure in this algorithm is
2-dimensional, only the skewed allocation scheme is used.
It can be seen from the results for static scheduling that
the speedup is not linear in the number of processors. The
increase in the non-local memory references with the num-
ber of processors is the reason for this behavior.

Figure 23 shows the effect of chunk size on the per-
formance for dynamic scheduling. For a given number of
processors, increasing the chunk size results in poorer per-
formance. This behavior is very similar to that observed
on the sequent (see Figure 21), and is due to the work
imbalance. However, there is a distinct difference between
the two results as can be seen by comparing figures 21 and
23. In the case of the Butterfly, for a given chunk size, the

performance worsens beyond a certain number of proces-
sors. This effect is more pronounced at higher chunk sizes
(see the curve for chunk size = 16), since the added com-
puting power with additional processors is offset by the
detrimental factors.
5 Discussion

It 1s observed that there is almost a linear improvement
in performance with the number of processors on the Se-
quent for all the three algorithms. Adding more processors
while increasing the computing power also increases the
synchronization overhead. But the results indicate that
for the algorithms studied the overhead is not very signif-
icant on the Sequent. Further these results also show that
the bus is not a bottleneck.

However a linear speedup is not always realized on the
Butterfly for the three algorithms. Data distribution in
the memories of the processors is another dimension on
the Butterfly that seems to have a significant impact on
the performance. For example, the speedup curve is al-
most linear for the parallel prefix algorithm with local data
distribution. The reason for this result is twofold. The al-
gorithm is data oblivious and the local data distribution
provides a similar effect to having a private cache on the
Sequent for this algorithm. For the other two data dis-
tributions considered, we do not observe a linear speedup
for any of the three algorithms. Thus, we may conclude
that even on the Butterfly synchronization overhead is not
a dominant cost in limiting algorithmic performance; on
the other hand network latency is a dominant factor. In
comparing the data distribution schemes, local allocation
seems to be the best followed by random allocation for
both list ranking and parallel prefix algorithms.

It is intuitive that static scheduling should perform the
best when the workload is known in advance. Our ob-
servations confirm this intuition. However, for data de-
pendent algorithms such as list ranking the workload may
be uneven. Furthermore, even for some data oblivious al-
gorithms (such as optimal binary search tree) there could
be uneven workload between phases, indicating that static
scheduling may be inefficient. It is reasonable to expect
dynamic scheduling to perform better under such circum-
stances. In fact our observations are contrary to this in-
tuition, which can be explained by the fact that there is
an inherent overhead in dynamic scheduling. This over-
head is significant at low computation granularity. As the
computation granularity is increased, the performance of
dynamic scheduling tends towards static scheduling and
may even become better when there is a significant imbal-
ance in the workload.

An artifact of implementing dynamic scheduling is the
choice of data granularity. When the data size is very
small there is more overhead in dynamic scheduling. Our
results show that this overhead can be overcome only by
increasing the computation granularity. Note, that for a
given data size, very large data granularity (chunk size)
generates uneven workload, thus having a detrimental ef-
fect on the performance. For example, in an 8 processor
system with 4K data size and 1K chunk size, 4 processors
would remain idle.



6 Conclusions

There were several hypotheses regarding the effects of ar-
chitectural features on algorithmic performance that moti-
vated this research. One has to do with memory organiza-
tion. For example, a multistage interconnection network
can provide higher throughput, at the cost of increased
latency for each individual request. On the other hand,
bus-based systems offer lower latency for each individual
request, but provide lower overall throughput. Our re-
sults show that while the bus is not a hindrance on the
Sequent, the network latency on the Butterfly is a hin-
drance in achieving linear speedup.

The second hypothesis has to do with task granularity.
While smaller granularity allows increased parallelism, it
would also engender more synchronization overhead. A
larger granularity while reducing the synchronization over-
head limits the exploitation of the available parallelism es-
pecially when there are a large number of processors. Our
results confirm this hypothesis.

The third hypothesis deals with the scheduling over-
head. This overhead could be a limiting factor in exploit-
ing the available parallelism in a computation. This factor
is related to the granularity of tasks that we mentioned
earlier. The specific strategy used could affect the perfor-
mance of the algorithm. For example, with the dynamic
scheduling scheme, there is high contention for the global
queue especially if all the processors are looking for work
after a barrier synchronization. This hypothesis is also
borne out by our results since static scheduling outper-
forms dynamic scheduling for the most part.

The last hypothesis concerns synchronization primitives
on the available parallel machines. It can be expected
that synchronization would be crucial for both dynamic
scheduling and algorithm implementation. Although the
Sequent and the Butterfly provide different types of syn-
chronization primitives, these differences do not signifi-
cantly affect the algorithmic performance. This is due
to the fact that the amount of synchronization required in
these algorithms is not significant compared to the amount
of computation involved. On the other hand, the absence
of efficient high-level synchronization primitives such as
queue manipulation primitives on both these architectures
limits the performance of dynamic scheduling compared to
static scheduling.

This study has generated several interesting research
directions: a more realistic theoretical framework for ana-
lyzing algorithms and architectures, a classification of the
architecture primitives that would allow the realization
of the parallelism promised by the algorithms, an explo-
ration of novel architectures suggested by the structure
of the algorithms, and a set of metrics for evaluating the
performance of parallel algorithms.
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