The Personal Terabyte

Ann L. Chervenak College of Computing, Georgia Tech

Outline

- The Home Environment and Workload
- Overview of Research Issues
 - Prefetching from the Personal Terabyte disk
 - Prefetching from the World Wide Web
 - Backup and Reliability
 - Disk System Architecture and File System Issues
- Summary

The Home Environment

- Multiple Network Connections to Outside World
 - High-bandwidth, low-cost broadcast (cable, satellite) Gbits/sec
 - Lower-bandwidth, higher-cost point-to-point (wired and wireless) Tens of Mbits/sec

The Home Environment

• Network within the home

- Connect appliances, security system, etc.
- Ethernet, Firewire, CEBus
- Compute engines, displays
- The Personal Terabyte
 - Single disk or disk array?
 - Central server or distributed?
 - Traditional or new disk architecture?

The Home Workload

Prefetch, cache and pre-process WWW data Archive of personal and family data • Home movies, photographs Storage, playback of entertainment video **Information databases** Games, virtual environments Work: Simulations, large data sets Security system: video monitoring of children, pets Word processors, spreadsheets, etc.

■ 6 ■

Outline

- The Home Environment and Workload
- Overview of Research Issues
 - Prefetching from the Personal Terabyte disk
 - Prefetching from the World Wide Web
 - Backup and Reliability
 - Disk System Architecture and File System Issues
- Summary

Increasing gap between CPU and disk speeds CPU: 60%/year Disk: 10%/year

Page Faults Take Millions of Clock Cycles: Prefetch disk pages into memory

Techniques: Disk readahead or application or Operating system prediction

8

Prefetching From Disk to Main Memory

Two main prefetching approaches:

- 1. Applications provide *deterministic* "hints" of what blocks they will access
 - Decide *whether to prefetch* a block based on **cost-benefit analysis**
 - Hugo Patterson (CMU)
- 2. Predict future accesses based on past accesses
 - *Probabilistic* hints or predictions
 - Probability trees (Duke, Kentucky), Markov models (Illinois)

Our Approach: a Hybrid Scheme

What to prefetch: predict based on past *Whether to prefetch*: use cost/benefit analysis

Deciding What to Prefetch

• Algorithm from Duke University: Probability tree updated on every access

Prefetch candidates: high probability of being accessed

■ 10 ■

Deciding Whether to Prefetch: Cost-Benefit Analysis

Adapted from Hugo Patterson's Informed Prefetching

Must calculate:

- **Benefit of allocating a cache buffer** to prefetch an additional block
- **Cost to reclaim a buffer** from the *demand cache* or *prefetch cache* to hold the prefetched block

Prefetch Cache

Prefetch block only when *benefit exceeds cost*

Prefetching and Caching World Wide Web Data

Prefetch/cache a subset of WWW

• Avoid network and server delays

Cache general interest data from broadcasts

- Filter data based on user interests
- Even Personal Terabyte can't store everything

Prefetch data for specific interests over Internet

• Generate network traffic: responsible prefetching

Prefetching from World Wide Web

WebSnatcher

- Customized prefetching of WWW data
- Periodically prefetch according to user profile
- Store results on local disk
- Avoid delays from network and server loads

Profile includes:

- List of servers that are "functionally equivalent"
- Used for anycasting

Average: Choose server with best mean performance

Moving Weighted Average: Choose server with smallest moving weighted average (Weigh recent history more heavily)

•
$$D_{0,j} = X_{0,j}$$

•
$$D_{i,j} = \alpha X_{i,j} + (1-\alpha)D_{i-1,j}$$

Minimum: Visit each server periodically, choose server with minimum response times

Hop Count: Choose server with smallest hop count from client machine to server (use traceroute)

Round Robin: Select servers in round robin fashion

Evaluating Resolver Algorithms

Experiments with four anycast groups: News stories, Seattle weather forecast, "Today in history", Leo Horoscope

Average and moving weighted avg. close to optimal

Hop count, round robin perform poorly Don't use past experience

Importance:

- Automatically generate network traffic: must be responsible
 - Choose server with quick response to reduce network and server load
- Improve performance for interactive applications

Protecting the Reliability of Personal Terabyte Data

Disk Array Techniques

- Protect against individual component failures
- Will consumers buy extra disks for reliability?

Still need recovery from disasters, recovery of accidentally-deleted files

Traditional full backups will take longer

- Capacity increases 60% per year
- Transfer rate 40% per year

Desirable Backup Features for the Personal Terabyte

Incremental-only backup schemes

- Write file when it is created
- Then only write incremental changes

Snapshots and copy-on-write

• On-line backup, save old versions of files

Selective backup, compression

Automated network backup off-site

• Few backup home data

Measuring College of Computing backup system, evaluating incremental-only algorithm

Personal Terabyte Storage Architecture

Centralized or distributed server

- Information furnace
- One disk or an array

Network-Attached Disks

• Data need not pass through host

Active or Intelligent Disks

- Partition applications, run part on disk's CPU
- Home applications:
 - Optimize disk layout for backup
 - Background reorganization of data
 - Processing, delivering multimedia data

File System Organization

Must support:

- Large files
- Large numbers of files
- Efficient storage and retrieval

Block sizes

• Fixed blocks, multiple block sizes or extents

Metadata

- Inodes
- Limited levels of indirection (Frangipani)
- B-Trees (XFS)

Summary: Managing and Exploiting the Personal Terabyte

- Prefetching from the Personal Terabyte disk
 - Cost-benefit analysis, predictive prefetching
- Prefetching from the World Wide Web
 - WebSnatcher, Anycasting paradigm

• Backup and Reliability

- Experiments with incremental-only; snapshots
- Disk System Architecture and File System Issues
 - NASD, active disks; Data and metadata layout