
MASSA:
Mobile Agents Security through Static/Dynamic Analysis

Alessandro Orso
College of Computing

Georgia Institute of Technology
orso@cc.gatech.edu

Giovanni Vigna
Department of Computer Science

University of California, Santa Barbara
vigna@cs.ucsb.edu

Mary Jean Harrold
College of Computing

Georgia Institute of Technology
harrold@cc.gatech.edu

Abstract

Existing Mobile Agent Systems (MASs) suffer from security problems that must be solved, if mobile code is to
be used in the development of mission-critical, real-world applications. In this paper we propose a framework
that provides automated support for verification and analysis of MASs and allows for identifying security issues
before the MASs are placed into action. The proposed approach is centered around an abstract reference model
and combines static and dynamic security analysis techniques explicitly tailored to mobile agent systems. Our
preliminary work shows that, in the cases we studied, appropriate analysis techniques facilitate the identification of
security vulnerabilities in MASs.

Keywords: Mobile Agent Systems, Security Analysis, Static Analysis.

1 INTRODUCTION

Mobile-code technologies [4, 7] are attracting a
great deal of interest from both industry and academia.
In particular, the mobile-agent paradigm has been used
successfully to design applications ranging from dis-
tributed information retrieval [8], to network manage-
ment [2], to wireless-based services for dynamically re-
configured network links [14].

Although the mobile-agent paradigm provides a
number of advantages with respect to the traditional
client-server approach, some fundamental issues must
be addressed for this new approach to be universally
accepted. In particular, security and verification issues
cause major concerns among potential users of mobile
agent systems. Mobile Agent Systems (MASs) pro-
vide a distributed computing infrastructure composed
of places where agent-based applications belonging to
different (usually untrusted) users can execute concur-
rently. The places that compose the infrastructure may
be managed by different authorities (e.g., a university
or a company) with different and possibly conflicting
goals, policies, and security requirements, and may
communicate across untrusted communication infras-
tructures, such as the Internet.

Even though the security issues related to the use of
MASs have been studied in different contexts by both
the distributed-systems and the computer-security com-
munities, the results achieved in these fields have sel-
dom been used either to secure existing MASs or to de-
sign and implement secure new MASs. Unfortunately,
MASs are often proof-of-concept prototypes whose fo-
cus is on mobility mechanisms, and security is left as
future work. Some existing systems do provide some
basic mechanisms for security and for the definition
of security policies, but these mechanisms are usually
primitive. Moreover, the security mechanisms available
today are far from providing a sound, comprehensive
security solution—the results achieved to date address
only a subset of problems and provide only specific so-
lutions for such problems (e.g., [9, 15]).

In short, existing MASs suffer from security prob-
lems. These problems must be overcome if mobile code
is to be used in the development of mission-critical,
real-world applications. To solve these issues, we need
a general solution that, independent of the particular
mobile-agent technology under consideration, is able
to guide and support MAS developers in the analysis of
security issues during the design and implementation of
services and applications.

In this paper, we propose a framework that provides
automated support for modeling and analysis of secu-

rity issues in MASs, and allows for an early verifica-
tion of MASs before they are placed into action. The
framework is based on a novel approach that integrates
static and dynamic analyses so that the results from the
former can be used to guide the latter and vice versa.
This integration is achieved through the presence of an
overall abstract reference model.

Our preliminary results show that, in the cases we
studied, appropriate analysis techniques facilitate iden-
tification of security vulnerabilities in MASs. In partic-
ular, we have successfully applied dynamic, black-box
techniques to identify threats to the security of MASs,
and static, white-box techniques to diagnose early the
possible presence of such threats. We are currently per-
forming further research to identify additional types of
analyses that may help evaluating the security of exist-
ing MASs and thus provide guidance in developing new
secure MASs. We strongly believe that the complemen-
tary use of static and dynamic analysis techniques is the
key to addressing many security problems in a general
and efficient way.

2 A FRAMEWORK FOR EVALUAT-
ING THE SECURITY OF MOBILE
AGENT SYSTEMS

Security vulnerabilities in MASs can be exploited
in different ways by a determined attacker (see Refer-
ence [6] for a list of examples). Unfortunately, these
kinds of vulnerabilities are not visible and obvious, but
rather hidden in the peculiarities of the system. MASs
are complex, and we believe that they must be verified
through dynamic or static analysis after the system is
developed and before it is deployed and used. This
approach reflects the approach that we usually follow
when developing software systems in general: although
we have powerful design techniques and programming
languages enforcing good programming practices, ver-
ification of the resulting software is always necessary.

Our overall goal is to define a general approach for
the verification of MASs that is able to provide both the
developer and the user of a MAS with a higher level
of confidence in the security mechanisms provided by
the system. We are convinced that such assurance is
a necessary prerequisite for the widespread acceptance
of applications based on mobile agents. To this end, we
propose a framework that is composed of a reference
model and a set of static and dynamic analysis tech-
niques. The reference model lets us develop a general
approach to the problem of MAS security by abstract-
ing security mechanisms and by defining attack classes
in a technology-independent way. The set of dynamic

2

Internet

Agent

���������
���
���
���
���
���
���
�����

Agent Agent

	
 ��
�
��� �� ������
Agent

Place

Agent System

PlacePlace

���������
���
���
���
���
���
���
����� �� �� � !�! "# $�$%�%

Agent

&�&'�'(�(
(�(
)�)
)�)
�
�
+�+
+�+,-

Agent

./ 01 2�23�3 45 6�67�7

AgentAgentAgentAgent

8�8�88�8�89�9�99�9�9
:�:�:;�;<�<�<=�=�=

>�>?�?

R
eg

io
n

M
an

ag
em

en
t S

ys
te

m

Agent

Region

Place

Agent System

PlacePlace

Place

Agent System

PlacePlace

Resources

(stack and instruction pointer)

Execution state

Code space

Data space

Figure 1. An abstract reference model for MASs.

techniques consists of a library of attack patterns de-
fined on the reference model. The attack patterns fo-
cus on the authentication, authorization, and account-
ing functionalities provided by MASs. The attack pat-
terns can be instantiated into actual agents that perform
particular tests on the system under analysis. The set
of static techniques consists of program analysis tech-
niques that are (1) existing techniques that we adapt or
extend, (2) novel approaches that we develop, or (3)
combinations of techniques that we integrate. We will
use several such techniques to perform analysis of the
code of the MASs, including exception analysis, escape
analysis, and data-dependence analysis (as discussed in
Section 2.2).

We exploit the framework to verify whether a given
MAS is secure using the following approach: (1) map
the MAS onto the reference model; (2) based on the
mapping between the model and the MAS, identify a
set of security issues for the system; (3) analyze the
involved security mechanisms of the MAS using static
and dynamic analysis techniques; and (4) if necessary,
extend the framework to account for new characteristics
of MASs or new classes of threats to their security not
yet considered. Beside its generality, one major advan-
tage of the framework is that it facilitates automation.
Some steps, such as 2 and 3, can be fully automated,
and the rest can be supported by suitably defined tools.

2.1 A Reference Model for Security Analysis

As discussed in the Introduction, existing ap-
proaches for assessing the security of MASs lack gen-
erality and in many cases address only specific prob-
lems. To provide a general approach to the problem of
MAS security, we first define a reference model that can
help in abstracting security mechanisms and in defining
attack classes in a way that is independent of a spe-
cific technology. In this way, we can factor the knowl-
edge gathered through the analysis of different systems,
and leverage previous experience in evaluating the se-
curity of MASs. The definition of an abstract reference
model has several advantages: (1) it provides common
concepts, abstractions, and terminology for the security
analysis; (2) it allows for highlighting the security ab-
stractions available in the different languages; and (3)
it supports the definition of general attack classes that
can then be instantiated on particular systems.

In previous work, Fischmeister, Vigna, and Kem-
merer proposed a preliminary reference model (shown
in Figure 1), defined based on the analysis of a number
of existing systems and their security models. The main
components of the model are mobile agents, places,
agent systems, regions, and principals. Mobile agents
are computational units consisting of a code space, an
execution state, and a data space. The code space con-
tains a set of references to code fragments that can be
invoked during the execution of an agent. The execu-

3

tion state contains all the information related to the evo-
lution of an agent and the program counter. The data
space contains references to external resources that can
be accessed by an agent. Places support the execution
of agents. Each place provides a local infrastructure to a
visiting mobile agent. The place infrastructure supports
the execution of particular procedures as defined in the
associated code repository and provides access to lo-
cal resources. Access to local resources is regulated by
the place’s security system, which is composed of three
subsystems whose tasks are authentication, authoriza-
tion, and accounting. Each subsystem contains a policy
that specifies how the security functionality is config-
ured, a set of security resources that represent dynamic
information about the state of the system, and a code
repository that contains the definition of the procedures
used to implement the security subsystem mechanisms.
Due to space reasons, the model is described in detail
elsewhere [6].

The model has been successfully used to de-
scribe the security mechanisms of four MASs, namely,
Grasshopper,1 Agent TCL,2 Aglet,3 and Jumping
Beans.4 We will extend this model and use it to ana-
lyze additional MASs. To this end, we will first select
a set of additional MASs to be considered, and then fit
each of the considered MASs into the reference model,
to verify whether the model is adequate to represent the
characteristics of the MAS or it needs to be extended.
We will also extend the model by including other ref-
erence models, such as the OMG’s MASIF specifica-
tion [1].

2.2 Security Analysis Techniques for MASs

We use the reference model as a basis for identifying
a set of security threats (i.e., possible attack patterns)
and analysis techniques to address them. For example,
in the case of authorization mechanisms, the security
threats can be identified by means of an access ma-
trix. Intuitively, the access matrix helps to identify the
possible access space for a component, that is, which
other components in the model can be accessed (e.g.,
by means of an object reference or a file descriptor).
The analysis of a system is performed by analyzing
the different access matrices and populating the types
of access allowed between components implemented
in the particular system. For each possible access, the
possible operations and subset of these operations that
would actually be permitted must be determined. Then

1http://www.ikv.de/products/grasshopper/
2http://www.cs.dartmouth.edu/˜agent
3http://www.trl.ibm.co.jp/aglets/
4http://www.jumpingbeans.com

each operation is exercised and the outcome is verified
against the defined policy.

Once the possible threats to security are identified on
the model, the attacks are mapped onto the particular
MAS under analysis. This provides an instantiation of
the attack pattern for dynamic analysis and defines the
element of the MAS implementation to be verified us-
ing static analysis techniques. As an example, consider
two attack patterns: an attack pattern aimed at the dis-
closure of a MAS code repository and an attack pattern
whose goal is to exercise the access to the MAS policy
database. The code disclosure attack pattern can be in-
formally expressed as follows: (1) raising of uncaught
exceptions; (2) inspection of the stack to collect class
names; (3) use of reflection classes to gather informa-
tion on the code repository through the class names pre-
viously identified; and (4) identification of static meth-
ods in the code repository. The policy database attack
pattern is “triggered” by the fact that a reference to the
class implementing the policy can be obtained by call-
ing one of the static methods identified during the pre-
vious attack. The policy database attack pattern can
be expressed as follows: (1) obtain a reference to the
policy component; (2) exercise read access on all the
elements of the component API; and (3) exercise write
access on all the elements of the component API. These
two attack patterns were instantiated in the context of
the Aglet system [10], and led to a compromise. The at-
tacks let us spot the specific chain of problems causing
the vulnerability: (1) the “tricky” interaction between
the agent and the MAS was not anticipated by the de-
signers of the Aglet security system (i.e., an aglet was
not supposed to access the policy database); (2) as a
consequence, modifications to the policy database were
not thoroughly checked by the Security Manager.

The analysis of this vulnerability provides input
and scope for the corresponding, complementary static
analysis. For this vulnerability, we have identified three
static analysis techniques that are suitable: exception
analysis, escape analysis, and data-dependence analy-
sis. In previous work, Harrold and Sinha developed
techniques to represent exception-handling constructs
[16]; Orso, Harrold, and Sinha studied data depen-
dences in complex languages [12, 13]; and Harrold and
Liang tailored existing escape analysis techniques [3, 5]
to the Java language [11]. To address this vulnerability,
we combined those techniques (1) to enable the detec-
tion of exceptions that can be raised within a system
and are not caught by any exception handler, and (2)
to consequently identify a set of methods and attributes
that are visible through analysis of stack traces in such
uncaught exceptions. The instantiation of this analysis

4

for the Aglet system provided us with a list of possibly
accessible methods and attributes that were not part of
the Aglet’s published API. This information can be pro-
vided to the MAS developer as a warning about possi-
ble security problems, or can be used to perform further
analyses, both static and dynamic.

This example illustrates the general approach that
we propose. The approach, as we stated above, is to use
dynamic techniques to identify security vulnerabilities,
and then develop static analysis techniques that are ap-
propriate for the identification of the problem(s) caus-
ing such vulnerabilities. By doing this, we can popu-
late the framework with a rich set of analysis techniques
that address different security issues.

The techniques that we will develop depend on the
security vulnerabilities we find during our dynamic
analyses. We will build on our previous work in analy-
sis, and adapt, extend, develop, or combine techniques
required for detecting security threats. The main prob-
lem with this use of static analysis techniques is that,
due to their computational cost in terms of both space
and time, practical techniques usually compute con-
servative approximations of the results. This approx-
imations can lead to the reporting of spurious results
when evaluating the security of a MAS. For example,
the analysis of the Aglet system identified several pub-
lic static methods, but the method used to access the
Aglet policy database may be the only method actually
“dangerous” for the system.

We account for this problem in two ways. First, we
adapt and extend the static analysis techniques. More
precisely, we can adapt an analysis by tuning its preci-
sion (to decrease the number of spurious results) or ex-
tend the analysis technique by including different kinds
of analyses (to “filter” the results and thus increase their
accuracy). For example, the addition of an analysis of
the Security Manager, to verify which accesses to the
system are checked and which ones are not, may elim-
inate some of the methods identified through escape
analysis. Second, we use static and dynamic analyses
jointly, when the results of the former are too imprecise
to be useful. In this second case, the results of the static
analyses will be still useful to avoid performing part of
the dynamic analyses, so as to increase the efficiency
of the overall analysis—in general, the static analysis
techniques that we consider are safe, and therefore their
results can be used to guide the dynamic analysis by
pruning the analysis space.

References

[1] MASIF - Mobile Agent System Interoperability Facil-

ity. Draft, Oct. 3 1998.
[2] M. Baldi and G. Picco. Evaluating the Tradeoffs of Mo-

bile Code Design Paradigms in Network Management
Applications. In R. Kemmerer, editor, Proc. of the 20 �

�

Int. Conf. on Software Engineering, 1998. To appear.
[3] B. Blanchet. Escape analysis for object oriented lan-

guages. application to Java. In OOPSLA’99 ACM Con-
ference on Object-Oriented Systems, Languages and
Applications, pages 20–34, Oct. 1999.

[4] A. Carzaniga, G. Picco, and G. Vigna. Designing
Distributed Applications with Mobile Code Paradigms.
In R. Taylor, editor, Proc. of the 19 �

�
Int. Conf. on

Software Engineering (ICSE’97), pages 22–32. ACM
Press, 1997.

[5] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar,
and S. Midkiff. Escape analysis for Java. In OOP-
SLA’99 ACM Conference on Object-Oriented Systems,
Languages and Applications, pages 1–19, Oct. 1999.

[6] S. Fischmeister, G. Vigna, and R. Kemmerer. Evaluat-
ing The Security Of Mobile Agent Systems. Technical
report, University of California, Santa Barbara, 2000.

[7] A. Fuggetta, G. Picco, and G. Vigna. Understanding
Code Mobility. Transactions on Software Engineering,
24(5):342–361, May 1998.

[8] C. Ghezzi and G. Vigna. Mobile Code Paradigms and
Technologies: A Case Study. In K. Rothermel and
R. Popescu-Zeletin, editors, Mobile Agents: 1

�
� In-

ternational Workshop MA ’97, volume 1219 of LNCS,
pages 39–49. Springer, Apr. 1997.

[9] F. Hohl. Time Limited Blackbox Security. In G. Vi-
gna, editor, Mobile Agents and Security, volume 1419
of LNCS. Springer, 1998.

[10] D. Lange and D. Chang. IBM Aglets Workbench—
Programming Mobile Agents in Java. IBM Corp. White
Paper, Sept. 1996.

[11] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analysis for java. Submitted for publication,
February 2001.

[12] A. Orso, S. Sinha, and M. J. Harrold. Effects of pointers
on data dependences. In Proc. of the 9 �

�
International

Workshop on Program Comprehension, May 2001. (To
appear).

[13] A. Orso, S. Sinha, and M. J. Harrold. Incremental slic-
ing based on data-dependences types. Submitted for
publication, January 2001.

[14] G.-C. Roman, G. P. Picco, and A. L. Murphy. Software
Engineering for Mobility: A Roadmap. In A. Finkel-
stein, editor, The Future of Software Engineering, pages
241–258. ACM Press, 2000.

[15] T. Sander and C. Tschudin. Protecting Mobile Agents
Againts Malicious Hosts. In Mobile Agents and Secu-
rity, volume 1419. Springer-Verlag, 1998. ISBN 3-540-
64792-9.

[16] S. Sinha and M. J. Harrold. Analysis and testing of
programs with exception-handling constructs. IEEE
Transactions on Software Engineering, 26(9,):849–
871, September 2000.

5

