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Abstract

This paper presents a comparative and qualitative survey of techniques for evaluating parallel systems. We
also survey metrics that have been proposed for capturing and quantifying the details of complex parallel system
interactions. Experimentation, theoretical/analytical modeling and simulation are three frequently used techniquesin
performance evaluation. Experimentation uses real or synthetic workloads, usually called benchmarks, to measure
and analyzetheir performance on actual hardware. Theoretical and analytical models are used to abstract details of a
parallel system, providing the view of a simplified system parameterized by alimited number of degrees of freedom
that are kept tractable. Simulation and related performance monitoring/visualization tools have become extremely
popular becauseof their ability to capturethe dynamic nature of the interaction between applicationsand architectures.
We first present the figures of merit that are important for any performance evaluation technique. With respect to
these figures of merit, we survey the three techniques and make a qualitative comparison of their pros and cons.
In particular, for each of the above techniques we discuss: representative case studies; the underlying models that
are used for the workload and the architecture; the feasibility and ease of quantifying standard performance metrics
from the available statistics; the accuracy/validity of the output statistics; and the cost/effort that is expended in each
evaluation strategy.
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1 Introduction

Eva uating and analyzing the performance of aparallel application on an architecture isan important aspect of parallel
systems! research. Such a performance study may be used to: select the best architecture platform for an application
domain, select the best algorithm for solving the problem on a given hardware platform, predict the performance
of an application on a larger configuration of an existing architecture, predict the performance of large application
instances, identify application and architectural bottlenecksinaparallel system to suggest application restructuring and
architectural enhancements, and glean insight on the interaction between an application and an architecture to predict
the performance of other application-architecture pairs. But evaluating and analyzing parallel system performance
is hard due to the complex interaction between application characteristics and architectural features. Performance
eval uation techniques have to grapplewith several more degrees of freedom exhibited by these systemsre ativeto their
sequentia counterparts. In this paper, we conduct a comparative and qualitative survey of performance evaluation
techniques, using figures of merit to bring out their prosand cons.

The performance of a parale system can be quantified using a set of metrics. For an evaluation technique to be
useful it should provide the necessary set of metrics needed for understanding the behavior of the system. Hence,
to qualify any evaluation technique, we need to identify a desirable set of metrics and investigate the capabilities of
the technique in providing these metrics. We present metrics that have been proposed for quantifying parallel system
performance, discussing the amount of information provided by each towards a detail ed understanding of the behavior
of the system.

Wereview thetechniques used in performance eval uation, namely, experimentation, theoretical/anal ytical modeling
and simulation. Experimentation uses real or synthetic workloads, usually called benchmarks, to measure and analyze
their performance on actual hardware. Theoretica and analytical models are used to abstract details of a paralle
system, providing the view of a simplified system parameterized by a limited number of degrees of freedom that are
kept tractable. Simulation is a useful modeling and monitoring technique that has become extremely popular because
of its ahility to capture the complex and dynamic nature of the interaction between applications and architecture in a
non-intrusive manner. For each technique, weillustrate the methodol ogy used with examples. We present some of the
input model sthat each technique uses, and compare the techniquesbased on the output statistics, the accuracy of these
gtatistics, and the cost/effort expended. We also briefly describe some of the tools that have been built embodying
these techniques.

In Section 2, we identify severa desirable metrics that have been proposed by researchers. Section 3 gives a
framework that we use for comparing these techniques, identifying some figures of merit. In Sections 4, 5 and
6, we discuss the pros and cons of experimentation, theoretical/anaytical modeling and simulation respectively, in
terms of the above-mentioned figures of merit. We also identify some of the tools that have been developed using
each technique to help evaluate paralld systems. Section 7 summarizes the results of our comparison and outlines
an evaluation strategy that combines the merits of the three techniques while avoiding some of their drawbacks and

Section 8 presents concluding remarks.

1The term, parallel system, is used to denote an application-architecture combination.



2 Metrics

In evaluating asystem, we need toidentify aset of performance metricsthat provideadeguate informationto understand
the behavior of the system. Metrics which capture the processor characteristicsin terms of the clock speed (MHZ), the
instruction execution speed (MIPS), the floating point performance (MFLOPS), and the execution time for standard
benchmarks (SPEC) have been widely used in modeling uniprocessor performance. A nice property of a uniprocessor
systemisthat given the hardware specificationsit isfairly straightforwardto predict the performancefor any application
to be run on the system. However, in a pardle system the hardware specification (which quantifies the available
compute power) may never be a true indicator of the performance delivered by the system. Thisis dueto the growth
of overheadsin the parallel system either because of the application characteristics or certain architectura limitations.
Metricsfor parallel system performance evaluation should quantify this gap between available and delivered compute
power. Scalabilityis anotion that isfrequently used to express the disparity between the two, in terms of the match
between an application and an architecture. Metrics proposed for scalability attempt to quantify this match. We
summarize some of the proposed metrics in this section and al so discuss the amount of information provided by each
metric towards understanding the parallel system execution. The reader is referred to [33] for a detailed survey of
different performance metrics for scalability.

Foeedup is awidely used metric for quantifying improvements in parallel system performance as the number of
processors isincreased. Speedup(p) is defined as the ratio of the time taken by an application of fixed size to execute
on one processor to the time taken for executing the same on p processors. Parallel computers promise the following
enhancements over their sequential counterparts, each of whichleadsto acorresponding scaling strategy: 1) the number
of processing elements is increased enabling a potentia performance improvement for the same problem (constant
problem size scaling); 2) other system resources like primary and secondary storage are a so increased enhancing the
capability to solve larger problems (memory-constrained scaling); 3) due to the larger number of processing el ements,
amuch larger problem may be solved in the same time it takes to solve a smaller problem on a sequential machine
(time-constrained scaling). Speedup captures only the constant problem size scaling strategy. It is well known that
for a problem with afixed size, the maximum possible speedup with increasing number of processorsislimited by the
seria fraction in the application [4]. But very often, paralel computers are used for solving larger problems and in
many of these cases the sequentia portion of the application may not increase appreciably regardless of the problem
size[30] yielding alower serial fraction for larger problems. In such cases, memory-constrained and time-constrained
scaling strategies are more useful. Gustafson et a. [30] introduce a metric called scal ed-speedup that tries to capture
the memory-constrained scaling strategy. Scaled speedup is defined as the speedup curve obtained when the problem
size isincreased linearly with the number of processors. Sun and Gustafson [58] propose a metric called sizeup to
capture the time-constrained scaling strategy. Sizeup is defined as the ratio of the size of the problem solved on the
paralel machine to the size of the problem solved on the sequential machine for the same execution time.

When the execution time does not decrease linearly with the number of processors, speedup does not provide any
additional information needed to find out if the deviation is due to bottlenecks in the application or in the machine.

Similarly, when a paralel system exhibits non-ideal behavior in the memory-constrained or time-constrained scaling



strategies, scal ed-speedup and sizeup fail to show whether the problemrestswith the application and/or thearchitecture.
Three other metrics[34, 32, 43] attempt to addressthisdeficiency. |soefficiency function [34] triesto capture theimpact
of problem sizes a ong the application dimension and the number of processors along the architectural dimension. For
aproblem with afixed size, the processor utilization (efficiency) normally decreases with an increase in the number of
processors. Similarly, if we scale up the problem size keeping the number of processors fixed, the efficiency usually
increases. |soefficiency function relates these two artifacts in typical parale systems and is defined as the rate at
which the problem size needs to grow with respect to the number of processors inorder to keep the efficiency constant.
An isoefficiency whose growth isfaster than linear suggests that overheads in the hardware are alimiting factor in the
scalability of the system, while a growth that is linear or less is indicative of a more scalable hardware. Apart from
providing a bound on achievable performance (Amdahl’s law), the theoretica serial fraction of an application is not
very useful in giving arealistic estimate of performance on actual hardware. Karp and Flatt [32] use an experimentally
determined serial fraction f for aproblemwith afixed sizein evaluating paralel systems. f iscomputed by executing
the application on the actua hardware and calculating the effective loss in speedup. On anidea architecture with no
overheads introduced by the hardware, f would be equa to the theoretical seria fraction of the application. Hardware
deficiencieslead to ahigher f and aconstant f withincreasing number of processorsimpliesascalable parallel system
very often suggesting that there is no overhead introduced by the underlying hardware. Decreasing f is an indication
of superlinear speedup that arises due to reasons such as memory size and randomness in application execution, as
outlined in [31]. Nussbaum and Agarwal [43] quantify scalability as aratio of the application’s asymptotic speedup
when run on the actual architectureto its corresponding asymptotic speedup when run on an EREW PRAM [26], for a
given problem size. Application scalability isameasure of the inherent parallelism in the application and is expressed
by its speedup on an architecture with an idealized communication structure such as aPRAM. Architectura scalability
is defined as the rel ative performance between the ideal and red architectures. A larger ratio isan indication of better
performance obtained in running the given application on the hardware platform.

Metrics used by [34, 32, 43] thus attempt to identify the cause (the application or the architecture) of the problem
when the parallel system does not scal e as expected. Oncethe problemisidentified, it isessential to find theindividual
application and architectural artifactsthat ead to these bottlenecks and to quantify their relative contribution towards
limiting the overall scaability of the system. For instance, we would like to find the contribution of the seria portion
in the application, the work-imbalance between the threads of control in the program, the overheads introduced by
paralelization of the problem, towards limiting the scalahility of the application. Similarly, it would be desirable to
quantify the contribution from hardware components such as network latency, contention, and synchronization, and
system software components such as scheduling and other runtime overheads. But it isdifficult to glean thisknowledge
from the three metrics. Identifying, isolating and quantifying the different overheads in a paralel system that limit
its scalability is crucia for improving the performance of the system by application restructuring and architectural
enhancements. It can also helpin choosing between alternate application i mplementations, sel ecting the best hardware
platform, and the different other uses of a performance analysis study outlined earlier in section 1. Recognizing this

importance, studies[57, 56, 16, 13] have attempted to separate and quantify paralel system overheads.
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Figure 1: Overheadsin aParalel System

I gnoring effects of superlinearity, onewould expect a speedup that increases linearly with thenumber of processors,
as shown by the curve named “linear” in Figure 1. But overheads in the system would limit its scalability resulting
in a speedup that grows much dower as shown by the curve labelled “actua” in Figure 1. The disparity between
the “linear” and “actua” curves is due to growth of overheads in the parallel system. Pearallel system overheads
may be broadly classified into a purely agorithmic component (algorithmic overhead), a component arising from
the interaction of the application with the system software (software interaction overhead), and a component arising
from the interaction of the application with the hardware (hardware interaction overhead). Algorithmic overheads
arise from the inherent serial part in the application, the work-imbalance between the executing threads of control,
any redundant computation that may be performed, and additional work introduced by the parallelization. Software
interaction overheads such as overheadsfor scheduling, message-passing, and software synchronization arise dueto the
interaction of the application with the system software. Hardware slowdown due to network latency (the transmission
time for a message in the network), network contention (the amount of time spent in the network waiting for links to
become free), synchronization and cache coherence actions, contribute to the hardware interaction overhead. To fully
understand the scalability of the parallel system, it isimportant to isolate and quantify the impact of different parallel
system overheads on the overall execution as shown in Figure 1. Overhead functions[56, 57] and lost cycles [16] are
metrics that have been proposed to capture the growth of overheads in a parallel system. Both these metrics quantify
the contribution of each overhead towards the overall execution time. The studies differ in the techniques used to
quantify these metrics. Experimentation isused in [16] to quantify lost cycles, while simulation isused in [56, 57] to
guantify overhead functions.

In addition to quantifying the overheads in a given parald system, a performance evauation technique should
also be able to quantify the growth of overheads as a function of system parameters such as problem size, number of

processors, processor clock speed, and network speed. This information can prove useful in predicting the scal ability



of systems governed by a different set of parameters.

In this section, we presented a range of performance metrics, from simple metrics like speedup which provide
scalar information about the performance of the system, to more complicated vector metrics like overhead functions
that provide a wide range of statistics about the parallel system execution (see Table 1). The metrics that revea only
scalar informationare much easier to calculate. Infact, theoverall execution times of the parallel system parameterized
by number of processors and problem sizes would suffice to cal culate metrics like speedup, scaled speedup, sizeup,
isoefficiency function and experimentally determined seria fraction. On the other hand, the measurement of overhead

functionsand lost cycles would need more sophi sticated techniques that use a considerabl e amount of instrumentation.

I Metrics I Merits | Drawbacks |
Useful for quantifying perfor- Do not |d_ent|fy or quantify b.Ot
. tlenecks in the system, provid-
Speedup, Scaed speedup, || mance improvementsasafunc- | . o ) :
. . ing no additiona information
Sizeup tion of the number of processors
. when the system does not scale
and problem sizes.
as expected.

Isoefficiency function, Experi-
mentally determined serial frac-
tion, Nussbaum and Agarwa’s
metric

Attempt to identify if the appli-
cation or architectureis at fault
in l[imiting the scal ability of the
system.

The information provided may
not be adequate to identify and
quantify the individual applica
tion and architectural features
that limit the scalability of the

system.

[dentify and quantify all the ap-
plication and architectural over-
heads in a parale system that
limit its scalability, providing a
detailed understanding of paral-
lel system behavior.

Quantification of these metrics
needs more sophisticatedinstru-
mentation techniques.

Overhead functions, Lost cycles

Table 1: Performance Metrics

3 TheFramework

For each of the three techniques reviewed in this paper, we present an overview, illustrating its use with case-studies.
Evauation studies using these techniques may be broadly classified into two categories: those which study the
performance of the system as a whole, and those which study the performance and scalability of specific system
artifacts such as locality properties, synchronization primitives, interconnection networks, and scheduling strategies.
We present examples from both categories.

Each evaluation technique uses an input model for abstracting the application and hardware characteristics in the
paralel system being evaluated. For instance, the abstraction for the machine can vary from the actua hardware as
is the case with experimentation, to a completely abstract model such as the PRAM [26]. Similarly, the application
model can range from a completely synthetic workload to a full-fledged application. We present models used in the
eval uation techniques and discuss the realism in these model s in capturing the behavior of actual paralld systems.

The figures of merit used to compare the three techniques are as follows:



o Statisticsexamines the capabilities of the technique towards providing the desirable metrics identified in section
2. As we observed earlier, the overall execution time, which is provided by all three evaluation techniques,
would suffice to calculate the scalar metrics. On the other hand, isolation of parallel system overheads may not
be easily handled by atechnique that isinherently limited by the amount of statisticsit provides.

We also discuss the capability of the technique towards studying the impact of application parameters such as
problem size, and hardware parameters such as number of processors, CPU clock speed, and network bandwidth,
on system performance. We can vary these system parameters and re-conduct the evaluation to investigate their
impact on the performance metric being studied. These results, coupled with knowledge about the application
and hardware, can be used to develop analytical and regression models of system performance. Such models
can identify bottlenecksin the system and help predict the scalability of parallel systems governed by a different

set of parameters.

e Accuracy evauates the validity and reliability of the results from the technique. Intrinsic and externa factors
determine the accuracy of an evaluation. To alarge extent, the accuracy depends on intrinsic factors such asthe
closeness of the chosen input models to the actua system. The accuracy may aso depend on external factors
such as monitoring and instrumentation. Even the act of measurement may sometimes perturb the accuracy of

the evaluation.

o We investigate the cost and effort expended in each evaluation strategy in terms of computer and human
resources. We study the initial cost expended in devel oping the input models, and the subsequent cost for the
actua evauation. These two costs may a so be used to address the capability of the technique towards handling
modificationsto the parallel system. A dlight change of system parameters, which do not ater the input model,
would demand only an evaluation cost. On the other hand, more drastic changes to the application and/or the

hardware would a so incur the cost of re-designing the input models.

4 Experimentation
4.1 Overview

The experimentation technique for evaluating parallel systems uses real or synthetic workloads and measures their
performance on actua hardware. For instance, severa studies[22, 11, 47, 49] experiment withthe KSR-1 hardware for
evaluating its computation, communication and scalability properties. The scalability of the KSR-1 is studied in [47]
using applicationsdrawn fromthe NAS benchmark suite[9]. Similarly, an experimenta evaluation of the computation
and communication capabilities of the CM-5 is conducted in [46]. Lenoski et a. [36] evaluate the scalability of
the Stanford DASH multiprocessor prototype using a set of applications. These applications are implemented on
the prototype hardware and their performance is studied using a hardware monitor to obtain statistics on processor
usage, cache statistics and network traffic. The statistics are used to explain the deviation of application performance

from ideal behavior. Such evaluations of machine performance using benchmarks may be used to compare different



hardware platforms. Singh et al. [52] thus use applications from the SPLASH benchmark suite [54] to compare the
KSR-1 and DASH multiprocessors.

Experimentation has also been used to study the performance and scalability of specific system artifacts such
as locality, synchronization, and interconnection network. The interconnection network and locality properties of
the KSR-1 are studied in [22, 11, 49]. Lenoski et al. [36] study the performance and scalability of the cache,
synchronization primitives and the interconnection network of DASH. They implement artificial workloads which
exercise different synchronization aternatives and the prefetch capabilities of the DASH prototype, and measure their
performance as a function of the number of processors. The scalability of hardware and software synchronization
primitives on the Sequent Symmetry and BBN Butterfly hardware platformsis investigated in [41] and [5]. In these
studies, each processor is subjected to alarge number of synchronization operationsto cal cul ate the average overhead
for a single operation. The growth of thisoverhead as a function of the number of processors is used as a measure of

the scalability of the synchronization primitive.

4.2 Input Model

Experimentation uses the actual hardware and the related system software to conduct the evaluation, making it the
most redlistic model from the architectura point of view. On the other hand, the workload moded (often called
benchmarks) used in evaluations can span a diverse spectrum of realism. The simplest benchmarks exercise and
measure the performance of low-level hardware features. Workloadsused in[22] and [46] which evaluate the low-level
communication performance of the KSR-1 and CM-5 respectively, are examples of such benchmarks. The workload
used in [46] evauates the performance of the CM-5 network by inducing messages to traverse different levels of
the fat-tree network under a variety of traffic conditions. Synthetic benchmarks that mimic the behavior of some
applications have also been used for evaluating systems. Boyd et a. [11] propose a synthetic benchmark using sparse
matrices that is expected to model the behavior of typical sparse matrix computations. Synthetic benchmarks called
micro-kernelsare used in[49] to evaluate the KSR-1. Varying parameters in these synthetic benchmarksis expected to
capture typica workloads of real applications. Another common way of benchmarking and studying system artifacts
is by experimenting with well-known parallel agorithms. Three such frequently used text book algorithmsare used in
[55] to evaluate the performance of two shared memory multiprocessors, and to study the impact of task granularity,
data distribution and scheduling strategies on system performance.

Benchmarking using low-level measurements, and synthetic workloads has often been criticized due to the lack
of realism in capturing the behavior of real applications. Since applications set the standards for computing, it is
appropriate to use real-world applications for the performance evaluation of parallel machines, adhering to the RISC
ideology in the evolution of sequential architectures. Application suites such as the Perfect Club [10], the NAS
Paralld Benchmarks [9], and the SPLASH application suite [54] have been proposed for the evaluation of paralel
machines. However, applications normally tend to contain large volumes of code that are not easily portable, and
a leve of detail that is not very familiar to someone outside that application domain. Hence, computer scientists

have traditionally used abstractionsthat capture the interesting computation phases of applications for benchmarking



their machines. Such abstractions of real applications which capture the main phases of the computation are called
kernels. One can go even lower than kernels by abstracting the main loops in the computation (like the Lawrence
Livermore loops [39]) and evaluating their performance. As one goes lower, the outcome of the eval uation becomes
less redlistic. Even though an application may be abstracted by the kernelsinside it, the sum of the times spent in
the underlying kernels may not necessarily yield the time taken by the application. There is usually a cost involved
in moving from one kernel to another such as the data movements and rearrangements in an application that are
not part of the kernels that it is comprised of. For instance, an efficient implementation of a kernel may need to
have the input data organized in a certain fashion which may not necessarily be the format of the output from the
preceding kernel in the application. Despite these drawbacks, kernels may still be used to give a reasonable estimate of
application performance in circumstances where the cost of implementing and eval uating the entire application has to
be minimized. However, there are no inherent drawbacks in the experimentati on technique that precludeimplementing
the compl ete detail s of area -world application. The technique thus benefits from the realism of the input model, both

from the hardware and the application point of view, giving credibility to results drawn from the eval uation.

4.3 Figuresof Merit
431 Statistics

Experimentation can givethe overall execution time of the application on the specified hardware platform. Conducting
the evaluation with different problem sizes and number of processors would thus suffice to cal culate metrics such as
speedup, scaled speedup, sizeup, isoefficiency, and experimentally determined seria fraction identified in section 2.
But the overall execution time is not adequate to isolate and quantify parallel system overheads, and experimentation
needs to provide additional information. Two ways of acquiring such information is by instrumentation and hardware
monitoring. Instrumentation augments the application code or the system software to accumul ate statistics about the
program execution. This augmentation may be performed either by the application programmer by hand, or may be
relegated to a pre-processor or even the compiler. Crovella and LeBlanc [16] identify such a tool called predicate
profiler, which uses a run-time library to log events from the application code to find a gorithmic overheads such as
seria part and work-imbalance. A detailed analysis of the execution time would require a considerable amount of
instrumentation of the application code. In some cases, such detailed instrumentation may itself become intrusive,
yielding inaccurate results. Also, it isdifficult to capture hardware artifacts such as network traffic and cache actions
by a simple instrumentation of the application. Hardware monitoring tries to remedy the latter deficiency by using
hardware support to accumul ate these statistics. The hardware facilities on the KSR-1 for monitoring network traffic
and cache actions are used in [16] to cal cul ate hardware interaction overheads such as network latency and contention.
But the hardware monitoring technique relies on support from the underlying hardware for accumulating statistics
and such facilities may not be available uniformly across al hardware platforms. Further, hardware monitoring alone
cannot give sufficient information about algorithmic and software interaction overheads. A combination of application
instrumentation and hardware monitoring may be used to remedy some of these problems. But the strategy would still

suffer from theintrusive nature of theinstrumentationin interfering with both the a gorithmic and hardware monitoring



mechanisms.

Aswementioned in section 3, we wouldliketo vary application and hardware parameters and study their impact on
system performance. Application parameters such as problem size, may be easily studied with littleor no modifications
to the application code, since most programsare likely to be written parameterized by these values. From the hardware
point of view, the number of processors can bevaried. Also, some machines provideflexibility in hardware capabilities,
like the ability to vary the cache coherence protocol on the FLASH [35] multiprocessor. For such parameters, one
may be able to vary the hardware capabilities and develop analytical or regression models for predicting their impact
on performance. Crovellaand LeBlanc [16] use such an approach to develop analytical models parameterized by the
problem size and the number of processors for the lost cycles of FFT on the KSR-1. But several other features in the
underlying hardware, such as the processing and network speed, are fixed, making it infeasible to study their impact

on system scalahility.

4.3.2 Accuracy

Experimentation can use real applications to conduct the evaluation on actual machines giving accurate results with
respect tofactorsintrinsictothe system. But, asweobserved earlier, it may benecessary to augment the experimentation
techniquein order to obtai n sufficient execution statistics. Such external instrumentation and monitoring intrusion can

perturb the accuracy of results.

4.3.3 Cost/Effort

The cost in developing the input model for experimentation is the effort expended in developing algorithms for the
given application, arriving at a suitable implementation which is optimized for the given hardware, and debugging
the resulting code. This cost isdirectly dependent on the complexity of the application and would be incurred in any
case since the application would ultimately need to be implemented for the given hardware. Further, this cost can be
amortized in conducting the eval uations over arange of hardware platformsand arange of application parameters with
little modifications to the application code. The cost for conducting the actual evaluation isthe execution time of the
given application, which may be considered reasonabl e since the execution is on the native parallel hardware.
Modifications to the application and hardware can thus be accommodated by the experimentation technique at
a modest cost. Modifications to the application would involve recompiling the application and re-conducting the
evaluation. When the underlying hardware is changed, re-compilation and re-evaluation would normally suffice. A
drastic change in the hardware may sometimes lead to a change in the application code for performance reasons, or
may even change the programming paradigm used. But such cases are expected to be rare given that parallel machine

abstractions are rapidly converging from the user’s viewpoint.

44 Tools

Tools which use experimentation for performance debugging of parallel programs rely on the above-mentioned

instrumentati on and hardware monitoring techniquesfor giving additional information about parallel system execution.



Quartz [6] uses instrumentation to give a profile of the time spent in different sections of the parallel program similar
to the Unix utility called ‘ gprof’ which is frequently used in performance debugging of sequential programs. Quartz
provides a metric caled normalized execution time which is defined as the total processor time spent in each section
of code divided by the number of processors that are concurrently busy when that section of code is being executed.
Such a tool can help in identifying bottlenecks in sections of code, but it is difficult to understand the reason for
such bottlenecks without the separation of the different parallel system overheads. Mtool [28] is another utility which
uses instrumentation to give additional information about the execution. In the first step, Mtool instrumentsthe basic
blocks in the program and creates a performance profile. From this profile, it identifies important regions in the
code to instrument further with performance probes. The resulting code is re-executed to accumulate statistics such
as the time spent by a processor performing work (compute time), the time a processor is stalled waiting for data
(memory overhead), the time spent waiting at synchronization events (synchronization overhead), and the time spent
in performing work not present in the sequentia code (additional work due to paralldization). 1PS-2 [42] also uses
instrumentation to analyze parallel program performance. It differsfrom Quartz and Mtool in that it generates atrace
of events during application execution, and then analyzes the trace to present useful information to the user. Apart
from giving information like those provided by Mtool, the traces can aso help determine dynamic interprocessor
dependencies. On the other hand, the generation of traces tends to increase the intrusiveness of instrumentation apart
from generating large trace files.

Instrumentation can help in identifying and quantifying algorithmic overheads, but it is difficult to quantify the
hardware interaction overheads using this technique aone. Hardware monitoring can supplement instrumentation to
remedy this problem. Burkhart and Millen [13] identify a set of hardware and system software monitoring tools that
help them quantify several sources of parallel system overheads on the M3 multiprocessor system. Software agents
caled the ‘trap monitor’ and the ‘mailbox monitor’ are used to quantify algorithmic and synchronization overheads.
The ‘bus count monitor’, a hardware agent, is used to analyze overheads due to the network. Crovellaand LeBlanc
[16] useaLost Cycle Analyzer (LCA) to quantify parallel system overheads onthe KSR-1. LCA usesinstrumentation
to track performance loss resulting from agorithmic factors such as work-imbalance and seria parts in the program.
Appropriatecalsto library functionsareinserted in the application code to accumul ate these statistics. LCA also uses
the KSR-1 network monitoring support, which can givethe total time taken by each message, to cal cul ate performance
lossin terms of the network latency and contention components.

The above tools are general purpose since they may be used to study any application on the given hardware
platform. Toolsthat are tailored to specific application domains have also been devel oped. For instance, SHMAP [21]
has been developed to aid in the design and understanding of matrix problems. Like IPS-2, it generates traces from
instrumented FORTRAN programs which are subsequently animated. While such atool may not identify and quantify
all sources of overheadsin the system, it can help in studying the memory access pattern of matrix applicationstowards

understanding its behavior with different memory hierarchies and caching strategies.
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5 Theoretical/Analytical M odels
51 Overview

Aswe observed early in this paper, performance evaluation of paralel systemsis hard owing to the severa degrees of
freedom that they exhibit. Analytical and theoretical modelstry to abstract details of a system, in order to limit these
degrees of freedom to atractable level. Such abstractions have been used for developing parallel agorithms and for
performance analysis of parallel systems.

Abstracting machine features by theoretical models likethe PRAM [26] has facilitated al gorithm devel opment and
analysis. These modelstry to hide hardware details from the programmer, providing asimplified view of the machine.
The utility of such models towards devel oping efficient algorithms for actual machines, depends on the closeness of
the model to the actual machine. Several machine models [2, 3, 27, 14, 59, 17] have been proposed over the years
to bridge the gap between the theoretical abstractions and the hardware. But, a complex mode! that incorporates all
the hardware details would no longer limit the degrees of freedom to a tractable level, precluding its ease of use for
algorithm development and analysis. Hence, research has focussed on developing simple models that incorporate a
minimal set of parameters which are important from a performance point of view. The execution time of applications
is expressed as afunction of these parameters.

While theoretical models attempt to simplify hardware details, analytical models abstract both the hardware and
application detailsin a parallel system. Analytical models capture complex system features by simple mathematical
formulag, parameterized by alimited number of degrees of freedom that are tractable. Such models have found more
use in performance anaysis than in agorithm devel opment where theoretical models are more widely used. Aswith
experimentation, analytical models have been used to evaluate overall system performance as well as the performance
of specific system artifacts. Vrsalovic et a. [62] develop an anaytical model for predicting the performance of
iterative algorithms on a simple multiprocessor abstraction, and study the impact of the speed of processors, memory,
and network on overal performance. Similarly, [37] studiesthe performance of synchronous parallel agorithmswith
regular structures. The restriction to regular iterative and synchronous behavior of the application in these studies
helps reduce the degrees of freedom in the parallel system for tractability. Analytical models have aso helped study
the performance and scalability of specific system artifacts such as interconnection network [18, 1], caches [45, 44],
scheduling [50] and synchronization [64].

5.2 Input Model

Severa theoretical models have been proposed in literature to abstract parallel machine artifacts. The PRAM [26]
has been an extremely popular vehicle for algorithm development. A PRAM consists of a set of identical sequential
processors, al of which operate synchronously and can each access a globally shared memory at unit cost. Models
that have been proposed as aternatives to the PRAM, try to accommodate limitations in the physical redization of
communi cation and synchroni zation between the processors. Aggarwal et a. [2] propose amode called the BPRAM

(Bulk Paralel Random Access Machine) that associates a latency overhead for accesses to shared memory. The
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model incorporates a latency to access the first word from shared memory and a transfer rate to access subsequent
words. Mehlhornet a. [3] useamodd called the Module Parallel Computer (M PC) which incorporates contention for
simultaneous accesses by different processors to the same memory module. The implicit synchronization assumption
in PRAMs is removed in [27] and [14]. In their models, the processors execute asynchronoudy, with explicit
synchronization steps to enforce synchrony when needed. Valiant [59] introduces the Bulk-Synchronous Paralléel
(BSP) model which has: a number of components, each performing processing and/or memory functions; a router
that delivers point to point messages between components; and a facility for synchronizing all or a subset of the
components at regular intervals. A computation consists of a sequence of supersteps separated by synchronization
points. In a superstep, each component executes a combination of local computations and message exchanges. By
restricting the number of messages exchanged in a superstep, aprocessor may not exceed the bandwidth of the network
allocated to it, thus ensuring that the messages do not encounter any contention in the network. Culler et a. [17]
propose a more redlistic model called LogP that is parameterized by: the latency L which is the maximum time
spent in the network by a message from a source to any destination; the overhead o incurred by a processor in the
transmi ssion/reception of amessage; the communication gap ¢ between consecutive message transmissions/receptions
from/to a given processor; and the number of processors P. In thismodel, network contention is avoided by ensuring
that a processor does not exceed the per-processor bandwidth allocated to it (by maintaining agap of at least ¢ between
consecutive transmissions/receptions). Efficient agorithms have been designed for such theoretical models, and the
execution time of the algorithm is expressed as a function of the parametersin the model.

Analytical modelsabstract boththe hardware and application detail sof parallel systems. The behavior of thesystem
artifacts being studied is captured by a few simple parameters. For instance, Agarwal [1] models the interconnection
network by the network cycle time, the wire delay, the channel width, the dimensionality and radix of the network.
Sometimesthe hardware detailsare simplified in order to keep themodel tractable. For example, under the assumption
that thereis minimal data inconsistency arising during the execution of an application, some studies[45] ignore cache
coherence traffic in analyzing multiprocessor caches. Analytical models al so make simplifying assumptions about the
workload. Models developed in [62] are applicable only to regular iterative a gorithms with regular communication
structures and no data dependent executions. Madala and Sinclair [37] confine their studies to synchronous parallel
algorithms. The behavior of these simplified workloads is usually modeled by well-known probability distributions
and specifiable parameters. The interconnection network model developed in [1] captures application behavior by the
probability of message generation by a processor in any particular cycle, and alocality parameter for estimating the
number of hops traversed by this message. Anaytical models combine the workload and hardware parameters by
mathematical functionsto capture the behavior of either specific system artifacts or the performance of the system as

awhole.
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5.3 Figuresof Merit
531 Statistics

Theoretical and analytical models can directly present statistics for system overheads that are modeled. The valuesfor
the hardware and the workload parameters can be plugged into the model corresponding to the system overhead being
studied. With models available for each system overhead, we can predict the overall execution time and calculate all
metrics outlinedin section 2. The drawback isthat each system overhead needsto be modeled or ignored in calculating
the execution time.

Since the metric being studied is expressed as a function of all the relevant system parameters, thistechnique can
be very useful when accurate mathematical models can be devel oped to capture the interaction between the application

and the architecture.

5.3.2 Accuracy

Both theoretical and analytical models are useful in predicting system performance and scal ability trends as parame-
terized functions. However, the accuracy of the predicted trends depends on the simplifying assumptions made about
the hardware and the application detailsto keep the models tractable. Theoretical models can use red applicationsas
theworkload, whereas analytical model s represent theworkload using simpl e parameters and probability distributions.
Thus the former has an advantage over the latter in being able to estimate metrics of interest more accurately. But
even for theoretical models, a static analysis of application code which is used to estimate the running time can yield
inaccurate results. Redl applications often display a dynamic computation and communication behavior that may not
be pre-determined [53]. A static analysis of application code as done by theoretical models may not reveal sufficient
information due to dynamic system interactions and data-dependent executions. The results from the worst-case and
average-case anaysis used with these models can vary significantly from the real execution.

Analytical/theoretical models present convenient parameterized functions to capture the asymptotic behavior of
system performance and sca ability. But, it is difficult to calculate the constants associated with these functions using
this technique. Such constants may not prove important for an asymptotic analysis. On the other hand, ignoring

constants when evaluating real parallel systems with afinite number of processors can result in inaccurate analysis.

5.3.3 Cost/Effort

Computationally, thistechniqueisvery appealing sinceit involvescal cul ating rel atively simple mathematical functions.
On the other hand, a substantia effort is expended in the development of models. Devel opment of the model involves
identifyinga set of application and hardware parameters that are important from the performance viewpoint and which
can be maintained tractable, studying the relationship between these parameters, and expressing these relationships
by simple mathematical functions. Repeated evaluations using the same model for different system configurations
may amortize this cost, but since the applicability of these models is limited to specific hardware and application
characteristics, repeated usage of the same models may not aways be possible.

13



Simple modifications to the application and hardware can be easily handled with these models by changing the
values for the corresponding parameters and re-cal culating the results. But a significant change in the hardware and

application would demand a re-design of the input model s which can be expensive.

5.4 Tools

Toolsthat use anal ytical/theoretical model sfor parallel system eval uation differ intheabstractionsthey usefor modeling
the application and hardware artifacts, and in the strategy of evaluation using these abstractions. The PAMELA system
[6Q] builds abstract models of the application program and the hardware, and uses static model reduction strategiesto
reduce evaluation complexity. The hardware features of the machine are abstracted by resource models and the user
can choose the level of hardware detail that needs to be modeled. For instance, each switch in the network may be
modeled as a separate resource, or the user may choose to abstract the whole network by a single resource that can
handle a certain number of requests at the same time. The application is written in a specification language with the
actual computation being abstracted by delays. Interaction between the application and the machine is modeled by
usage and contention for the specified hardware resources. Such an input specification may be directly smulated to
evaluate system performance. But the PAMELA approach relies on static analysis to reduce the complexity of the
evaluation. Transformationsto convert resource contention to simple delays, and reductions to combine these delays,
are used to simplify the evaluation. ES (Event Sequencer) [51] isatool that uses analytical techniques for predicting
the performance of parale algorithmson MIMD machines. ES model sthe parallel a gorithm by atask graph, alowing
the user to specify the precedence constraints between these tasks and random variables representing the execution
times of each of these tasks. The hardware components of the system are modeled by resources similar to PAMELA
and atask must be given exclusive use of aresource for itsexecution. ES executes the specified model by constructing
asequencing tree. Each nodein thetree represents a state of execution of the system, and the directed edgesin thetree
represent the probability outcomes of sequencing decisions. The probability of the system being in a certain state is
equa to the product of the probabilitiesof the path to that node from theroot node. The system terminates when either
aterminal nodein thetreeisreached with athreshold probability, or acertain number of terminal nodes are present in
the sequencing tree. ES uses heuristics to maintain the tree size at an acceptable level, alowing a trade-off between
accuracy and efficiency.

WhilePAMELA and ESrely on astatic specification of theapplicationmodel by the user, [8] and [25] usethe actual
application code to derive the models. A dtatic performance evaluation of application code segments is conducted
in [8]. Such a static evaluation ignores data dependent and non-deterministic executions and its applicability is thus
restricted. PPPT [25] uses an earlier profiling run of the program to overcome some of these drawbacks. During the
profiling run, it collects some information about the program execution. This information is augmented with a set
of statically computed parameters such as work distribution, data transfers, network contention and cache misses, to

predict the performance of the parallel system.
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6 Simulation
6.1 Oveview

Simulation isaval uabl e techni que which expl oitsthe resources offered by acomputer towards modeling and imitating
the behavior of area system in a controlled manner. The rea system is modeled by a program that is executed on a
computer to giveinformation about the behavior of the system. Cost, time and controlled execution factors have made
simulation preferable to studying the actual system in many circumstances. Often, it iseconomically wiseto study the
system before building it in order to confirm the correctness and performance of the design. Observing and eval uating
the behavior of some real systems that are governed by mechanical (eg. ocean modeling) and biological (eg. human
evolution) factors can sometimes be slow. Since computer simulationscan potentially execute at the speed of el ectrons
in the hardware, they may be used to hasten the evaluation process. Finally, since simulation isfully controlled by the
input program and is not dependent on any external factors, the behavior of the system may be studied in a controlled
manner. These factors have made simulation useful in a wide range of real-world problems like weather modeling,
computationa chemistry and computational fluid dynamics.

Computer hardware design hasal so benefited from thistechniquein making cost-performancetradeoffsin important
architectura decisions before building the hardware. The two factors, cost and controlled execution, have made
simulation popular for paralel system studies. It has been used to study the performance and scalability of specific
system artifacts such as the interconnection network [1, 18], caches [7] and scheduling [65]. Such studies simulatethe
details of the system artifacts being investigated, and evaluate their performance for a chosen workload. For instance,
Archibald and Baer [7] use a workload which models the data sharing pattern between processors in an application,
and simulate its execution over arange of hardware cache coherence schemes. Simulation has a so been used to study
the behavior of parald systems as a whole [56, 48, 40, 53]. Genera purpose simulators such as SPASM [56, 57],
PROTEUS[12], the Rice Paralldl Processing Testbed [15], the Wisconsin Wind Tunnel [48], and Tango [19], which can
model arange of application and hardware platforms have been developed for studying parale systems. Simulation
is also often used to validate and refine analytical models.

6.2 Input Mode

Simulation provides flexibility for choosing the level of detail in the application and hardware models. From the
application point of view, simulation studies may be broadly classified into synthetic workload-driven, abstraction-
driven, trace-driven, and execution-driven that differ in the level of detail used to model the workload. Synthetic
workload-drivensimulationscompl etely abstract application detail sby simple parameters and probability distributions.
Simulation studies conducted in [1, 7, 65] to investigate the performance of interconnection networks, caches and
scheduling strategies respectively, use such synthetic workloads. For instance, Agarwal [1] models application
behavior by the probability of generating a message of a certain size in a particular cycle. Simulation can also use
real applications, and the way in which these applications are used results in the other three types of simulation.
Abstraction-driven simulations capture the behavior of the application by a model, and then simulate the model on
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the given hardware. The PAPS [63] toolset uses this approach to abstract the application behavior by Petri nets
which isthen ssimulated. Trace-driven simulations use an input trace of eventsthat is drawn from an earlier execution
of the application either on the actual hardware or on another simulated hardware. Traces of applications obtained
from a Seguent Baance are used by [23] in a simulation platform to study the impact of sharing on the cache and
bus performance. Since the traces are generated on an aternate hardware platform (either real or simulated), the
events in the trace may not represent the actua set of events or their order in which they occur in an execution of the
application on the platform being studied yielding inaccurate results [29]. The trace may not even be accurate for
the system on which it was generated, since the action of collecting traces may perturb the true execution of events
[24]. Execution-driven simulation that simulates the execution of the entire application on the hardware is becoming
increasingly popular because of its accuracy in capturing the dynamics of paralld system interactions. Many general
purpose simulators [56, 12, 15, 48, 19, 61] are based on this paradigm. Execution-driven ssimulation also provides
the flexibility of abstracting out phases of the application that may not significantly impact the system artifacts being
studied, in order to speed up the simulation. Mehraet a. [40] use such an approach in capturing theloca computation
between successive communication events of message-passing programs by simple anaytical models.

Hardware simulation can be as detailed as a cycle level or alogiclevel simulationwhich simulates every electronic
component. Machine details may aso be abstracted out depending on the level of detail and accuracy desired by the
user. Many simulators[56, 12, 15, 48, 19, 61] do not simulate the detail s of instruction execution by a processor since
simulating each instruction is not likely to significantly impact the understanding of paralel system behavior. Most
of the application code is executed at the speed of the native processor and only interesting instructions are trapped to
the simulator and simulated. The Wisconsin Wind Tunnel [48] which simulates shared memory platforms relies on
the ECC (error correcting code) bits of the native hardware to trap to the simulator on accesses to shared memory by
aprocessor. SPASM [56], PROTEUS [12], the Rice Paralel Processing Testbed [15], and Tango [19] use application
source code augmentation to trap to the simulator for theinstructionsto be simulated. MINT [61] interpretsthe binary
object code to determine which instructionsneed to be simulated and thus does not need the standard application code
to be recompiled with the special augmenting instructions. One may even abstract out the hardware completely in

execution-driven simulations, replacing it with a theoretical or anaytical model.

6.3 Figuresof Merit
6.3.1 Statistics

Simulation provides a convenient monitoring environment for observing details of parallel system execution, allowing
the user to accumulate arange of statisticsabout the application, the hardware, and the interaction between the two. It
can give thetota execution time and the different parallel system overheads for cal cul ating metrics outlinedin section
2. In addition, a ssimulator can supply these metrics for different windows in application execution which can help
identify and remedy agorithmic and architectura bottlenecks[56].

Since the application and hardware details are modeled in software, the system parameters can be varied and the

system re-simulated to give the desired metrics. These results may be used to give regression performance models as
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afunction of system parameters. Such atechniqueisused in [56] to derive models for system overheads as a function
of the number of processors. In cases, where more detailed parallel system knowledge is available, the results may be

used to obtain more accurate analytical models.

6.3.2 Accuracy

Owing to the controlled execution capability, thereisno intrusionfrom external factors, and monitoring does not affect
the accuracy of results for this technique. The accuracy of results depends purely on the accuracy of input models.
With execution-driven simulation, we can faithfully smulate all the details of a real-world application. We can also
simulate dl the details of the hardware, though in many circumstances a level of abstraction may be chosen to give
moderately accurate results for the intended purposes. The accuracy of these abstractions may aso be validated by
comparing the results with those obtained from a detailed simulation of the machine or an experimental evaluation on

the actual machine.

6.3.3 Cost/Effort

The main drawback with simulationsisthe cost and effort expended in simulating the details of large parallel systems.
There is dso a non-trivial cost associated with developing simulation models for the machine features, but the task
is made relatively simpler by the use of genera purpose simulators which provide a wide range of functionality.
Execution-driven simulations can use off-the-shelf rea applications for the workload. The cost in developing input
model s for thistechnique is thus much lower than the cost of the actual evaluation.

Execution-driven simulations of real paralel systems demand considerable computational resources, bothin terms
of space and time. Severd techniques have been used to remedy this problem. Abstracting application and hardware
details in the smulation model may alleviate this problem. For instance, [53] uses a higher level simulation model
for Cholesky Factorization that simulates block modifications rather than machine instructions. Mehra et a. [40]
attempt to abstract phases of message-passing applications by analytical models gleaned from application knowledge
or fromearlier simulations. Similarly, [20] uses application knowledgeto abstract out phases of numerical calculations
to derive computation and communication profiles in approximating the simulation of parallel algorithms. From the
hardware point of view, most general purpose simulators [56, 12, 15, 19, 48] do not simulate the parallel machine at
the instruction-set level as we discussed earlier. Similarly, different levels of abstractions for other hardware artifacts
like the interconnection network and caches may be studied to improve simulation speed. Another way of aleviating
the cost is by parallelizing the ssimulation itself like the Wisconsin Wind Tunnel [48] approach which uses the CM-5
hardware for simulating shared memory multiprocessors.

With regard to modifiability, amoderate change in hardware parameters may be handled by plugginginthesevalues
into the model and re-simulating the system. But such a re-simulation, as we observed, is invariably costlier than a
simple re-calculation that is needed for anaytical models, or experimentation on the actual machine. A significant
change in the machine or application detailswould also demand a re-implementation of the simulation model, but the

cost of reesimulation is again expected to dominate over the cost of re-implementation.
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6.4 Tools

Severa genera purpose execution-driven simulators [56, 12, 15, 19, 48, 61, 63] have been built for simulation
study of parallel systems. Such simulation platforms can serve as testbeds for implementing and studying a wide
range of hardware and application platforms. Some of these simulators provide additional monitoring tools towards
understanding the behavior of the smulated systems. For instance, MemSpy [38] isa performance debugging tool that
isused in conjunctionwith the Tango simul ation platform to locate and fix memory system bottlenecksin applications.
While traditional toolsfocus on the application code to identify problems, MemSpy focusses on the data manipul ated
by the application and presents the percentage of total memory-stall time associated with each monitored data item.
It gives read/write statistics, miss rates and the statistics associated with the reasons for a miss in the local cache of
a processor. |dentifying the main reasons for cache misses can help in fixing the application to improve its locality
properties. The AIMS toolkit that comes with the Axe [40] simulation platform supports automatic instrumentation,
run-time monitoring and graphical analysis of performance for message-passing paralel programs. Such visuaization
and animation of system execution can help in understanding the communication pattern of applications, providing
information that is important from both the performance and correctness point of view. The monitoring support
provided by SPASM [56, 57] exploitsthe controlled execution feature of simulation to provide a detailed isolation and
quantification of different parallel system overheads. SPASM quantifies the algorithmic overhead by executing the
paralel program on aPRAM and measuring its deviation from linear behavior. The time spent in the PRAM execution
inwaitingfor processorsto arrive at abarrier synchronization point isaccounted for inthe a gorithmicwork-imbal ance,
and the time spent in waiting for acquisition of a mutual exclusion lock is accounted in the seria portion overhead.

SPASM also separates the hardware interaction overheads due to network latency and contention.

7 Discussion

In the previous three sections, we reviewed the techniques, namely, experimentation, theoretical/analytical modeling,
and simulation for paralel system evaluation. Each technique has its relative merits and de-merits as summarized in
Table 2. The advantage with experimentation istherealismintheinput models, leading tofairly accurate resultswhich
may be obtained at a reasonable evaluation cost. On the other hand, the amount of statistics that we may obtain is
limited by the hardware, and instrumentation can become intrusive yielding inaccurate results. Further, the hardware
parameters are fixed making it difficult to study their impact on system scalability. Theoretical and analytical models
provide a convenient abstraction for capturing system scalability measures by simple mathematical functions making
it relatively easy to obtain a sufficient amount of statistics directly as a function of system parameters. But they
often make simplifying approximationsto the input models using static analysis, often yielding inaccurate results for
systems which exhibit dynamic behavior. Further, it isdifficult to quantify the numerical constants associated with the
functions in the mathematical formulae. Finaly, execution-driven simulation can faithfully capture al the details of
the dynamics of real parallel system executions, and the controlled execution capability can give all desirable statistics

accurately. The drawback with simulation is the resource (time and space) constraints encountered in simulating real
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paralel systems.

Experimentation

| Analytical/Theoretical Modeling |

Simulation

Statistics

Overdl execution time is the
only readily available statistic.
Additional statistics may be ob-
tained by hardware monitor-
ing and instrumentation. Hard-
ware monitoring relies on sup-
port from the underlying hard-
ware and instrumentation can
become intrusive.

Many underlying system pa
rameters are al so fixed.

Directly present statisticsfor the
system overheads that are mod-
eled as afunction of the system
parameters.

Drawback is that each system
overhead needs to be modeled
or ignored.

Can give a range of statistics
about the system as well as de-
tailed performance profiles for
different windows in applica-
tion execution.

Accuracy

Since red-world applications
areimplemented on actual hard-
ware, thereisno accuracy or re-
alism lost in the choice of input
models.

On the other hand, instrumen-
tation of the application code
to obtain detailed statistics can
perturb the accuracy of results.

Accuracy isoftenlost duetothe
simplifying assumptions made
in choosing the abstractions for
the application and the hard-
ware. Further, static anaysis
may not accurately model the
dynamic computation and com-
munication behavior of many
real applications.

Owing to the controlled ex-
ecution capability, simulation
can faithfully modd the details
of a real-world application on
the specified hardware platform
giving accurate results.

Cost/Effort

Cost of actual evaluationis rea-
sonablesincetheexecutionison
the native parallel hardware.
The cost in developing the ap-
plications would be incurred in
any case since the application
would ultimately need to beim-
plemented for the given hard-
ware.

Actua evaluationis cheap since
itinvolvescalculating relatively
simple mathematical functions.
But, a considerable cost may
be expended in developing the
models.

Simulationsof red paralle sys-
tems demand substantial re-
source usage in terms of time
and space.

There is aso a cost incurred
in developing simulation mod-
els, but thiscost isusually over-
shadowed by the cost of actual
simul ation.

Table 2: Comparison of Evaluation Techniques

Each technique has an important roleto play in the performance eval uation of parallel systems. Anidea evaluation

strategy would combine the three techniques, benefiting from 1) the realism and accuracy of experimentation in

evaluating large parallel systems, 2) the convenience and power of theoretical/analytical models in predicting the

performance and scalahility of the system as afunction of system parameters, and 3) the accuracy of detailed statistics

provided by execution-driven simulation, and avoid some of their drawbacks. Such a strategy isoutlined in Figure 2.

Experimentation can be used to implement real-world applications on actua machines, to understand their behavior

and to extract interesting kernels that occur in them. These kernels are fed to an execution-driven simulator which

faithfully models the dynamics of parallel system interactions. The statistics that are drawn from simulation may be

used to vaidate and refine existing theoretical/anaytica models, and to even develop new models. The simulation

numbers may also be used to calculate the constants associated with the functions in the models, and the combined

results from simulation and analytical models can be used to project the scalability of large scale paralel systemsas a

function of system parameters. The validated and refined models can help in abstracting detail sin the simul ation model
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to enhance the speed of simulation. The validity of such a simulation model can in turn be verified by comparing the
simulation results with those from an experimental evaluation on the actual hardware. Such a strategy that combines

al three techniaues avoids the shortcominas of the individual evaluation techniaues.

Applications

Results

Figure 2: Framework

8 Concluding Remarks

In this paper, we reviewed three frequently used techniques for evaluating parale system performance. We first
presented some of the metrics proposed in literature which a performance eval uation technique should provide. For
each technique, we described the methodology and the input models used. We compared the techniques based on
the statistics they can provide towards quantifying the desirable metrics, the accuracy of the evaluation results, and
the cost/effort expended in the evaluation. Each technique has its relative merits and de-merits. Incorporating the
merits of each technique, we outlined an evaluation strategy that uses all three techniqueswhile avoiding some of their

drawbacks. We also identified some of the toolsthat have been built for conducting eval uations using each technique.
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