21st ICPP, Vol. I, pp. 228-31, Aug. 17-21, 1992

A DISTRIBUTED HARDWARE BARRIER IN AN OPTICAL
BUS-BASED DISTRIBUTED SHARED MEMORY
MULTIPROCESSOR*

Martin H. Davis, Jr. and Umakishore Ramachandran
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280

davism@cc.gatech.edu and rama@cc.gatech.edu

Abstract

After defining our distributed shared memory
multiprocessor architecture which uses an optically
based interconnection network, we give a pure hard-
ware optical barrier synchronization mechanism. Be-
cause of the current state of optical technology, we
introduce a more realistic optical barrier mecha-
nism, called the Distributed Shared Hardware Bar-
rier (DSHB), which is a combination of software and
hardware (electronic and optical). We give a brief
analysis of the cost of the DSHB scheme and show
how this scheme combines the flexibility of software
barrier techniques with the efficiency of hardware bar-
rier techniques.

Introduction

A necessary aspect of parallel programming
is synchronization, the coordination of parallel pro-
cesses and their activities. A frequently used synchro-
nization construct is the barrier, first proposed by
Jordan [10]. A barrier is a rendezvous point for some
set of processes. The barrier operation comprises two
parts, the arrival and notification phases. The arrival
phase consists of the processes making their presence
known at the barrier. When all the processes arrive
at the barrier, then barrier completion has occurred.
The notification phase entails the processes recogniz-
ing that barrier completion has happened and that
they may proceed past the barrier.

Various software and hardware techniques have
been proposed to implement barriers. Software tech-
niques include the original centralized counter [10]
and multiple counters (or flags) with various com-
bining patterns [1, 7, 11, 14]. Hardware techniques
include the original wired-AND gate [10], a tree of AND
gates [12], combining trees embedded in the inter-
connection network switching hardware [4, 9], a bit-
addressable register [13], wired-NOR synchronization

*This work has been funded in part by NSF PYI
Award MIP-9058430. A more detailed version is
available as a Technical Report [3].

lines [8], and a tree of AND gates augmented with
“clearing” latches [5].

Because the barrier can conveniently implement
various styles of parallel programming (e.g., the fork-
join construct or DOALL loop parallelism [13]), it is im-
perative, as with all synchronization primitives, that
the barrier mechanism be both flexible and efficient.
Software techniques, though flexible, suffer from be-
ing inefficient. Hardware techniques, though efficient,
are inflexible in implementing distinct barriers to be
used simultaneously by several disjoint sets of pro-
cessors and in allowing processes coexisting on the
same processor to reach the same barrier. Hardware
barriers, because of underlying electrical and physical
properties, cannot be made arbitrarily large.

We propose a new Distributed Shared Hardware
Barrier (DSHB) mechanism to be used in an opti-
cal broadcast ring based distributed shared memory
multiprocessor. The DSHB combines the flexibility
of software barriers with the efficiency of hardware
barriers.

Optical barrier solutions

The architectural environment

The two traditional types of Multiple Instruc-
tion Multiple Data (MIMD) multiprocessor archi-
tectures have been distributed memory and shared
memory machines. The Distributed Shared Memory
(DSM) architecture combines the scalability of dis-
tributed memory with the flexibility of a global shared
memory. The system’s global memory is partitioned
among the computing nodes, as in a distributed mem-
ory architecture. A computing node has direct, lo-
cal access to its piece of memory, called the Nearest
Shared Memory (NeSM) and has remote access, via
the system’s interconnection network, to all the other
portions of the memory, the Remote Shared Memory
(ReSM) modules. Thus, each computing node in a
DSM system sees a global, shared memory albeit a
node may access one portion (its NeSM) more easily
and quickly than the other parts (ReSM). A comput-
ing node accesses either its NeSM or the ReSM via



21st ICPP, Vol. I, pp. 228-31, Aug. 17-21, 1992

a cache to reduce the latency of memory references.
The cache is connected to the NeSM via a standard
electrical bus and is connected to the ReSM via an in-
terconnection network. In our DSM architecture the
interconnection network is implemented optically.

Because the bus topology is familiar and useful
and because optical fiber transmission systems are
commonplace, our research has been concerned with
designing a DSM multiprocessor employing an optical
“bus” topology, which we call the Optical Broadcast
Ring (OBR). An important characteristic of the OBR
is that messages propagate unidirectionally and that
it is a broadcast medium (more details may be found
in [2]).

Another important property of the OBR is its
tremendous transmission capacity (on the order of
Terahertz). One way to exploit this capacity is to
split the large bandwidth into multiple (relatively)
lower-speed channels. Each channel, which acts as an
independent logical OBR, is assigned a unique wave-
length. Since independent transmission wavelengths
may coexist without interference on the same physical
optical waveguide, our architecture allows multiple,
independent OBRs.

Independent OBRs gives rise to an architectural
design principle that we call the separation of func-
tions. 'This design principle says that we may as-
sign different kinds of interconnection network traffic
(e.g., reads/writes, synchronization, cache coherency)
to independent paths, which are OBRs in our re-
search. Since barrier synchronization is a separate
function and needs to be fast, we believe barrier traf-
fic should be assigned to its own OBR.

Pure hardware optical barrier

One OBR channel (one wavelength on the phys-
ical waveguide) is dedicated for each barrier. The bar-
rier is initialized by each participating process putting
out a continuous optical signal on the channel. When
a process reaches the barrier, it discontinues its opti-
cal signal. When all processes have reached the bar-
rier, the channel becomes dark. This method is an
optical OR representation of the barrier. The opti-
cal OR representation is better than the optical AND
representation since the latter requires determining
the precise optical signal level which represents reach-
ing the barrier. Determining the precise optical sig-
nal level is not trivial. The optical OR representation
only requires being able to detect a dark channel vs.
a channel with any optical signal on it.

One potential problem with the optical OR bar-
rier is the time for initialization and reuse. Initial-
ization requires that each participating process see
some raised signal level on the OBR before dropping
its own signal to signify reaching the barrier. Reuse
of the same physical barrier channel requires allowing
enough time for the participating processes to recog-

structure Barrier_type {

integer Initializer,
A_counter,
B_counter;

enum Flag {A,B}

Figure 1: The data structure for a barrier.

nize barrier completion. A more serious problem for
pure hardware optical barriers is the limited num-
ber of channels available. Each channel requires a
transmitter and receiver connection for each proces-
sor (or fast tunable transmitter and receiver). Cur-
rent off-the-shelf optical technology limits the number
of these channels to approximately a dozen. There-
fore, it is not currently feasible to use pure hardware
optical barriers since the dozen or so OBRs available
must be used for purposes other than just barriers.

The Distributed Shared Hardware Barrier

Only one OBR channel, the Barrier Channel, is
used for the DSHB, no matter how many logical bar-
riers are used in the program. The Barrier Channel
carries all the traffic related to all the barriers. Bar-
riers are differentiated by their software representa-
tion, which is an extension of the traditional counter
technique. However, instead of there being just one
central data structure representing a given barrier,
the data structure is replicated by every participat-
ing process as a private variable. When the barrier
is initialized, every copy of the barrier is initialized
to the number of processes participating in the bar-
rier. When a process reaches the barrier, it broad-
casts an arrival message to all the other processes
stating it has reached that barrier. As a process re-
ceives these messages, it updates its private copy of
the barrier. Thus, each process independently and
asynchronously recognizes barrier completion. Pro-
cesses may immediately continue past the barrier af-
ter recognizing barrier completion regardless of when
other processes recognize that fact.

With the data structure shown in Figure 1, the
barrier is immediately reusable. Let the barrier be
implemented by two counters, designated as the A
and B counters, a flag specifying which counter cur-
rently represents the barrier, and an initializer. When
the barrier is initialized, the initializer is set to the
number of participating processes, the flag points to
counter A, and both counters A and B are set to
zero. When a process reaches the barrier, since its
flag points to counter A, it broadcasts a message to
the other processes instructing them to increment the
counter A. When a process recognizes barrier com-



21st ICPP, Vol. I, pp. 228-31, Aug. 17-21, 1992

Optical Barrier Channel

Outgoing gcoming Barri
Barrier arrier arrier
Processor Table
Queue (1BP)
CPU Cache NeSM

Figure 2: The hardware per node for a barrier.

pletion (counter A’s value being equal to the initial-
izer’s value in its private copy), it resets its counter A
to zero, then changes its flag to point to the other
counter B. Since each process has a private copy
of the barrier and asynchronously recognizes barrier
completion, barrier notification is implicit. Further,
depending on the relative speed of processes, barrier
reuse may result in a potential race condition wherein
a process starts receiving messages to increment the
alternate counter B before it has changed its copy of
the flag. This race condition is why a process resets its
current counter after recognizing barrier completion
and before switching the flag to the other counter.
Once the process reaches the barrier again, it knows
(because of the flag’s value) to broadcast a message
instructing the other processes to increment counter
B. As the barrier is repeatedly used, counters A and
B are alternately used, with flag pointing to the cur-
rent instantiation of the barrier. If 4-byte integers
are used in the data structure (allowing over 4 bil-
lion processes to rendezvous), it will fit in a typical
16-byte cache line.

Replicating the barrier as a private variable in
each process is not the same as having a central
shared variable cached at each processor and main-
tained in a coherent state by the hardware’s cache
coherency mechanism. Having a central shared vari-
able, even if cached at each processor, still requires
that processes must wait to be notified that the bar-
rier has been reached since the cache coherency mech-
anism is a form of notification.

As shown in Figure 2, the barrier processing
hardware is very simple. When a process reaches the
barrier, it places a message in the Outgoing Barrier
Queue specifying the barrier and the specific counter
(A or B) to be incremented. The process either busy
waits for barrier completion or is blocked if multitask-
ing is allowed. The Outgoing Barrier Queue places
its message on the optical Barrier Channel. Mean-
while, a separate Incoming Barrier Processor (IBP)
receives messages on the Barrier Channel from other

processes. The IBP places incoming messages into
a queue of messages and processes one message at
a time. It uses the contents of each message and the
information in the Barrier Table to determine the vir-
tual address of the appropriate counter to be incre-
mented. If the IBP cannot find the barrier specified
by a message in the Barrier Table, it discards the
message since the implication is that no process lo-
cated on that processor is participating in that bar-
rier. The Barrier Table is structured such that pro-
cesses using the same barrier can be located on the
same processor. Therefore, the Barrier Table is ini-
tialized and managed by the operating system when
the barrier is first requested. The IBP goes through
the cache to reference the appropriate barrier’s data
structure. Since the IBP’s only arithmetic function
is to increment an integer, its logic can be optimized
for this operation. Barrier completion is recognized
by comparing the current counter’s value against the
initializer’s value.

Since we have implicitly assumed that the Bar-
rier Table is located in the NeSM of the processor, an
optimization is to locate the Barrier Table in a small,
separate, fast memory, possibly associative in nature.
This optimization would allow the fast determination
of the virtual address of the barrier data structure.

Gupta [6] has proposed a “fuzzy” barrier in
which the barrier is a region of statements. The
fuzzy barrier allows a process to perform useful work
while waiting for other processes to reach the barrier.
The DSHB technique can efficiently implement the
fuzzy barrier semantics by defining the hit-barrier
and wait-barrier operations. When a process has
“reached” the barrier, it issues the hit-barrier op-
eration, which translates into a message that the
given barrier has been reached being placed into the
Outgoing Barrier Queue. After the hit-barrier
statement is performed, then if the process has in-
structions that do not depend upon barrier comple-
tion even though it has reached the barrier, those in-
structions are executed. When that supply of instruc-
tions is exhausted, the process waits for barrier com-
pletion by issuing the wait-barrier operation, which
translates to the process waiting until the counter’s
value equals the initializer’s value.

Discussion

In analyzing the DSHB scheme, we consider the
cost spent in the two different parts of the barrier
operation defined earlier, the arrival phase and the
notification phase. The arrival phase cost has two
parts, the number of messages sent and the time spent
counting processes arriving. There are two arrival
scenarios: simultaneous and non-simultaneous. Si-
multaneous arrival is defined as all processes arriving
at the barrier at the same time. Non-simultaneous
arrival is defined as N — 1 processes arriving simulta-



21st ICPP, Vol. I, pp. 228-31, Aug. 17-21, 1992

neously, then the last process arriving sometime later.
The cost of the notification phase is how many mes-
sages are sent out.

The DSHB technique generates N messages in
the arrival phase. Since the Barrier Channel is a
broadcast medium, all processes hear the N messages.
In the simultaneous arrival case, the N messages must
be processed serially; hence, each process takes N
steps to update its copy of the counter. Since the
processes are running in parallel, it takes N steps for
all the processes to update their copies of the coun-
ters. In the non-simultaneous arrival case, assuming
the previous N — 1 messages have been acted upon,
it takes 1 step for each process to act upon the last
message (and 1 step overall for all the processes to
act upon the last message). The notification phase
generates no messages (and thus no network traffic)
since each process independently determines barrier
completion from its private, local copy of the barrier.
Once the IBP begins processing arrival messages, it is
likely that the barrier will stay in the cache through
barrier completion. Hence, checking for barrier com-
pletion will be fast.

We believe the simultaneous arrival case is not
very probable since it does not seem realistic to expect
processes to finish their tasks simultaneously, particu-
larly when the hit-barrier and wait-barrier com-
mands are used. The unidirectionality of message
propagation also makes the non-simultaneous arrival
case more likely because processes located at different
processors will receive barrier arrival messages at dif-
ferent times. Since the DSHB mechanism generates
no messages in the notification phase, it is particu-
larly advantageous for the non-simultaneous arrival
case.

Since the DSHB scheme uses a software data
structure located in standard memory, rather than
a hardware resource such as an AND gate or bit-
addressable register, it can support an arbitrary num-
ber of barriers. Since we provide dedicated hardware
support for the transmission of barrier arrival mes-
sages and their processing, we overcome the speed
limitation of pure software methods.

References

[1] E. D. Brooks III. The butterfly barrier. In-
ternational Journal of Parallel Programming,
15(4):295-307, 1986.

[2] M. H. Davis, Jr. and U. Ramachandran. Opti-
cal bus protocol for a distributed shared mem-
ory multiprocessor. In Optical Enhancements to
Computing Technology, July 1991. SPIE Volume
1563.

[3] M. H. Davis, Jr. and U. Ramachandran. A
distributed hardware barrier in an optical bus-
based distributed shared memory multiproces-

[4]

[5]

[6]

[7]

(8]

[12]

[13]

sor. Technical Report GIT-CC-92/18, College
of Computing, Georgia Institute of Technology,
1992.

E. Freudenthal and A. Gottlieb. Process coo-
ordination with fetch-and-increment. In Fourth
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems, pages 260-8, Apr. 1991.

K. Ghose and D.-C. Cheng. Efficient synchro-
nization schemes for large-scale shared-memory
multiprocessors. In 1991 International Confer-
ence on Parallel Processing, volume I, pages I-

153-60, 1991.

R. Gupta and M. Epstein. High speed syn-
chronization of processors using fuzzy barriers.
International Journal of Parallel Programming,

19(1):53-73, 1990.

R. Gupta and C. R. Hill. A scalable implementa-
tion of barrier synchronization using an adaptive
combining tree. International Journal of Parallel
Programming, 18(3):161-80, 1989.

K. Hwang and S. Shang. Wired-NOR barrier syn-
chronization for designing large shared-memory
multiprocessors. In 1991 International Confer-
ence on Parallel Processing, volume I, pages I-

171-5, 1991.

D. N. Jayasimha. Distributed synchronizers. In
1988 International Conference on Parallel Pro-
cessing, pages 23-7, 1988.

H. F. Jordan. A special purpose architecture
for finite element analysis. In 1978 International
Conference on Parallel Processing, pages 2636,
1978.

J. M. Mellor-Crummey and M. L. Scott. Syn-
chronization without contention. In Fourth In-
ternational Conference on Architectural Support
for Programming Languages and Operating Sys-
tems, pages 269-78, Apr. 1991.

M. T. O’Keefe and H. G. Dietz. Hardware bar-
rier synchronization: Dynamic barrier MIMD
(DBM). In 1990 International Conference on

Parallel Processing, volume I, pages 1-43-46,
1990.

C. D. Polychronopoulos. Compiler optimizations
for enhancing parallelism and their impact on ar-
chitecture design. IEEE Transactions on Com-
puters, 37(8):991-1004, Aug. 1988.

P. Tang and P.-C. Yew. Software combining
algorithms for distributing hot-spot addressing.
Journal of Parallel and Distributed Computing,
10:130-9, 1990.



