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Abstract

This paper compares principal component analysis (PCA) and independent component

analysis (ICA) in the context of a baseline face recognition system, a comparison motivated

by contradictory claims in the literature. This paper shows how the relative performance of

PCA and ICA depends on the task statement, the ICA architecture, the ICA algorithm,

and (for PCA) the subspace distance metric. It then explores the space of PCA/ICA compar-

isons by systematically testing two ICA algorithms and two ICA architectures against PCA

with four different distance measures on two tasks (facial identity and facial expression). In

the process, this paper verifies the results of many of the previous comparisons in the litera-

ture, and relates them to each other and to this work. We are able to show that the FastICA

algorithm configured according to ICA architecture II yields the highest performance for iden-

tifying faces, while the InfoMax algorithm configured according to ICA architecture II is bet-

ter for recognizing facial actions. In both cases, PCA performs well but not as well as ICA.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

Over the last ten years, face recognition has become a specialized applications

area within the larger field of computer vision. Sophisticated commercial systems
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perform face detection, image registration, and image matching, all in real time.1

Although the details of most commercial systems are confidential, many of them per-

form image matching as a two-step process of subspace projection followed by clas-

sification in the space of compressed images. In a simple yet canonical scenario, face

matching may be implemented as subspace projection followed by a nearest-neigh-
bor classifier [34].

The sophistication of real-world commercial systems should not be underesti-

mated. Many companies have developed innovative methods of face detection and

registration. More importantly for this paper, they have enhanced their matching

techniques, for example by pre-processing images, selecting and in some cases gen-

erating training data, generating spatially localized features, and optimizing classifi-

ers for compressed subspaces. Sometimes the data being compressed are not face

images at all, but differences of face images [33], Gabor jets [12], or other high-di-
mensional data computed from face images. Face recognition systems also employ

a variety of techniques for selecting subspaces. As a result, it can be difficult to assign

credit (or blame) to a particular component of a face recognition system, even when

the details are not proprietary. The purpose of this paper is to compare the perfor-

mance of two subspace projection techniques on face recognition tasks in the context

of a simple baseline system. In particular, we compare principal component analysis

(PCA) to independent component analysis (ICA), as implemented by the InfoMax

[8] and FastICA [21] algorithms.
Why compare ICA to PCA? One reason is that the literature on the subject is con-

tradictory. Bartlett, et al. [4,6], Liu and Wechsler [30], and Yuen and Lai [41] claim

that ICA outperforms PCA for face recognition, while Baek et al. [1] claim that PCA

outperforms ICA and Moghaddam [32] claims that there is no statistical difference in

performance between the two. In a recent study with visible light and infra-red im-

ages, Socolinsky and Salinger report that ICA outperforms PCA on visible light im-

ages, but PCA outperforms ICA on LWIR images [37]. We also know of cases where

researchers informally compared ICA to PCA while building a face recognition sys-
tem, only to select PCA. The relative performance of the two techniques is therefore,

an open question.

Part of the confusion stems from the number of factors that have to be controlled.

The performance of PCA depends on the task statement, the subspace distance met-

ric, and the number of subspace dimensions retained. The performance of ICA de-

pends on the task, the algorithm used to approximate ICA, and the number of

subspace dimensions retained. Even more confusingly, there are two very different

applications of ICA to face recognition. ICA can be applied so as to treat images
as random variables and pixels as observations, or to treat pixels as random vari-

ables and images as observations. In keeping with [2,6], we refer to these two alter-

natives as ICA architecture I and architecture II, respectively. There is therefore

a space of possible PCA/ICA comparisons, depending on at least five factors. This
1 For examples, see www.viisage.com, www.equinoxsensors.com, or www.identix.com/products/

profaceit.html.

http://www.viisage.com
http://www.equinoxsensors.com
http://www.identix.com/products/profaceit.html
http://www.identix.com/products/profaceit.html
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paper explores this space, in order to find the best technique for recognizing (1) sub-

ject identity and (2) facial actions in face images.

Another reason to explore the space of PCA/ICA comparisons is to provide data

for the current debate over global versus local features. The basis vectors that define

any subspace can be thought of as image features. Viewed this way, PCA and ICA
architecture II produce global features, in the sense that every image feature is influ-

enced by every pixel. (Equivalently, the basis vectors contain very few zeroes.) De-

pending on your preference, this makes them either susceptible to occlusions and

local distortions, or sensitive to holistic properties. Alternatively, ICA architecture

I produces spatially localized features that are only influenced by small parts of

the image. It has been argued that this will produce better object recognition, since

it implements recognition by parts [27]. If localized features are indeed superior, ICA

architecture I should outperform PCA and ICA architecture II.
This paper will show empirically that the choice of subspace projection algorithm

depends first and foremost on the nature of the task. Some tasks, such as facial iden-

tity recognition, are holistic and do best with global feature vectors. Other tasks,

such as facial action recognition, are local and do better with localized feature vec-

tors. For both types of tasks, ICA can outperform PCA, but only if the ICA archi-

tecture is selected with respect to the task type (ICA architecture I for localized tasks,

ICA architecture II for holistic tasks). Furthermore, performance is optimized if

the ICA algorithm is selected based on the architecture (InfoMax for architecture
I, FastICA for architecture II). When PCA is used, the choice of subspace distance

measure again depends on the task.

The rest of this paper is organized as follows. Section 2 provides the necessary

background in terms of a brief introduction to face recognition (2.1), and the foun-

dations of principal component analysis (2.2) and independent component analysis

(2.3). Section 3 compares PCA with ICA architectures I and II on the task of facial

identity recognition. Section 4 compares PCA and the ICA architectures on the task

of recognizing facial expressions. Section 5 concludes with practical recommenda-
tions.
2. Background

2.1. Face recognition

Research in automatic face recognition dates back at least until the 1960s [13].
Most current face recognition techniques, however, date back only to the appear-

ance-based recognition work of the late 1980s and 1990s. Kirby and Sirovich were

among the first to apply principal component analysis (PCA) to face images, and

showed that PCA is an optimal compression scheme that minimizes the mean

squared error between the original images and their reconstructions for any given le-

vel of compression [26,36]. Turk and Pentland popularized the use of PCA for face

recognition [40] (although see also [16]). They used PCA to compute a set of sub-

space basis vectors (which they called ‘‘eigenfaces’’) for a database of face images,
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and projected the images in the database into the compressed subspace. New test im-

ages were then matched to images in the database by projecting them onto the basis

vectors and finding the nearest compressed image in the subspace (eigenspace).

The initial success of eigenfaces popularized the idea of matching images in com-

pressed subspaces. Researchers began to search for other subspaces that might im-
prove performance. One alternative is Fisher�s linear discriminant analysis (LDA,

a.k.a. ‘‘fisherfaces’’) [38]. For any N-class classification problem, the goal of LDA

is to find the N-1 basis vectors that maximize the interclass distances while minimiz-

ing the intraclass distances. At one level, PCA and LDA are very different: LDA is a

supervised learning technique that relies on class labels, whereas PCA is an unsuper-

vised technique. Nonetheless, in circumstances where class labels are available either

technique can be used, and LDA has been compared to PCA in several studies

[7,10,31,37].
One characteristic of both PCA and LDA is that they produce spatially global

feature vectors. In other words, the basis vectors produced by PCA and LDA are

non-zero for almost all dimensions, implying that a change to a single input pixel

will alter every dimension of its subspace projection. There is also a lot of interest

in techniques that create spatially localized feature vectors, in the hopes that they

might be less susceptible to occlusion and would implement recognition by parts.

The most common method for generating spatially localized features is to apply

independent component analysis (ICA) to produce basis vectors that are statisti-
cally independent (not just linearly decorrelated, as with PCA) [2]. Non-negative

matrix factorization (NMF) is another method for generating localized feature

vectors [27].

ICA can also be used to create feature vectors that uniformly distribute data sam-

ples in subspace [4,5]. This conceptually very different use of ICA produces feature

vectors that are not spatially localized. Instead, it produces feature vectors that draw

fine distinctions between similar images in order to spread the samples in subspace.

Keeping with the terminology introduced in [2,5], we refer to use of ICA to produce
spatially independent basis vectors as architecture I, and the use of ICA to produce

statistically independent compressed images as architecture II.

Gabor jets represent a substantially different class of subspace projection tech-

niques. Unlike PCA, LDA, or ICA, the Gabor basis vectors are specified a-priori (al-

though their spatial positions might be trained). Depending on the size and spacing

of the jets, they also compress images far less than the other techniques; in fact, in

extreme cases they may expand rather than contract the data. Nonetheless, there

is evidence that subspaces defined by Gabor jets, although large, may be good for
recognizing faces [12,23] and facial expressions [17].

Finally, there are techniques that apply mixtures of local linear subspaces. For

example, Kambhatla and Leen mix local PCA subspaces to compress face data

[24], and Frey et al. [19] apply a mixture of factor analyzers to recognize faces.

Although they have not yet been applied to face recognition, Tipping and Bishop

provide an EM algorithm for optimizing mixture models of PCA subspaces [39],

and Lee et al. provide a similar algorithm for optimizing mixtures of ICA sub-

spaces [28].
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2.2. PCA

PCA is probably the most widely used subspace projection technique for face rec-

ognition. PCA basis vectors are computed from a set of training images I. As a first

step, the average image in I is computed and subtracted from the training images,
creating a set of data samples
2 T
i1; i2; . . . ; in 2 I� I:
These data samples are then arrayed in a matrix X, with one column per sample

image
X ¼
..
.

i1
..
.

2
664

3
775 � � �

..

.

in
..
.

2
664

3
775

2
664

3
775
XXT is then the sample covariance matrix for the training images, and the principal

components of the covariance matrix are computed by solving
RTðXXTÞR ¼ K;
where K is the diagonal matrix of eigenvalues and R is the matrix of orthonormal

eigenvectors. Geometrically, R is a rotation matrix2 that rotates the original co-

ordinate system onto the eigenvectors, where the eigenvector associated with the

largest eigenvalue is the axis of maximum variance, the eigenvector associated
with the second largest eigenvalue is the orthogonal axis with the second largest

variance, etc. Typically, only the N eigenvectors associated with the largest ei-

genvalues are used to define the subspace, where N is the desired subspace di-

mensionality.

There are three related arguments for matching images in the subspace of N

eigenvectors. The first is compression. It is computationally more efficient to com-

pare images in subspaces with significantly reduced dimensions. For example, image

vectors with 65,536 pixels (256� 256) might be projected into a subspace with only
100–300 dimensions. The second argument assumes that the data samples are drawn

from a normal distribution. In this case, axes of large variance probably correspond

to signal, while axes of small variance are probably noise. Eliminating these axes

therefore improves the accuracy of matching. The third argument depends on a

common pre-processing step, in which the mean value is subtracted from every im-

age and the images are scaled to form unit vectors. This projects the images into a

subspace where Euclidean distance is inversely proportional to correlation between

the source images. As a result, nearest neighbor matching in eigenspace becomes an
efficient approximation to image correlation.
his slightly liberal definition of rotation also includes reflection.
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2.3. ICA

While PCA decorrelates the input data using second-order statistics and thereby

generates compressed data with minimum mean-squared reprojection error, ICA

minimizes both second-order and higher-order dependencies in the input. It is inti-
mately related to the blind source separation (BSS) problem, where the goal is to de-

compose an observed signal into a linear combination of unknown independent

signals. Let s be the vector of unknown source signals and x be the vector of ob-

served mixtures. If A is the unknown mixing matrix, then the mixing model is written

as
x ¼ As:
It is assumed that the source signals are independent of each other and the mixing

matrix A is invertible. Based on these assumptions and the observed mixtures, ICA

algorithms try to find the mixing matrix A or the separating matrix W such that
u ¼ Wx ¼ WAs
is an estimation of the independent source signals [14] (Fig. 1).

ICA can be viewed as a generalization of PCA. As previously discussed, PCA dec-
orrelates the training data so that the sample covariance of the training data is zero.

Whiteness is a stronger constraint that requires both decorrelation and unit variance.

The whitening transform can be determined as D�1=2RT, where D is the diagonal ma-

trix of the eigenvalues and R is the matrix of orthogonal eigenvectors of the sample

covariance matrix. Applying whitening to observed mixtures, however, results in the

source signal only up to an orthogonal transformation. ICA goes one step further so

that it transforms the whitened data into a set of statistically independent signals

[22].
Signals are statistically independent when
fuðuÞ ¼ PifuiðuiÞ;

where fu is the probability density function of u. (It is equivalent to say that the

vectors u are uniformly distributed.) Unfortunately, there may not be any matrix W

that fully satisfies the independence condition, and there is no closed form expression
Fig. 1. Blind source separation model.



B.A. Draper et al. / Computer Vision and Image Understanding 91 (2003) 115–137 121
to find W. Instead, there are several algorithms that iteratively approximate W so as

to indirectly maximize independence.

Since it is difficult to maximize the independence condition above directly, all

common ICA algorithms recast the problem to iteratively optimize a smooth func-

tion whose global optima occurs when the output vectors u are independent. For ex-
ample, InfoMax relies on the observation that independence is maximized when the

entropy H(u) is maximized, where:
HðuÞ � �
Z

fuðuÞlogfuðuÞdu:
InfoMax performs gradient ascent on the elements wij so as to maximize H(u) [8]. (It

gets its name from the observation that maximizing H(u) also maximizes the mutual

information I(u,x) between the input and output vectors.) The JADE algorithm

minimizes the kurtosis of fuðuÞ through a joint diagonalization of the fourth-order
cumulants, since minimizing kurtosis will also maximize statistical independence.

FastICA is arguably the most general, maximizing
JðyÞ � c½EfGðyÞg � EfGðmÞg�2;
where G is a non-quadratic function, m is a gaussian random variable, and c is any

positive constant, since it can be shown that maximizing any function of this form

will also maximize independence [21].

InfoMax, JADE, and FastICA all maximize functions with the same global op-

tima [14,21]. As a result, all three algorithms should converge to the same solution

for any given data set. In practice, the different formulations of the independence

constraint are designed to enable different approximation techniques, and the algo-
rithms find different solutions because of differences among these techniques. Lim-

ited empirical studies suggest that the differences in performance between the

algorithms are minor and depend on the data set. For example, Zibulevsky and

Pearlmutter test all three algorithms on a simulated blind-source separation prob-

lem, and report only small differences in the relative error rate: 7.1% for InfoMax,

8.6% for FastICA, and 8.8% for JADE [42], On the other hand, Karvanen et al.

[25] report on another simulated blind-source separation problem where JADE

slightly outperforms FastICA, with InfoMax performing significantly worse. Ziehe
et al. [43] report no significant difference between FastICA and JADE at separating

noise from signal in MEG data. In studies using images, Moghaddam [32] and Lee

et al. [28] report qualitatively similar results for JADE and FastICA, but do not

publish numbers.
2.3.1. Architecture I: statistically independent basis images

Regardless of which algorithm is used to compute ICA, there are two funda-

mentally different ways to apply ICA to face recognition. In architecture I,
the input face images in X are considered to be a linear mixture of statistically

independent basis images S combined by an unknown mixing matrix A. The

ICA algorithm learns the weight matrix W, which is used to recover a set of
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independent basis images in the rows of U (Fig. 2). In this architecture, the face

images are variables and the pixel values provide observations for the variables.

The source separation, therefore, is performed in face space. Projecting the input

images onto the learned weight vectors produces the independent basis images.

The compressed representation of a face image is a vector of coefficients used
for linearly combining the independent basis images to generate the image. The

middle row of Fig. 3 shows eight basis images produced in this architecture. They

are spatially localized, unlike the PCA basis images (top row) and those produced

by ICA architecture II (bottom row).

In [4,5], Bartlett and colleagues first apply PCA toproject the data into a subspace of

dimensionm to control the number of independent components produced by ICA. The

InfoMax algorithm is then applied to the eigenvectors to minimize the statistical de-

pendence among the resulting basis images. This use of PCA as a pre-processor
in a two-step process allows ICA to create subspaces of size m for any m. In [30], it

is also argued that pre-applying PCA enhances ICA performance by (1) discarding

small trailing eigenvalues before whitening and (2) reducing computational complexity
Fig. 3. Eight feature vectors for each technique. The top row contains the eight eigenvectors with highest

eigenvalues for PCA. The second row shows eight localized feature vectors for ICA architecture I. The

third row shows eight (non-localized) ICA feature vectors for ICA architecture II.

Fig. 2. Finding statistically independent basis images.
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byminimizing pair-wise dependencies. PCA decorrelates the input data; the remaining

higher-order dependencies are separated by ICA.

To describe the mathematical basis for architecture I, let R be a p by m matrix

containing the first m eigenvectors of a set of n face images, as in Section 2.2. Let

p be the number of pixels in a training image. The rows of the input matrix to
ICA are variables and the columns are observations, therefore, ICA is performed

on RT. The m independent basis images in the rows of U are computed as

U ¼ W � RT. Then, the n by m ICA coefficients matrix B for the linear combination

of independent basis images in U is computed as follows:

Let C be the n by m matrix of PCA coefficients. Then,
C ¼ X � R and X ¼ C � RT:
From U ¼ W � RT and the assumption that W is invertible we get
RT ¼ W�1 �U:
Therefore,
X ¼ ðC �W�1Þ � U ¼ B � U:
Each row of B contains the coefficients for linearly combining the basis images to

comprise the face image in the corresponding row of X. Also, X is the reconstruction

of the original data with minimum squared error as in PCA.

2.3.2. Architecture II: statistically independent coefficients

While the basis images obtained in architecture I are statistically independent, the

coefficients that represent input images in the subspace defined by the basis images

are not. The goal of ICA in architecture II is to find statistically independent coef-

ficients for input data. In this architecture, the input is transposed from architecture

I, that is, the pixels are variables and the images are observation. The source sepa-

ration is performed on the pixels, and each row of the learned weight matrix W is

an image. A, the inverse matrix of W, contains the basis images in its columns.

The statistically independent source coefficients in S that comprise the input images
are recovered in the columns of U (Fig. 4). This architecture was used in [9] to find

image filters that produced statistically independent outputs from natural scenes.
Fig. 4. Finding statistically independent coefficients.
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The eight basis images shown in the bottom row of Fig. 3 show more global prop-

erties than the basis images produced in architecture I (middle row).

In this work, ICA is performed on the PCA coefficients rather than directly on the

input images to reduce the dimensionality as in [4,5]. Following the same notation

described above, the statistically independent coefficients are computed as
U ¼ W � CT and the actual basis images shown in Fig. 3 are obtained from the col-

umns of R * A.
3. Recognizing facial identities

As the preceding discussion should make clear, comparing PCA to ICA in the

context of face recognition is not a simple task. First one must refine the task: is
the goal to recognize individuals, facial actions, gender or age? After defining the

task, there are choices with regard to the ICA architecture, the ICA algorithm,

the number of subspace dimensions, and the data set. We will show later that the

choice of subspace distance metric is also significant, at least for PCA. This explains

much of the confusion in the literature, as researchers have reported on different ex-

periments, each of which can be thought of as one point in the space of PCA/ICA

comparisons. In the paper, we try to fill out most of the space of PCA/ICA compar-

isons, relating previous studies to each other and giving a better picture of the rela-
tive performance of each algorithm. The rest of this section compares PCA to ICA

on the task of recognizing facial identity; Section 4 compares PCA to ICA on the

task of recognizing facial expressions.

3.1. The baseline system

Following the lead of Moon and Phillips [34], we compare PCA and ICA in the

context of a baseline face recognition system. The baseline system matches novel
probe images against a gallery of stored images. It does not do face detection or im-

age registration; rather, it assumes that all images (probe and gallery) have been pre-

registered. For every probe image, there is one and only one gallery image of the

same subject, so trials are binomial. If the first image retrieved from the gallery is

of the same subject as the probe, then the trial is a success, otherwise it is a failure.

The images are from the FERET face image data set [35], and have been reduced to

60� 50 pixels. Examples are shown in Fig. 5.
Fig. 5. Sample images from the FERET data set.
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The baseline system performs histogram normalization as a pre-processing step

on all images (probe and gallery) using a routine provided by NIST [35]. During

training, 500 training images are randomly selected from the gallery. This set of

training images is provided as input to a subspace projection technique to form a

set of basis vectors. The gallery images are then projected into these subspaces. Dur-
ing testing, probe images are projected into the same subspaces, and nearest neigh-

bor retrieval is used to match compressed probe images to compressed gallery

images.

3.2. The FERET face data

For consistency with other studies, we use the FERET face images, including the

data partitions and terminology from [35]. As described there, the FERET gallery
contains 1196 face images. There are four sets of probe images that are compared

to this gallery: the fb probe set contains 1195 images of subjects taken at the same

time as the gallery images. The only difference is that the subjects were told to assume

a different facial expression than in the gallery image. The duplicate I probe set con-

tains 722 images of subjects taken between one minute and 1031 days after the gal-

lery image was taken. The duplicate II probe set is a subset of the duplicate I set,

containing 234 images taken at least 18 months after the gallery image. Finally,

the fc probe set contains 194 images of subjects under significantly different lighting.3

3.3. Comparison: InfoMax vs PCA

To compare PCA to ICA on the FERET facial identity task, we need to select an

ICA algorithm, an ICA architecture, the number of subspace dimensions, and a sub-

space distance metric. Our first comparison uses InfoMax4 to implement ICA. In

keeping with a heuristic developed during the original FERET studies [34], we keep

200 subspace dimensions, or 40% of the maximum possible number of non-zero ei-
genvalues (given a training set of 500 images). This corresponds to keeping an aver-

age of 96% of the total variance in the eigenvalues for this data set.

Holding the ICA algorithm and the number of subspace dimensions constant, we

test both ICA architectures and four possible distance metrics for PCA subspaces:

the L1 (city-block) distance metric, the L2 (Euclidean distance) metric, cosine dis-

tance, and the Mahalanobis (L2 with each dimension scaled by the square root of

its eigenvalue) distance metric. Since ICA basis vectors are not mutually orthogonal,

the cosine distance measure is often used to retrieve images in the ICA subspaces
(e.g. [2]). We report ICA results using both the cosine and L2 distance measures. Al-

though not systematically presented here, we also tested ICA with the L1 and

Mahalanobis distance measures. For ICA architecture II, the cosine measure clearly
3 The image lists for the four probe sets and the gallery can be found at www.cs.colostate.edu/

evalfacerec.
4 With a block size of 50 and a learning rale starting at 0.001 and annealed over 1600 iterations to

0.0001. For architecture II, the learning rate began at 0.008.

http://www.cs.colostate.edu/evalfacerec
http://www.cs.colostate.edu/evalfacerec
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outperforms all other measures. For ICA architecture I, cosine clearly outperforms

L1; there is no significant difference between cosine and Mahalanobis.

Table 1 shows the recognition rate for PCA, ICA architecture I, and ICA archi-

tecture II, broken down according to probe set and distance metric. The most

striking feature of Table 1 is that ICA architecture II with cosine distance measure
always has the highest recognition rate. PCA is second, with both the L1 and Maha-

lanobis distance measures performing well. The performance of ICA architecture

I and PCA with L2 and cosine distance measures are very close, and neither is com-

petitive with architecture II/Cosine or PCA/L1 or PCA/Mahalanobis.

Are the findings that (1) ICA architecture II outperforms PCA/L1 and (2) PCA/

L1 outperforms all other options statistically significant? To answer this question we

must refine it. Are these results significant with respect to the probe set size? This ques-

tion asks whether more probe images would have altered the results, and can be an-
swered using McNemar�s significance test for paired binomial values. By this

measure, ICA architecture II outperforms PCA/L1 at a significance level (p-val) of

.97, and PCA/L1 outperforms the other options at significance levels above .99.

Another question is: are these results significant with respect to the choice of train-

ing set? In other words, if we chose another set of 500 training images at random,

would the results be the same? Beveridge et al. present a sophisticated resampling

technique for answering this question with regard to the choice of gallery [11]. How-

ever, we are primarily interested in the variation induced by the choice of training set
(not gallery), and it is not feasible to run InfoMax thousands of times. Instead, we

compared PCA/L1 to ICA architectures I and II on ten randomly selected sets of

500 training images, evaluating each on all four probe sets as shown in Table 2. Sig-

nificantly, the relative ranking of the algorithms never changes. Across ten trials and

four probe sets, InfoMax architecture II (shown in the graph with ��s, and labeled

IM-2) always outperforms PCA/L1 (shown with squares and labeled PCA(L1)),

which always outperforms InfoMax architecture I (IM-1; shown with triangles).

We therefore believe that the relative rankings do not depend on the random choice
of training images.

A third important question is: do the results depend on the number of sub space

dimensions? Fig. 6 shows the performance results for PCA with all three distance
Table 1

Recognition rates for PCA and both architectures of ICA on the FERET face data set

Probe st ICA (InfoMax)

Arch. 1

ICA (InfoMax)

Arch. II

PCA

Cosine L2 Cosine L2 L1 L2 Cosine Mahalanobis

fafb (1195) 73.72% 75.90% 82.26% 74.90% 80.42% 72.80% 70.71% 75.23%

fafc (194) 5.67% 5.15% 51.03% 35.57% 20.62% 4.64% 4.64% 39.69%

dup I (722) 36.15% 32.96% 48.48% 37.81% 40.30% 33.24% 35.32% 39.34%

dup II (234) 14.53% 14.53% 32.48% 25.64% 22.22% 14.53% 15.38% 24.36%

Total (2345) 50.62% 50.70% 64.31% 55.31% 57.31% 49.17% 48.83% 56.16%

The task is to match the identity of the probe image.



Table 2

Trails of PCA/L1, InfoMax Arch I, and InfoMax Arch II on ten sets of randomly selected training images
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metrics and both architectures of ICA as the number of subspace dimensions varies

from 50 to 200.5 The relative ordering of the subspace projection techniques does not

depend on the number of subspace dimensions, since for most techniques the lines

never cross. The one exception is PCA with the Mahalonobis distance metric, which

performs almost as well as ICA architecture II with small numbers of subspace

dimensions, but whose performance on probe sets fb and dupI drops off relative

to ICA architecture II and PCA with L1 as the number of subspace dimensions

increases.
We conclude that for the task of facial identity recognition, ICA architecture II

outperforms PCA with the L1 distance metric, which outperforms the other combi-

nations, at least on the standard FERET probe sets. For small subspaces, the Maha-

lanobis metric can be used inplace of L1. Interestingly, this directly contradicts the

claim made by Lee and Seung [27] (and echoed in [15,20,29]) that spatially localized

feature vectors are better than overlapping (non-spatially localized) feature vectors

for face recognition, since spatially localized feature vectors performed much worse

than global features in our study.
5 This data was collected using training set #1.



Fig. 6. Recognition rates for ICA architecture I (-s-), ICA architecture II (-�-), and PCA with the L1 (-�-), L2 (-�-) and Mahalanobis (-þ-) distance measures

as a function of the number of subspace dimensions. Each graph corresponds to a particular probe set (fb, dup I, dup II, or fc). Recognition rates were mea-

sured for subspace dimensionalities starting at 50 and increasing by 25 dimension up to a total of 200.
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3.4. Comparisons to previous results

Does Table 1 contradict the previous results in the literature? In many cases no, if

the ICA architecture and distance measures are taken into account. For example,

Baek et al. found that PCA with the L1 distance measure outperformed ICA archi-
tecture I. This is consistent with Table 1. Liu and Wechsler [30] compared ICA ar-

chitecture II to PCA with L2, and found that ICA was better. Again this agrees with

Table 1. Similarly, Bartlett et al. [4,5] report that ICA architecture II outperforms

PCA with L2, as predicted by Table 1.

Three papers compared ICA architecture I to PCAwith the L2 distance metric, and

found that ICA outperformed PCA [4,6,41] when cosines were used as the ICA sub-

space distance measure. Our study also finds that ICA architecture I is slightly better

than PCA/L2, but it is not clear if this result is statistically significant. We did not pur-
sue this question further, since architecture I is suboptimal for face recognition with

ICA, and the L2 distance metric is suboptimal for face recognition with PCA.

The one previous result that contradicts ours is the study by Moghaddam [32]

which found no statistically significant difference between ICA architecture II and

PCA with the L2 distance metric. According to Table 1, ICA architecture II should

have won this comparison, and the result should not have been in doubt. From the

paper, however, it appears that Moghaddam may have used the L2 distance metric

for ICA as well as for PCA. As shown in Table 1, this significantly lowers the per-
formance of ICA architecture II relative to the performance using cosines, and may

explain part of the discrepancy.

3.5. InfoMax vs. FastICA

When comparing ICA to PCA above, one of the fixed factors was the ICA algo-

rithm. Would the results have been any different with another ICA algorithm, such

as FastICA or JADE? Unfortunately, it is not feasible to run JADE on problems
with more than 50 dimensions. We did, however, test the performance of FastICA6

on both architectures, for the same ten randomly selected training sets. The results

are shown back in Table 2, where the FastICA implementation of architecture I is

labeled FICA-1 and marked graphically with a star, and the FastICA implementa-

tion of architecture II is labeled FICA-2 and marked with a circle. As shown there,

the differences in performance between the two algorithms are relatively small, and

depend on the architecture: FastICA performs better in architecture II, but InfoMax

performs better in architecture I.
The choice of ICA algorithms therefore does not affect the ranking of PCA rela-

tive to the two ICA architectures. ICA architecture II was already better than PCA

using InfoMax; switching to FastICA makes it better still. Similarly, PCA was al-

ready better than InfoMax in ICA architecture I; switching to FastICA makes the
6 The FastICA implementation is due to Hyv€aarinen et al., and can be found at www.cis.hut.fi/projects/

ica/fastica.

http://www.cis.hut.fi/projects/ica/fastica
http://www.cis.hut.fi/projects/ica/fastica
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performance of ICA architecture I drop even lower. The relative rankings stay the

same, no matter which ICA algorithm is used. The choice of ICA algorithm does

affect performance, however. Users should use FastICA with architecture II, and

InfoMax with architecture I, at least in this problem domain.
4. Recognizing facial actions

4.1. Methodology

The comparisons in Section 3 established an ordering for subspace projection

techniques in the task of facial identity recognition. This section, however, will show

that this order is highly task dependent. In fact, the order is reversed when recogniz-
ing facial actions.

Expressions are formed by moving localized groups of face muscles. We hypoth-

esized, therefore, that localized features would be better for recognizing facial actions

(and therefore emotions) than spatially overlapping features. We tested this hypoth-

esis using the same baseline system as described in Section 3.1. This time, however,

the images are of subjects performing specific facial actions. Ekman described a set

of 46 human facial actions [18], and Ekman and Hager collected data for 20 subjects

performing a total of 80 subject/action pairs. A temporal sequence of five images was
taken of each subject performing each action, where the first image shows only small

movements at the beginning of action. The movements become successively more

pronounced in images 2 through 5. All five images are then subtracted from the pic-

ture of the same subject with a neutral expression, prior to the start of the facial ac-

tion. The resulting data is composed of difference images, as shown in Fig. 7. (This

data is further described in [3]). For the experiments in this paper, only the upper

halves of the faces were used.

One difference between Ekman and Hagar�s facial action data set and the FERET
gallery is that the facial action data set contains many examples of each facial action.

As a result, the facial action gallery can be divided into categories (one per action),
Fig. 7. Sequences of difference images for Action Unit 1 and Action Unit 2. The frames are arranged tem-

porally left to right, with the left most frame being the initial stage of the action, and the right most frame

being its most extreme form.
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and the class discriminability r can be used to order the ICA basis vectors7 [3]. To

compute r, each training image is assigned a facial action class label. Then, for each

feature, the between-class variability Vbetween, and within-class variability, Vwithin of the
corresponding coefficients are computed by:
7 W

data se

subjec
Vbetween ¼
X
i

ðMi �MÞ2;

Vwithin ¼
X
i

X
j

ðbij �MiÞ2;
where M is the overall mean of coefficients across the training images, Mi is the mean

for class i, bij is coefficient of jth training image in class i, and r is the ratio of Vbetween
to Vwithin, i.e., r ¼ Vbetween=Vwithin. This allows us to rank the ICA features in terms of
discriminability and to plot recognition rate as a function of the number of subspace

dimensions. We create the same plot for PCA, ordering its features according to class

discriminability (Fig. 8, left) and according to the eigenvalues (Fig. 8, right).

For testing purposes, the subjects were partitioned into four sets. The four sets

were designed to keep the total number of actions as even as possible, given that

not all subjects performed all actions. (For anyone who wishes to replicate our ex-

periments, the exact partition by subject index is given in Appendix A.) Otherwise,

the methodology and parameters were the same as described in Section 3.1, except
that in this experiment a trial was a success if the retrieved gallery image was per-

forming the same facial action as the probe image. We performed the experiments

twice, once restricting the probe set to only the third image in each temporal action

sequence (as in [3]), and once allowing all five images to be used as probes. Once

again, ICA architecture I, ICA architecture II, and PCA with the L1, L2 and Maha-

lanobis distance metrics were compared.

4.2. Results and discussion

The results of this experiment are complex, in part because the recognition rate

does not increase monotonically with the number of subspace dimensions. Fig. 8

shows the recognition rate as a function of the number of dimensions for each of

the five techniques, averaged across four test sets. For every technique, the maximum

recognition rate occurs at a different number of subspace dimensions on every test

set, suggesting that it may not be possible to tune the techniques by changing the

number of subspace dimensions. Table 3 therefore presents the recognition rates
for every technique using 110 basis vectors. Appendix B gives the same results when

only the third images from each temporal sequence are used as probes, as in [3,17]

(the results are essentially equivalent).
e did not order ICA basis vectors by relevance for the face recognition task because the FERET

t contains only two head-on images of most subjects, and no more than four head-on images of any

t.



Fig. 8. Recognition rates vs. subspace dimensions. On the left, both ICA and PCA components are ordered by the class discriminability while PCA

components are ordered according to the eigenvalues in the right plot. ICA architecture I is (—), ICA architecture II is ( ), PCA with L1 is

( ), PCA with L2 is (– – –), PCA with Mahalanobis is (� � � � � �).
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Table 3

Average recognition rates for facial actions using ICA and PCA

Test set 110 Basis vctors

ICA I ICA II PCA(L1) PCA(L2) Mahalanobis

1 87.37% 74.73% 83.16% 83.16% 52.63%

2 95.79% 84.21% 84.21% 92.63% 70.53%

3 82.50% 69.00% 80.00% 83.00% 53.00%

4 87.27% 75.91% 70.00% 81.82% 58.18%

Avg. 88.12% 75.87% 79.00% 85.00% 58.50%

The images were divided into four sets according to Appendix B and evaluated using 4-fold cross

validation. Techniques were evaluated by testing from 1 to 110 subspace dimensions and taking the

average.
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When recognizing facial actions, it is ICA architecture I that outperforms the

other four techniques. PCA/L2 is second best, followed by PCA/L1, ICA architec-

ture II, and PCA/Mahalanobis. This is consistent with the hypothesis that spatially

localized basis vectors outperform spatially overlapping basis vectors for recognizing

facial actions, and underscores the point that the analysis technique must be selected

based on the recognition task. It is also consistent with the data in [3,17].
5. Conclusion

Comparisons between PCA and ICA are complex, because differences in tasks, ar-

chitectures, ICA algorithms, and distance metrics must be taken into account. This is

the first paper to explore the space of PCA/ICA comparisons, by systematically test-

ing two ICA architectures, two ICA algorithms, and three PCA distance measures

on two tasks (facial identity and facial expression). In the process, we were able to
verify the results of previous comparisons in the literature, and to relate them to each

other and to this work.

In general, we find that the most important factor is the nature of the task. Some

tasks, like facial identity recognition, are holistic and require spatially overlapping

feature vectors. Other tasks, like facial action recognition, are more localized, and

perform better with spatially disjoint feature vectors.

For the facial identity task, we find that ICA architecture II provides the best re-

sults, followed by PCA with the L1 or Mahalanobis distance metrics. The difference
between PCA and ICA in this context is not large, but it is significant. ICA architec-

ture I and PCA with the L2 or cosine metrics are poorer choices for this task. If ICA

architecture II is used, we recommend using the FastICA algorithm, although the

difference between FastICA and InfoMax is not large. For the more localized task

of recognizing facial actions, the recommendation is reversed: we found the best re-

sults using InfoMax to implement ICA architecture I. PCA with the L2 metric was

the second most effective technique.

As with any comparative study, there are limitations. We did not test the effects
of registration errors or image pre-processing schemes. We tested only two ICA
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algorithms. We evaluated PCA and ICA according to only one criterion, recognition

rate, even though other criteria such as computational cost may also apply. Most sig-

nificantly, although we measured the effects of different ICA algorithms and PCA

distance metrics, we cannot explain these differences in terms of the underlying data

distributions. As a result, it is difficult to predict the best technique for a novel do-
main. We consider understanding this relationship to be future work both for the au-

thors and for others in the field of appearance-based object recognition.
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Appendix A. Partition of facial action data set

As discussed in Section 4.1, not all 20 subjects were capable of performing all six

facial actions in isolation. As a result, there are 80 subject/action pairs, not 120.

Therefore, when dividing subjects into four partitions, we had to ensure that all four
partitions had roughly the same number of subject/action pairs, and that every ac-

tion was equally represented in each partition. We partitioned subjects as follows:
Subject partition for experiments in Section 4. Each row corresponds to a facial

action, each column to a set of subjects. Table entries correspond to the number of

subject/action pairs in a partition for the corresponding facial action

AU # Partition (subject #)

1 (0,2,4,5,14) 2 (1,7,8,9,16) 3 (3,10,11,12,13) 4 (6,17,18,19,20)

1 2 2 2 3
2 2 3 2 3

4 5 4 4 5

5 5 5 5 5

6 1 1 2 1

7 4 4 5 5

Total 19 actions 19 actions 20 actions 22 actions
Appendix B. More recognition results for facial action sequences

Previous studies with Ekman and Hager�s facial action data set have classified the

third image in each sequence [3,17]. In so doing, they avoided testing on the smaller
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facial actions in the first image and the largest facial actions in the fifth image. For

this main body of this paper, we used images from all five stages as probe images. To

compare our results to previous papers, however, we also tested just the third image

from each sequence. The results are shown in the table below. Readers can verify

that there is little significant difference between this table and Table 3.
Performance of ICA architecture 1 (ICA I), ICA architecture II (ICA II), and PCA

with the L1, L2 and Mahalanobis distance functions (PCA(L1), PCA(L2), and

PCA(Mh), respectively), when classifying just the third frame of each action unit

sequence, as in [3,17]. The results are qualitatively equivalent to those in Table 3

Test set 110 Basis vectors

ICA I ICA II PCA(L1) PCA(L2) PCA (Mh)

1 94.73% 86.84% 84.21% 84.21% 52.63%

2 100.0% 94.74% 84.21% 94.74% 73.68%

3 85.00% 70.00% 85.00% 85.00% 55.00%

4 86.36% 75.00% 72.73% 81.82% 59.09%
References

[1] K. Baek, B.A. Draper, J.R. Beveridge, K. She, PCA vs ICA: A comparison on the FERET data set,

presented at Joint Conference on Information Sciences, Durham, NC, 2002.

[2] M.S. Bartlett, Face Image Analysis by Unsupervised Learning, Kluwer Academic, Dordrecht, 2001.

[3] M.S. Bartlett, G. Donato, J.R. Movellan, J.C. Hager, P. Ekman, T.J. Sejnowski, Image

representations for facial expression coding, in: Advances in Neural information Processing Systems,

vol. 12, MIT Press, Cambridge, MA, 2000, pp. 886–892.

[4] M.S. Bartlett, H.M. Lades, T.J. Sejnowski, Independent component representations for face

recognition, presented at SPIE Symposium on Electronic Imaging: Science and Technology,

Conference on Human Vision and Electronic Imaging III, San Jose, CA, 1998.

[5] M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, Face recognition by independent component analysis,

IEEE Transaction on Neural Networks 13 (2002) 1450–1464.

[6] M.S. Bartlett, T.J. Sejnowski, Viewpoint invariant face recognition using independent component

analysis and attractor networks, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Neural Information

Processing Systems – Natural and Synthetic, vol. 9, MIT Press, Cambridge, MA, 1997, pp. 817–823.

[7] P. Belhumeur, J. Hespanha, D. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific

linear projection, IEEE Transaction on Pattern Analysis and Machine Intelligence 19 (1997) 711–720.

[8] A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind

deconvolution, Neural Computation 7 (1995) 1129–1159.

[9] J.A. Bell, T.J. Sejnowski, The �Independent Components� of natural scenes are edge filters, Vision

Research 37 (1997) 3327–3338.

[10] J.R. Beveridge, The Geometry of LDA and PCA Classifiers Illustrated with 3D Examples, Colorado

State University, web page 2001.

[11] J.R. Beveridge, K. She, B.A. Draper, G.H. Givens, A Nonparametric Statistical Comparison of

Principal Component and Linear Discriminant Subspaces for Face Recognition, presented at IEEE

Conference on Computer Vision and Pattern Recognition, Kauai, HI, 2001.

[12] I. Biederman, P. Kalocsai, Neurocomputational bases of object and face recognition, Philosophical

Transactions of the Royal Society: Biological Sciences 352 (1997) 1203–1219.

Avg 91.25% 81.25% 81.25% 86.25% 60.00%



136 B.A. Draper et al. / Computer Vision and Image Understanding 91 (2003) 115–137
[13] W.W. Bledsoe, The model method in facial recognition, Panoramic Research, Inc., Palo Alto, CA

PRI:15, August 1966.

[14] J.-F. Cardoso, Infomax and maximum likelihood for source separation, IEEE Letters on Signal

Processing 4 (1997) 112–114.

[15] X. Chen, L. Gu, S.Z. Li, H.-J. Zhang, Learning Representative Local Features for Face Detection,

presented at IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, 2001.

[16] G.W. Cottrell and M.K. Fleming, Face recognition using unsupervised feature extraction, presented

at International Neural Network Conference, Dordrecht, 1990.

[17] G. Donato, M.S. Bartlett, J.C. Hager, P. Ekman, T. Sejnowski, Classifying facial actions, IEEE

Transactions on Pattern Analysis and Machine Intelligence 21 (1999) 974–989.

[18] P. Ekman, W. Friesen, Facial Action Coding System: A Technique for the Measurement of Facial

Movement, Consulting Psychologists Press, Palo Alto, CA, 1978.

[19] B.J. Frey, A. Colmenarez, T.S. Huang, Mixtures of Local Linear Subspaces for Face Recognition,

presented at IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA,

1998.

[20] D. Guillamet, M. Bressan, J. Vitri�aa, A Weighted Non-negative Matrix Factorization for Local –

Representations, presented at IEEE Conference on Computer Vision and Pattern Recognition,

Kauai, HI, 2001.

[21] A. Hyv€aarinen, The fixed-point algorithm and maximum likelihood estimation for independent

component analysis, Neural Processing Letters 10 (1999) 1–5.

[22] A. Hyv€aarinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley, New York, 2001.

[23] P. Kalocsai, H. Neven, J. Steffens, Statistical Analysis of Gabor-filter Representation, presented at

IEEE International Conference on Automatic Face and Gesture Recognition, Nara, Japan, 1998.

[24] N. Kambhatla, T.K. Leen, Dimension reduction by local PCA, Neural Computation 9 (1997) 1493–

1516.

[25] J. Karvanen, J. Eriksson, V. Koivunen, Maximum Likelihood Estimation of ICA-model for Wide

Class of Source Distributions, presented at Neural Networks in Signal Processing, Sydney, 2000.

[26] M. Kirby, L. Sirovich, Application of the Karhunen-Loeve procedure for the characterization of

human faces, IEEE Transactions on Pattern Analysis and Machine Intelligence 12 (1990) 103–107.

[27] D.D. Lee, H.S. Seung, Learning the parts of objects by non-negative matrix factorization, Nature 401

(1999) 788–791.

[28] T.-W. Lee, T. Wachtler, T.J. Sejnowski, Color oppency is an efficient representation of spectral

properties in natural scenes, Vision Research 42 (2002) 2095–2103.

[29] S.Z. Li, X. Hou, H. Zhang, Q. Cheng, Learning Spatially Localized, Parts-Based Representation,

presented at IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, 2001.

[30] C. Liu and H. Wechsler, Comparative Assessment of Independent Component Analysis (ICA) for

Face Recognition, presented at International Conference on Audio and Video Based Biometric

Person Authentication, Washington, DC, 1999.

[31] A.M. Martinez, A.C. Kak, PCA versus LDA, IEEE Transactions on Pattern Analysis and Machine

Intelligence 23 (2001) 228–233.

[32] B. Moghaddam, Principal Manifolds and Bayesian Subspaces for Visual Recognition, presented at

International Conference on Computer Vision, Corfu, Greece, 1999.

[33] B. Moghaddam, A. Pentland, Beyond Eigenfaces: Probabilistic Matching for Face Recognition,

presented at International Conference on Automatic Face and Gesture Recognition, Nara, Japan,

1998.

[34] H. Moon, J. Phillips, Analysis of PCA-based face recognition algorithms, in: K. Boyer, J. Phillips

(Eds.), Empirical Evaluation Techniques in Computer Vision, IEEE Computer Society Press, Los

Alamitos, CA, 1998.

[35] P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-

recognition algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (2000)

1090–1104.

[36] L. Sirovich, M. Kirby, A low-dimensional procedure for the characterization of human faces, Journal

of the Optical Society of America 4 (1987) 519–524.



B.A. Draper et al. / Computer Vision and Image Understanding 91 (2003) 115–137 137
[37] D. Socolinsky and A. Selinger, A Comparative Analysis of Face Recognition Performance with

Visible and Thermal Infrared Imagery, presented at International Conference on Pattern Recognition,

Quebec City, 2002.

[38] D. Swets, J. Weng, Using discriminant eigenfeatures for image retrieval, IEEE Transactions on

Pattern Analysis and Machine Intelligence 18 (1996) 831–836.

[39] M.E. Tipping, C.M. Bishop, Mixtures of probabilistic principal component analysers, Neural

Computation 11 (1999) 443–482.

[40] M. Turk, A. Pentland, Eigenfaces for recognition, Journal of Cognitive Neuroscience 3 (1991) 71–86.

[41] P.C. Yuen, J.H. Lai, Independent Component Analysis of Face Images, presented at IEEEWorkshop

on Biologically Motivated Computer Vision, Seoul, 2000.

[42] M. Zibulevsky, B.A. Pearlmutter, Blind Separation of Sources with Sparse Representation in a Given

Signal Dictionary, presented at International Workshop on Independent Component Analysis and

Blind Source Separation, Helsinki, 2000.

[43] A. Ziehe, G. Nolte, T. Sander, K.-R. M€uuller, G. Curio, A Comparison of ICA-based Artifact

Reduction Methods for MEG, presented at 12th International Conference on Biomagnetism, Espoo,

Finland, 2000.


	Recognizing faces with PCA and ICA
	Introduction
	Background
	Face recognition
	PCA
	ICA
	Architecture I: statistically independent basis images
	Architecture II: statistically independent coefficients


	Recognizing facial identities
	The baseline system
	The FERET face data
	Comparison: InfoMax vs PCA
	Comparisons to previous results
	InfoMax vs. FastICA

	Recognizing facial actions
	Methodology
	Results and discussion

	Conclusion
	Acknowledgements
	Partition of facial action data set
	More recognition results for facial action sequences
	References


