Architectural Primitives for a Scalable Shared Memory

Multiprocessor

Joonwon Lee

*

Umakishore Ramachandran

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332 USA

Abstract

Since large memory latencies are not uncommon for
a large scale multiprocessor, researchers have investi-
gated memory models to relax memory access order-
ing. This paper presents a new memory model, and dis-
cusses implementation issues in a cache-based environ-
ment. These issues motivate a set of architectural prim-
itives with which software can implement desired mem-
ory consistency. For efficient cache management, we
propose a cache protocol that allows read-initiated ac-
tions for coherence maintenance. For efficient synchro-
nization, we present a cache-based locking scheme that
implements queued busy-waiting using cache lines. The
scalability of the proposed schemes is explored through
analytical modeling and simulation studies.

1 Introduction

Parallel programming based on the shared memory
paradigm is a natural progression from sequential pro-
gramming. Therefore, it is not surprising that shared
memory multiprocessors (such as the Sequent and the
BBN Butterfly) are popular for developing parallel ap-
plications. Message-passing multiprocessors (such as
the Intel Hypercube) are intrinsically more scalable than
shared memory multiprocessors primarily due to the po-
tential contention for shared memory in the latter [22].
Due to the popularity of programming with the shared
memory paradigm, this abstraction is being supported
even on message-passing architectures [16]. However,

*This work is supported in part by the NSF PYI Award MIP-
9058430

simulating shared memory on message-passing architec-
tures is inherently slower than true shared memory. The
main motivation for the research presented in this paper
is to understand the issues in realizing scalable shared
memory multiprocessors and suggest architectural fea-
tures that address these issues.

There are two main problems to be solved in realiz-
ing scalable shared memory multiprocessors: latency for
memory accesses, and network contention generated by
these memory accesses. Both these problems are related
to the model of memory provided by the architecture.
Traditionally, the model assumed by the programmer is
that the contents of the shared memory is identical at
all times from all the processors. Further, the model
assumes that the completion order of the memory ref-
erences from a single processor is strictly in program
order. Both these assumptions restrict the scalability
of shared memory multiprocessors. For example, the
second assumption prohibits out-of-order completion of
memory accesses which is important to enhance perfor-
mance, especially when the memory latency is high. In
parallel applications, it is not unusual to use synchro-
nization operations to ensure the consistency of shared
data. In such cases, a temporary inconsistency in the
views of the shared data as seen from different proces-
sors may be tolerable in certain ranges of the program,
e.g., inside a critical section and between barrier syn-
chronization points. This observation leads to weaker
consistency models [21, 1, 4] in which updates to shared
memory may be delayed until a synchronization point.
Using such weaker models of memory is one approach
to realizing scalable shared memory multiprocessors.

Another approach to addressing the issues of latency
and network contention is to associate private caches
with each processor. The effectiveness of this approach
depends on an efficient strategy for maintaining the co-
herence information as well as the choice of the coher-
ence protocol. Snooping cache protocols [2] with dis-
tributed directories for maintaining the consistency in-
formation have been popular in bus-based shared mem-
ory multiprocessors. These protocols exploit the fast
broadcast capability of the bus to efficiently implement

the coherence protocol. But it is well-known that a
bus is not a scalable interconnection network. Unfortu-
nately, more scalable interconnections such as a multi-
stage interconnection network do not usually have such
a fast broadcast capability. For this reason, coherence
protocols based on a central directory for maintaining
the consistency information are usually preferred for
scalable shared memory multiprocessors [5, 3].

The coherence protocols define the actions to be taken
when a cache line is modified. To maintain consistency
on writes to a cache line, the protocol may choose to
either invalidate or update copies of this line in other
caches. In bus-based systems, it is possible to make a
case for either choice depending on the memory refer-
ence pattern [2, 9]. In large-scale multiprocessors in-
validation is preferred to updates because of the high
network transit time [3, 4]. Both these strategies implic-
itly enforce consistency on writes to a shared location.
A dual to this strategy is to explicitly request consis-
tency on reads. In our view such a strategy would re-
duce the overhead of coherence maintenance especially
in large-scale multiprocessors by allowing the consis-
tency requirements to be customized by the software
(compiler) instead of blind enforcement.

For performance reason, a cache line usually consists
of several words and the cache protocol treats a line
as the unit of consistency maintenance. However, pro-
gram variables may vary in size from a bit to arbitrary
length. Since a cache line may contain several words,
unless explicit care is taken in writing the parallel pro-
gram or by the compiler [11], it is quite likely that the
same cache line may contain private variables of par-
allel threads executing on different processors. These
cache lines appear shared from the point of view of the
cache protocol leading to unnecessary invalidations or
updates. This phenomenon is referred to as false shar-
ing and limits the line size. From the performance point
of view it 1s important to reduce the effects of false shar-
ing especially for large-scale multiprocessors.

There are two types of memory accesses generated by
a parallel program: accesses to normal data, and ac-
cesses to synchronization variables. An analysis of the
memory reference pattern of parallel programs reveals
that the synchronization accesses cause much greater
network contention than accesses to normal shared data
[18]. A serious limitation to scalability is the fact that
the hardware does not distinguish between accesses to
synchronization variables and accesses to normal data.
Recognizing the importance of making this distinction
researchers have proposed hardware primitives for syn-
chronization [23, 8, 10, 13]. An important advantage of
making this distinction is that it provides a setting for
efficiently supporting the weak consistency model.

This paper presents a new memory consistency
model, and discusses implementation issues in a cache-
based environment with respect to this model. These

issues motivate a machine architecture that provides
primitives for addressing the scalability issues raised in
this section. The paper concludes with preliminary per-
formance implications of our machine architecture, and
directions for future research.

2 A New Consistency Model

In shared memory multiprocessors there is a need for
defining a consistency model that specifies the order
of execution of memory accesses from multiple proces-
sors. Such a consistency model would facilitate reason-
ing about the correctness of programs written for mul-
tiple processors. For simplicity, it is usually assumed
that the result of a write operation be immediately ob-
servable by other processors. With this assumption,
Lamport [12] has proposed sequential consistency as
the ordering constraint for the correct execution of a
multiprocess program: The multiprocessor execution of
the program should have the same effect as a sequen-
tial execution of any arbitrary interleaving of the oper-
ations of all the processes (that comprise the program).
The allowed interleavings are those that preserve the
program order of operations of each individual process.
With the sequential consistency model, read and write
operations are sufficient to implement synchronization
operations correctly. However, this model is inherently
inefficient since it imposes a strong ordering constraint
for all memory accesses regardless of the usage of shared
data. Further, each memory access has to wait until the
previous memory access is completed. Thus large scale
shared memory multiprocessors are expected to incur
long latencies for memory accesses if this ordering con-
straint is imposed, leading to poor performance.

In parallel program design, it is not unusual to use
synchronization operations to enforce a specific order-
ing of shared memory accesses. Based on this observa-
tion Dubois et al. [7] have proposed weak ordering that
relaxes the ordering constraint of sequential consistency
by distinguishing between accesses to synchronization
variables and ordinary data. Their model requires (a)
that synchronization variables be strongly consistent,
(b) that all global data accesses be globally notified be-
fore synchronization operations, and (c) that all global
data accesses subsequent to the synchronization oper-
ation be delayed until the operation is globally per-
formed. Thus this model requires strong consistency
of global data accesses with respect to synchronization
variables.

There are several types of synchronization operations:
barrier, lock and unlock, and semaphore P and V. While
synchronization variables need to be strongly consistent,
the consistency requirements for shared data preced-
ing or succeeding accesses to synchronization variables
may be different.For example, consider a critical section.

Write operations on shared data performed by a pro-
cessor prior to entering the critical section need not be
globally performed. It is enough if the write operations
inside the critical section are globally performed just
before exiting it. Therefore, inside the critical section
all reads and writes may be treated as entirely opera-
tions local to the processor. Similarly, write operations
performed after exiting the critical section need not wait
for the completion of the synchronization operation that
signals the exit.

This observation regarding the consistency require-
ments and the relative ordering requirements lead to
several extensions to the weak ordering model proposed
by Dubois et al [7]. Buffered consistency is the mem-
ory model used in this paper and is defined as follows.
There are two types of accesses: synchronization and
normal read/write. Synchronization accesses are fur-
ther subdivided into two classes: consistency preserv-
ing (CP-Synch), and non-consistency preserving (NP-
Synch). An NP-Synch operation does not wait for the
completion of writes to shared data preceding it. A
CP-Synch operation is allowed to be performed only
after all writes to shared data preceding it have been
globally performed. Writes to shared data issued after
a synchronization operation need not be delayed un-
til the synchronization operation is globally performed.
Other researchers [4, 1] have proposed weaker models
that allow relaxing the consistency requirements within
critical sections. Our model allows further weakening of
the consistency and ordering requirements even in other
synchronization scenarios.

Examples of synchronization operations that belong
to the NP-Synch class are: lock, and semaphore P; ex-
amples of CP-Synch class of operations include: unlock,
semaphore V, and barrier synchronization. Buffered
consistency differs from other consistency models in-
cluding weak ordering [21] and release consistency [4]
as follows: Consider an NP-Synch operation such as a
lock. An implementation of this operation in a cache-
based environment may require sending a request to a
global directory. An acknowledgment from this direc-
tory may signal the acquisition of the lock. However, the
global completion of this operation may entail updating
cache directories distributed in all the processors. Our
model allows the requesting processor to continue with
its local computation as soon as the acknowledgment is
received without waiting for the operation to be globally
performed. Similar arguments apply for CP-Synch op-
erations. In a large-scale shared memory multiprocessor
the weakening of the ordering constraint proposed in our
model may be crucial to reducing the waiting time for
synchronization operations to be globally performed.

3 Issues in Implementing
Buffered Consistency

Implementation of weak consistency models requires
that either the hardware or the software keep track of
updates to shared data so that these updates may be
propagated at appropriate points during the execution
of the program. To ensure that all the updates inside
a critical section be globally performed before the crit-
ical section is released, the hardware or the software
should be able to detect these pending operations. In
this paper we propose efficient hardware primitives for
implementing scalable shared memory multiprocessors.
The proposed hardware primitives are in the context of
a cache-based system implementing the buffered con-
sistency model. In order to implement this model the
processor-cache interface should provide the following
minimal capabilities:

o local reads and writes
e global writes
e wait until all global writes have been completed

With this interface the model is implemented as fol-
lows: Updates to shared data use global writes. Since
synchronization variables need to be strongly consis-
tent, the processor uses global writes for updating such
variables, and in addition may choose to wait for the
completion of such writes depending on the semantics
of the synchronization operation. Before performing a
CP-Synch operation, the processor waits until all global
writes to shared data have been completed.

The above simple interface places the entire burden of
implementing our model on the software. For example,
the software has to distinguish between shared and pri-
vate data, has to distinguish between synchronization
variables and normal read/write variables, and when to
wait for certain writes to be globally performed. From
the performance standpoint this burden on the software
may prove to be very inefficient.

The rest of this section identifies the issues that need
to be addressed by the machine architecture for effi-
ciently supporting this model.

1. There i1s a delay between the initiation of a global
write and its completion. This delay depends on
several factors including the number of nodes in
the multiprocessor, the size and type of the inter-
connection network, and the amount of memory
contention. Therefore, if there are successive global
writes generated by a processor, then it would have
to stall unnecessarily unless there is some kind of
buffering of the global writes. Such a buffer would
help smooth the traffic on the interconnection net-
work as well as allow the local computation to pro-

ceed independent of network latencies (see Section

4.2).

. In the model there is a necessity to keep track
of pending global writes so that a processor may
choose to wait on the completion of these writes.
Adve and Hill [1] suggest a counter to denote the
number of pending global operations. A proces-
sor may be stalled until the counter becomes zero
when it waits for the completion of global writes.
In a software approach [6], the definition and use
of shared data are tracked by the compiler, and
modified words in the cache are selectively written
back and purged depending on the usage pattern
of the program. However, this software approach
i1s not practical since shared data may be accessed
through pointers, and thus it is impossible to detect
all the updates statically. The number of pending
operations in the write buffer which we propose in
our machine architecture (see Section 4.2) implic-
itly implements the counter of Adve and Hill [1].

. The simple interface requires the software to spec-
ify each write as local or global. This requirement
can be eliminated if the cache distinguishes between
shared and private data. The cache would perform
the write locally if the data is private and glob-
ally if the data is shared. However, this scheme
forces all writes to shared objects to be global. In
reality, the software is the best judge as to when
a shared object has to be globally updated. Thus
in our proposed machine architecture (see Section
4.2) the cache does not distinguish between shared
and private data. The software is responsible for in-
structing the cache when writes to shared objects
have to be performed globally.

. As we mentioned in Section 1, there are two ap-
proaches to propagating the effect of a global write
in a cache-based system: invalidate, and update.
Both these schemes are coherence initiated by the
writer. Using the buffered consistency model, when
a writer updates some shared variables globally,
these values may be needed by some readers in the
future. If an invalidation approach is used, then
such readers would have to request these values
again. On the other hand, if an update approach is
used, the updates may be sent to readers who may
no longer be interested in these values.

In general, it has been observed that in strongly
consistent cache-based systems invalidations are
less frequent than updates for the same memory
reference pattern [2, 9]. In spite of this obser-
vation, the performance of write-update schemes
has been comparable to that of the invalidation
schemes in bus-based systems since invalidations

generate more overhead than updates!. However,
in large-scale multiprocessors employing more scal-
able interconnects, the network transit time is the
dominant cost. In such networks the increased
number of network transactions due to updates
would make these schemes much less attractive
than invalidation-based schemes [4, 3]. However,
invalidation cache schemes have their sources of in-
efficiency as illustrated in Section 4.1. This ob-
servation motivates our new reader-initiated coher-
ence protocol.

5. The buffered consistency model assumes that there

are two types of accesses: synchronization and
normal read/write. The simple interface places
the burden of making this distinction on the soft-
ware. Parallel programs invariably use some form
of synchronization for coordinating access to shared
data. Efficient synchronization is important to as-
sure good performance. In our machine architec-
ture (see Section 4.3), we propose synchronization
primitives that are merged with the coherence pro-
tocol.

6. A cache line usually consists of several words and

the cache protocol treats a line as the unit of con-
sistency maintenance. Treating a cache line as the
unit of consistency maintenance introduces a prob-
lem for the buffered consistency model: If two pro-
cessors update different words in the same cache
line and if the writes are delayed the word that is
written back to memory first is lost. In the absence
of any hardware support, the software is burdened
with having to allocate shared variables carefully to
avoid such situations. In the extreme, the software
may be forced to allocate one shared variable per
cache line, which is inefficient both from the point
of view of spatial locality as well as usage of cache
memory. In our machine architecture, we provide
a mechanism to relieve the software of this bur-
den. This mechanism also solves the problem of
false sharing encountered in multiprocessor cache
protocols.

The software is still responsible for the following:

o determining when to instruct the cache to perform
writes globally,

e determining when to stall the processor waiting for
global writes to be completed,

e distinguishing whether a synchronization operation
belongs to the CP-Synch or the NP-Synch class
and taking the appropriate actions, when software-
based synchronization is used,

1 An invalidation is usually accompanied by a line transfer.

memory

L

network
controller
cache
controller
write
buffer cache

Figure 1: Block diagram of a node

e determining how to exploit the reader-initiated co-
herence protocol, and the cache-based synchroniza-
tion primitives from the performance point of view.

4 A Machine Architecture

In this section, we propose a machine architecture
that can be utilized by the software for implementing
our buffered consistency model. Figure 1 shows the
conceptual block diagram of a node in the multipro-
cessor architecture. Each node is equipped with a cache
and a write-buffer. Each cache has a local directory
referred to as cache directory. An entry in this cache
directory contains the state of the associated cache line.
The main memory is shared and all the nodes in the
multiprocessor are connected to it via their respective
network controllers. The main memory maintains a cen-
tral directory for each line of the main memory. The
location of the main memory and the interconnection
network connecting the processors to the main mem-
ory are left intentionally unspecified since the machine
architecture to be described does not depend on these
details. For example, it is conceivable that the main
memory is partitioned and distributed among the nodes
in the multiprocessor, and the interconnection network
is a multi-stage one. Table 1 summarizes the hardware
primitives available to the processor. These primitives
may be grouped in the following categories: read/write,
buffer management, and synchronization. The next few
subsections describe the features of the components in
the node architecture.

4.1 Reader-Initiated Coherence

Figure 2, illustrates the structure of an entry in the
cache directory and the corresponding entry in the cen-
tral directory. To address the issues of false-sharing and
the shared variables allocation (see Section 3) every en-
try in the cache directory has dirty bits, dyds - - - d, for
each of the £ words in the cache line.

update |d;...dg lock prev next

a. An entry in the cache directory

queue-pointer

usage-bit

b. An entry in the central directory

Figure 2: Structure of directory entries

When a cache line is replaced, only the dirty words
are written back to memory. The update bit of cache di-
rectory entry and the queue-pointer field of the central
directory entry are used by the read-update primitive,
to be described shortly. The lock field is used for cache-
based synchronization which will be explained in the
next subsection. We chose to use a pointer-based di-
rectory structure since it is more scalable than either a
full-map or limited directory structures [24].

Read and write requests are deemed for private data,
and are treated as would a uniprocessor cache. Read-
global bypasses the local cache and retrieves the data
from the main memory?. The write-global request dif-
fers from the write request in that the operation is per-
formed globally. This primitive is similar to the post
primitive proposed by Cytron et al [6]. Read-update
request is similar to read except that it requests future
updates for this cache line. This is a dual to the write-
update schemes [25, 17] in that the updates are receiver
initiated as opposed to sender initiated. A read-update
request is serviced locally by the cache if the update
bit of the cache line is already set. Otherwise, this
bit is turned on and this request is forwarded to the
main memory. Processors that issued read-update re-
quests for the same memory block form a doubly-linked
list, and the queue-pointer field in the central direc-
tory contains the address of the head of the list. The
linked list is constructed using the next and prevfields of
each cache line corresponding to the requested memory
block. When the main memory is updated, the updated
block is transferred using this linked-list structure.

The update bit of a cache line is reset when the line
is replaced by the node, or by an explicit request, reset-
update for this line from the node. Subsequent writes to
this line would not result in updates being sent to this
node. The reset-update request will delete the request-
ing node from the linked list. Since the read-update re-
quest 1s considered to be mutually exclusive with a lock
request for the same memory block, those fields that
are used for constructing a linked list can be used for

2This primitive was motivated by discussions with Richard
Huff, Cornell University.

H Instruction ‘ Operations H
READ retrieve data without coherence maintenance
WRITE write data without coherence maintenance

READ-GLOBAL

read data from the main memory, bypassing local cache

WRITE-GLOBAL | write data globally

READ-UPDATE

retrieve data and request the main memory to send updated value

RESET-UPDATE

cancel the request for updated value

FLUSH-BUFFER

stall the processor until all the requests in the write-buffer are globally performed

READ-LOCK request a shared lock for a data
WRITE-LOCK request a exclusive lock for a data
UNLOCK release the lock
Table 1: Hardware primitives
operation read-update inv-1I inv-II
initial load [n/B]Cp [n/B]Cp nCp
write CW+(n_1)||CB %(CR—l—(n—l)HC[)—I—%(QCR—I-QCB) CR—|-(71—1)||C[

read -

p(In/B] = 1)Cp + 51 [n/B]Cp

(n—1)Cp

Table 2: Performance of cache coherence schemes for executing a linear equation solver.

lock operations (see Section 4.3). The usage bit in the
central directory indicates whether the linked list is for
read-update or lock operations. The cache-based lock
presented in Section 4.3 also uses the same linked-list
structure for processors waiting for a lock.

The read-update scheme differs from a write-update
scheme in several ways: In the latter, whenever a read
operation is performed it is remembered forever until
the line is replaced by the reader. So readers continue
to receive updates even if the line is not actively used.
In our scheme, readers have to explicitly specify that
updates are required using the read-update primitive.
Moreover, a smart compiler could selectively determine
regions in the program where updates may be needed.

Given these primitives, it would be instructive to an-
alyze their possible usage. We compare our scheme
against invalidation-based cache protocols for execut-
ing a linear equation solver. A linear equation can be
expressed as Ax = b where A is an n by n matrix and
z and b are n-element vectors. The algorithm to solve
this equation is as follows:

i—1 n

2T = (0 = Y = Y @) a

j=1 j=it1

In each iteration, z(*+1) is computed, and the com-
puted z value is used in the next iteration by all the
other processors. All the processors are synchronized
at the end of each iteration. For simplicity of analysis,
we assume dance-hall architecture with n processors.

Furthermore, the analysis is focused only on the global
operations of the x vector required in each iteration.
Table 2 shows the overhead in terms of network traf-
fic generated by each processor. B denotes the cache
line size, and C'g,Cw,Cr,andCr denote block trans-
fer, word transfer, invalidation, and transaction carry-
ing no data, respectively. To show the effect of false-
sharing, two cases for invalidation protocol are consid-
ered: one for colocating # vector elements (inv-I) | and
another for allocating each z element in separate cache
lines (inv-II). When some number of transactions (say
p) can be performed in parallel, they are denoted as
plltransaction type. The costs for initial loading are ob-
vious. With read-update feature, each write of an iter-
ation sends the updated word to the main memory, and
the main memory sends the memory block to n — 1 pro-
cessors that issued read-update request for that block.
For inv-1I, there are B writers to the same cache line.
The first writer invalidates all the other copies, and the
next B —1 writers retrieve the cache line from the previ-
ous writer. Though separate allocation of the = vector
(inv-IT) reduces the overhead for write operation, read
of the next iteration will incur more overhead than the
inv-I scheme. All the schemes perform comparably for
write operation. However, read operation of the next
iteration results in a significant advantage for the read-
update scheme because the invalidation-based schemes
have to re-load all the elements of the = vector.

4.2 Buffer Management

Implementation of the buffered consistency model is fa-
cilitated by the operation on the write-buffer, namely,
flush-buffer. As we mentioned earlier, the write-global
primitive requires that the operation be performed glob-
ally. However, to reduce the latency for global oper-
ations such requests are immediately buffered in the
write-buffer. Depending on the availability of the inter-
connection network these writes are performed globally
by the write-buffer without stalling the normal opera-
tion of the node. As and when an acknowledgment is
received from the main memory, the associated buffer
entry is deleted from the write-buffer. The flush-buffer
primitive stalls the processor until all the buffered writes
have been globally performed. This primitive allows the
processor to wait for the completion of global operations
which may be required by the program before executing
a CP-Synch operation.

The read-update primitive combined with the
buffered consistency model is a powerful feature. The
basic functionality of the read-update primitive is sim-
ilar to write-update primitive. However the fact that
readers can selectively request updates to selected lines
is expected to provide a significant performance advan-
tage in implementing several parallel algorithms. For
example, in parallel Fast Fourier Transform programs,
readers may need access to different regions of a shared
data structure during different phases of the computa-
tion. In implementing such algorithms, the program
may selectively reset the update bit for certain regions
of the shared data structure and request the regions
to be used in the current computation phase using the
read-update primitive.

4.3 Synchronization

Thus far we have proposed a buffered consistency model,
and an efficient cache scheme that implements this
model to address the two main problems of latency and
network contention in the design of large-scale shared
memory multiprocessors. An associated problem that
also limits the scalability are synchronization operations
that are quite heavily used in parallel program design.

For memory-based synchronization, the hardware
usually provides some form of an atomic read-modify-
write operation that allows higher level primitives to be
built. However, such low level primitives could be quite
inefficient in large-scale shared memory multiprocessors.
The inefficiency caused by synchronization is twofold:
wait times at synchronization points and the intrinsic
overhead of the synchronization operations. If a busy-
wait discipline is used, then the processors generate con-
siderable memory traffic on the busy-wait variable. To
reduce this traffic, a busy-wait on the cached copy of the
busy-wait variable has been proposed for multiproces-

sors with coherent private caches [20]. However, when
a mutual-exclusion lock is released, competition to ac-
quire the lock results in bursty traffic to the same mem-
ory location. This contention impedes the useful com-
putation that is being performed by the processor that
has acquired the mutual exclusion lock thus prolonging
the total execution time of the parallel program. In this
section, we propose a cache-based lock scheme (CBL),
that reduces the effects of lock contention. This scheme
is similar to the one that we proposed in in our earlier
work [13].

Exclusive and shared locks are common synchroniza-
tion abstractions used in parallel programs. This ab-
straction is quite general and can be used for implement-
ing other synchronization abstractions. In our design we
have chosen to support this abstraction. The synchro-
nization primitives provided by the cache are: read-lock,
write-lock, and unlock. Each lock is associated with a
cache line, and read-lock gives non-exclusive access to
the line, while write-lock gives exclusive access to the
line. When a lock request is granted the data associ-
ated with this lock is also transferred to the requester
thus merging the data transfer with the synchroniza-
tion request. Similar to the implementation proposed
in our earlier work [13], a distributed hardware queue is
constructed using participating cache lines.

Figure 3 shows the result of a sequence of lock re-
quests generated by nodes P1, P2, and P3 for a mem-
ory location #; Pl:read-lock,P2:read-lock, P3:write-lock.
Only the cache lines and the memory block that con-
tain the memory location ¢ are shown in the Figure.
The memory block is assumed to be of the same size
as the cache line. A doubly-linked list is constructed
using pointers of the participating cache lines and the
central directory as shown in Figure 3. The prev and
next pointers in each cache line denote the previous and
the next node in the lock request sequence, respectively.
The corresponding central directory entry has a pointer,
queue-pointer, which points to the last lock requester.

First P1 sends its read-lock request to the main mem-
ory. Assuming that the memory block is currently un-
locked, P1 is the only outstanding lock requester, and
thus the address of P1 is stored in the queue-pointer
field of the central directory entry. The memory block
is sent to P1. A cache line is selected to store this mem-
ory block, the lock field of the associated cache directory
entry is set to read-lock, and the prev and next point-
ers are set to nil. Receiving the read-lock request of
P2, the request is forwarded to the current tail (P1),
and the queue-pointer field of the central directory is
changed to P2. Since the lock types of P1 and P2 are
compatible, P1 allows P2 to share the lock. Now, the
next pointer of P1 is set to P2 and the prev pointer of
P2 is set to P1. Subsequently, when P3 makes a request
for an exclusive access to the same memory block, P2
notifies P3 to wait at the tail of the queue. Figure 3

address lock

queue-pointer

....... p3

data

tag status Prev next
p1 e i | p2 data
p2 e fgi?(pl p3 data
p3 L [Wack data
Cache Line

Memory Block

Figure 3: A waiting queue: doubly linked list

shows the final state after all these lock requests have
been processed by the central directory?®.

Upon an unlock request, the cache releases the lock to
the next waiting processor (if any), and writes the cache
line to the main memory (if necessary). When a write-
lock is released there could be more than one processor
waiting for a read-lock. The lock release notification
goes down the linked list until it meets a write-lock re-
quester (or end of the list), and thus, allows granting of
multiple read-locks. When a processor unlocks a read-
lock and the processor is not the sole lock owner, the
list is fixed up similar to deleting a node from a doubly-
linked list. Note that the unlocking processor is allowed
to continue its computation immediately, and does not
have to wait for the unlock operation to be performed
globally.

Replacing a cache line that is part of a linked-list
may result in breaking the list. The most simple and
straightforward solution is to disallow replacement of
such cache lines. This solution would require the cache
to be fully associatively mapped. Since such a map-
ping increases the hardware cost and introduces longer
delays, this solution is unacceptable. Since a processor
holds (or waits for) only a small number of locks at a
time, a small separate fully-associative cache for lock
variables would be an efficient method to eliminate this
restriction. Limited size of the lock cache can be con-
sidered as a typical resource management problem, and
should be handled as such. The lock cache is a “hard-
ware resource” that can be judiciously used by the sys-
tem software. Mapping of software locks to hardware
locks is a compile time decision that can be made con-
servatively to ensure that there never will be the case
that a hardware lock request cannot be satisfied.

With respect to the buffered consistency model, read-
lock and write-lock are NP-Synch class of operations,
while unlock is a CP-Synch class of operation. It is ap-
propriate to mention a few usage notes for these prim-

3There are several subtle details that are intentionally elided
due to space constraints. Detailed algorithms for maintaining the
queue can be found in [14)]

itives. When the size of the data structure to be gov-
erned by a lock fits within a memory block, acquiring
the lock brings the associated data structure to the re-
questing processor. If the data structure spans several
memory blocks, it is the responsibility of the compiler
to associate locks and regulate accesses to the shared
data structure. The compiler is also responsible to en-
sure that multiple lock variables are not allocated to
the same memory block. The scheme does not prevent
colocating normal read/write data with a lock variable
in the same memory block.

5 Performance Implications

Given the issues raised in Section 3, and the architec-
tural features presented in Section 4 there is an inter-
play of hardware and software that makes the perfor-
mance evaluation task quite arduous. In this section,
we take a first cut at this task. Our preliminary study
has two parts: The first part deals with evaluating the
advantage of providing synchronization operations in
hardware as opposed to simulating them in software.
This evaluation is done by both analytical means as
well as simulation. Analytical expressions for the cost
in terms of time and network messages are developed
for implementing standard synchronization scenarios us-
ing our primitives and a write-invalidation (WBI) ap-
proach. The second part deals with evaluating the per-
formance advantage of buffered consistency as opposed
to sequential consistency for processing a memory refer-
ence stream. This evaluation is done using simulation.
Simulation of a large-scale system at the level of detail
needed to evaluate the proposed primitives is a complex
task worthy of exposition in its own right. Moreover,
such large simulations take considerable computation
time.

5.1 Analytical Results

The overhead in executing various synchronization

‘ synchronization WBI CBL
‘ operation messages ‘ time messages ‘ time
nles + 100ty + ntes + (277, + 1)tnw+
parallel lock 6n2 + 4n n(n+1)/2tn+ 6n — 3 (n+Ditp+tm
Sn(bn—1)/2tp
serial lock 8 8tnw +0tp +tm + tes 3 3tpw +1p +1es
barrier request 18 18t,, + 12tp 2 2(tnw +tm)
barrier notify 5n — 3 Atpw + (2n— 1)tp n 2pw + (n— D)tp

Table 3: Cost for executing synchronization scenarios with different cache schemes. Costs for serial lock and barrier

request are for one processor.

scenarios are presented in Table 3: n is the number
of processors, t,,,, is the network transit time, ¢.; is the
time inside the critical section, tp is the time to check
the central directory or the cache directory, and %,, is
the time for reading a memory block from the main
memory. Parallel lock is the case when n processors re-
quest the same lock simultaneously. Serial lock is the
other extreme case when all the lock requests occur se-
rially. Barrier request is an operation executed by each
processor participating in the barrier synchronization
while barrier notify is an operation executed by the last
processor to arrive at the barrier. Note that for a large
amount of lock contention (parallel lock) the time and
message complexity of our scheme is O(n) while it is
O(n?) for the WBI scheme. Detailed derivation of these
cost functions can be found in [15].

5.2 Simulation Results

A new workload model (work-queue model), is used
in our simulation studies. This model represents a dy-
namic scheduling paradigm believed to be the kernel of
several parallel programs [19]. The basic granularity is
a task. A large problem is divided into atomic tasks,
and dependencies between tasks are checked. Tasks are
inserted into a work queue of executable tasks honoring
such dependencies, thus making the work queue non-
FIFO in nature. Each processor takes a task from the
queue and processes it. If a new task is generated as

Parameters

‘ value ‘

ratio of shared accesses 0.03,0.5*

number of shared blocks | 32

cache hit-ratio 0.95

read ratio 0.85

main memory cycle time | 4 cache cycles
block size 4 words
cache size 1024 blocks
lock ratio 50%

* 0.03: task execution, 0.5: queue access

Table 4: Summary of parameters used in simulation

a result of the processing, it is inserted into the queue.
All the processors execute the same code until the task
queue is empty or a predefined finishing condition is
met. If there is a need to synchronize all the processors
at some point, then a barrier operation is used. In the
simulation, the memory modules are distributed among
the nodes in the multiprocessor, and the nodes are in-
terconnected via a multistage Q network with two-way
switches. It is assumed that each switching element in
the network has infinite buffer capacity. The size of the
write buffer is also assumed to be infinite.

To simulate the memory reference pattern of each pro-
cessor during task execution, a probabilistic model (sync
model) similar to the one developed by Archibald and
Baer [2] is incorporated into our model. Additional fea-
tures in our model are synchronization primitives, differ-
entiation of synchronization variables from other vari-
ables, and different evaluation metrics. The values of
the parameters used in the simulation are summarized
in Table 4. Another important parameter is the grain
size of parallelism. The grain size is decided by the num-
ber of data memory references during the execution of a
task. The performance metric used is completion time
measured in machine cycles. Though processor utiliza-
tion is measured in [2], synchronization activities may
keep the processor busy without performing any useful
computation.

The Figures 4 - 7 present simulation results for two
different workload models. The lines with the prefix Q
denote the results for the work-queue workload model,
and the other lines denote the results for the sync work-
load model. Figures 4 and 5 show the completion time of
the WBI scheme and the CBL scheme. WBI denotes the
write back invalidation cache scheme. The performance
of the WBI scheme with the exponential backoff for ac-
quiring mutual exclusion is also presented (Q-backoff).
These tests do not employ buffered consistency. Fig-
ure 4 shows that the WBI scheme does not scale well for
the work-queue workload model above 16 nodes when
the granularity of parallelism is medium-sized. Back-
off method eliminates the severe performance loss but
it also fails to scale to a large number of processors.
The CBL scheme performs comparably with the WBI

scheme for the sync workload model (two lines at the
bottom). However, for the work-queue workload model,
the CBL scheme shows much better performance for a
large number of processors. Increasing the task gran-
ularity reduces the proportion of time spent in syn-
chronization activity compared to the total computa-
tion time. For coarse granularity of parallelism (Fig-
ure 5), the WBI scheme shows improved scalability for
the work-queue model but its performance degrades as
the size of the system increases to more than 32 nodes.
These two figures illustrate the effectiveness of imple-
menting synchronization in hardware.

The performance gain due to the buffered consistency
model depends on the usage of CP-Synch operations and
global writes. In the simulation model, leaving a critical
section and barrier synchronization are treated as CP-
Synch operations; and writes to shared data are treated
as global writes. Further, it is assumed that an unlock
operation that follows a lock operation performs any
write to the shared data secured by the lock operation
globally before relinquishing the lock. The test per-
formed here is a comparison of CBL with buffered con-
sistency (BC-CBL) against CBL with sequential con-
sistency (SC-CBL). The reason why only CBL is con-
sidered for the test is because the intent is to measure
the performance potential of buffered consistency with
respect to sequential consistency, without interference
from specific cache coherence strategy. Figures 6 and 7
show the completion times of CBL with the two mem-
ory models for the work-queue workload. These results
indicate that buffered consistency improves the perfor-
mance for most tested cases, but the improvement is
not very impressive. This can be explained by the fact
that buffered consistency reduces memory latency for
global writes which happen only with a probability of
sh x write_ratio, i.e., 0.0045 in the tested workload.

6 Concluding Remarks

There are two visible trends in the evolution of mul-
tiprocessor architectures, namely, message-passing and
shared memory. While the former is intrinsically more
scalable than the latter, the latter fits the programming
paradigm that is currently popular for developing large
parallel applications. In this paper we have shed some
light on the issues that affect the scalability of shared
memory multiprocessors and have suggested architec-
tural solutions that address these issues. The two main
issues are latency for memory accesses and the network
contention stemming from these accesses. Private co-
herent caches alleviate these problems, and their design
is well-understood in small shared memory multiproces-
sor systems (up to about 16 processors). However, the
memory model assumed by these designs and the pro-
tocols themselves limit their applicability to large-scale

shared memory multiprocessors. Further, such proto-
cols introduce additional problems such as false sharing
that hamper the performance potential of such archi-
tectures. A new memory model, buffered consistency,
was developed in this paper that allows the processor
to continue with its local computation without stalling
for the completion of global updates. We also iden-
tified the hardware support needed for implementing
buffered consistency. An important benefit of support-
ing the buffered consistency model is that false sharing is
also eliminated. A new cache protocol based on reader-
initiated coherence was proposed. We also extended
our earlier work of providing synchronization support
in hardware to large-scale shared memory multiproces-
sors. We feel that the machine architecture we have
proposed in this paper has the right blend of features
for scaling to large numbers of processors.

In general, evaluation of architectural features is an
arduous task. Especially, in our architecture we have
identified a division of responsibility between the hard-
ware and the software. This division coupled with the
choice of primitives leads to a complex interplay making
performance evaluation that much more difficult. We
have made some initial attempts at performance evalu-
ation through analytical means and simulation and have
presented the results. There are several directions for
extending our work. Evaluating the performance advan-
tages of eliminating false sharing, and reader-initiated
coherence are important and are being currently pur-
sued. Trace-driven simulation is another alternative to
probabilistic simulation and is also being investigated.
Our architecture provides a range of primitives for use
by the compiler. Investigating compilation techniques,
and/or programming language extensions that exploit
these primitives are also part of our future research.

References

[1] S. V. Adve and M. D. Hill. Weak ordering - a new
definition. In Proceedings of the 17th Annual In-
ternational Sympostum on Computer Architecture,
pages 2-11, May 1990.

[2] J. Archibald and J. Baer. Cache coherence pro-
tocols: evaluation using a multiprocessor model.

ACM Transactions on Computer Systems, pages
278-298, Nov. 1986.

[3] D. Chaiken, C. Fields, K. Kurihara, and A. Agar-
wal. Directory-based cache coherence in large-scale
multiprocessors. [EEE Computer, pages 49-58,
June 1990.

[4] K. Charachorloo, D. Lenoski, J. Laudon, and
A. Gupta. Memory consistency and event ordering

[13]

in scalable shared-memory multiprocessors. Tech-
nical Report CSL-TR-89-405, Stanford University,
Computer Systems Laboratory, Nov. 1989.

D. A. Cheriton, H. A. Goosen, and P. D. Boyle.
Multi-level shared caching techniques for scalabil-
ity in VMP-MC. In Proceedings of the 16th An-
nual International Symposium on Computer Archi-
tecture, pages 16-24, June 1989.

R. Cytron, S. Marlovsky, and K. P. McAuliffe. Au-
tomatic management of programmable caches. In
Proceedings of the 1988 International Conference
on Parallel Processing, pages 229-238, 1988.

M. Dubois, C. Scheurich, and F. Briggs. Memory
access buffering in multiprocessors. In Proceedings
of the 13th Annual International Sympostum on
Computer Architecture, pages 434-442, June 1986.

J. Edler, A. Gottlieb, Cl. P. Kruskal, K. P.
McAuliffe, L. Rudolph, M. Snir, P. J. Telen, and
J. Wilson. Issues related to MIMD shared-memory
computers : the NYU Ultracomputer approach. In
Proceedings of the 12th Annual International Sym-
postum on Computer Architecture, pages 126-135,
June 1985.

S. J. Eggers and R. H. Katz. A characterization
of sharing in parallel programs and its application
to coherency protocol evaluation. In Proceedings of
the 15th Annual International Symposium on Com-
puter Architecture, pages 373-382, June 1988.

J. R. Goodman, M. K. Vernon, and P. J. Woest.
Efficient synchronization primitives for large-scale
cache-coherent multiprocessor. Technical Report
TR-814, Univ. of Wisconsin at Madison, Jan. 1989.

Mark D. Hill and James R. Larus. Cache consider-
ation for multiprocessor programmers. Communi-
cation of ACM, 33(8):97-102, August 1990.

L. Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess pro-
grams. [FEE Transactions on Computers, C-
28(9):690-691, September 1979.

J. Lee and U. Ramachandran. Synchronization
with multiprocessor caches. In Proceedings of the
17th Annual International Symposium on Com-
puter Architecture, pages 27-37, May 1990.

Joonwon Lee. Architectural Features for Scalable
Shared Memory Multiprocessors. PhD thesis, Col-
lege of Computing, Georgia Institute of Technol-
ogy, 1991.

[15]

[17]

[18]

[21]

[22]

[23]

Joonwon Lee and Umakishore Ramachandran. Ar-
chitectural primitives for a scalable shared memory
multiprocessor. Technical Report GIT-CC-91/10,
College of Computing, Georgia Institute of Tech-
nology, 1991.

K. Li and R. Schaefer. Shiva: An operation system
transforming a hypercube into a shared-memory
machine. Technical Report 217-89, Computer Sci-
ence Dept., Princeton University, 1989.

E. McCreight. The Dragon Computer System: An
early overview. Xerox Corp., Sept. 1984.

G. F. Pfister and V. A. Norton. Hotspot contention
and combining in multistage interconnection net-
work. IEEFE Transactions on Computers, C-34(10),
Oct. 1985.

C. D. Polychronopoulos. Parallel Programming and
Compilers, pages 113-158. Kluwer Academic Pub-
lishers, 1988.

L. Rudolph and A. Segall. Dynamic decentralized
cache schemes for MIMD parallel processors. In
Proceedings of the 11th Annual International Sym-
postum on Computer Architecture, pages 340-347,
June 1984.

C. Scheurich and M. Dubois. Correct memory op-
eration of cache-based multiprocessors. In Proceed-
mngs of the 14th Annual International Symposium
on Computer Architecture, pages 234-243, June.
1987.

Charles L. Seitz.
January 1985.

The cosmic cube.

CACM, 28,

G. S. Sohi, J. E. Smith, and J. R. Goodman. Re-
stricted fetch-and-¢ operations for parallel process-
ing. In International Conference on Supercomput-
ing, June 1989. Crete, Greece.

A survey of cache coherence
IEEE Computer,

Per Stenstrom.
schemes for multiprocessors.

23(6):12-25, June 1990.

C. P. Thacker and L. C. Stewart. Firefly: A multi-
processor workstation. In Proceedings of the Second
International Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 164-172, Oct. 1987.

Josep Torrellas and John Hennessy. Estimating the
performance advantages of relaxing consistency in
a shared memory multiprocessor. In Proceedings
of the 1990 International Conference on Parallel
Processing, pages 1:26-33, 1990.

grain size = 250

1.4M+

1.2M+

1M

800k~

600k

400k

OB~ SBOo—co0o—gB00

200k~

Q-WBI <
Q-BACKOFF + /
QCBL &—
WBI <— /
CBL i%—%g

Figure 4: Performance of cache schemes with medium-

8 16 32 64 128

number of processors

granularity parallelism

grain size = 500

1.4M— +

1M~

800k~

600k

400k

OB~er BO= 0 —'gHOO0

200k~

DIVRLEA

k QWBI &/
. Q-BACKOFF +— /
Q-CBL & /

Figure 5: Performance of cache schemes with coarse-

number of processors

granularity parallelism

grain size = 50

400k |
C

(¢]

m]
300k

1

€

t

i 200k
(e]

n

¢

5 100k

€

SC-CBL <©—
BC-CBL —+—

T
16

T T
32 64

number of nodes

128

Figure 6: Performance implication of the buffered con-
sistency model for fine-granularity parallelism

grain size = 350

800k

C
(¢]
m
1 600k
€
t
i
) 400k~
n
t
i
m 200k-
€

SC-CBL <©—
BC-CBL —+—

T
16

T T
32 64

number of nodes

128

Figure 7: Performance implication of the buffered con-
sistency model for medium-granularity parallelism

