Proceedings of the I nternational Conference on Software Maintenance (ICSM '01), | EEE Copyright

Incremental Slicing Based on Data-Dependences Types

Alessandro Orso, Saurabh Sinha, and Mary Jean Harrold
College of Computing, Georgia Institute of Technology
{orso,sinha,harrold} @cc.gatech.edu

Abstract

Program slicing is useful for assisting with many
software-maintenance tasks. The presence and frequent us-
age of pointers in languages such as C causes complex
data dependences. To function effectively on such pro-
grams, slicing techniques must account for pointer-induced
data dependences. Existing slicing techniques do not dis-
tinguish data dependences based on their types. This paper
presents a new slicing technique, in which slices are com-
puted based on types of data dependences. This new slicing
technique offers several benefits and can be exploited in dif-
ferent ways, such as identifying subtle data dependences for
debugging, computing reduced-size slices quickly for com-
plex programs, and performing incremental slicing. This
paper describes an algorithm for incremental slicing that
increases the scope of a slice in steps, by incorporating dif-
ferent types of data dependences at each step. The paper
also presents empirical results to illustrate the performance
of the technique in practice. The results illustrate that in-
cremental slices can be significantly smaller than complete
slices. Finally, the paper presents a case study that explores
the usefulness of incremental slicing for debugging.

1 Introduction

A program slice of a program P, computed with respect
to a slicing criterion < s,V >, where s is a program point
and V is a set of program variables, includes statements in
‘P that may influence, or be influenced by, the values of the
variables in V at s [24]. A program slice identifies state-
ments that are related to the slicing criterion through transi-
tive data and control dependences. A slice provides infor-
mation that is useful for several software-maintenance tasks,
such as identifying the cause of a software failure, evalu-
ating the effects of proposed modifications to the software,
and determining parts of the software that should be retested
after modifications. To function effectively on programs
that use pointers, slicing techniques must accommodate the
effects of these pointers on data-dependence relationships;

pointers are used frequently in programs written in widely-
used languages such as C. The presence of pointers causes
subtle data dependences in these programs. Much research
has addressed the problem of computing slices in the pres-
ence of pointers (e.g., [1, 3, 5, 15]). None of that research,
however, has considered classifying data dependences into
different types and investigating how these types affect the
computation of slices. In recent work, we introduced a fine-
grained classification of data dependences that arise in the
presence of pointers [17]. The classification distinguishes
data dependence based on their “strength” and on the cer-
tainty with which the data dependences occur along various
execution paths. We also presented empirical results that il-
lustrate the distribution of such dependences for a set of C
subjects and introduced a new slicing paradigm that com-
putes slices based on types of data dependences. The main
benefit of this paradigm is that it lets us compute slices by
considering only a subset of the types of data dependences.
By ignoring certain data dependences, the paradigm pro-
vides a way of reducing the sizes of slices, thus making the
slices more manageable and usable.

In this paper, we illustrate a technique for incremental
slicing, based on the new slicing paradigm. We present an
algorithm that computes a slice in several steps, by incor-
porating additional types of data dependences at each step.
This technique can be useful for improving the effectiveness
of various applications of slicing. For example, consider the
use of slicing for program comprehension. When we are try-
ing to understand just the overall structure of the program,
we can ignore weak data dependences and focus on only
stronger data-dependence types. To do this, we can use the
incremental slicing technique to start the analysis by con-
sidering only strong data dependences, and then augment
the slice incrementally by incorporating additional weaker
data dependences. This approach lets us focus initially on a
smaller, and thus easier to understand, subset of the program
and then consider increasingly larger parts of the program.

Alternatively, for applications such as debugging, we
may want to start focusing on weak, and therefore not obvi-
ous, data dependences. By doing this, we can identify subtle
pointer-related dependences that may cause unforeseen be-

int i, j;

m:gg)'{ su int add(int sum) {
S osum 7 if (sum> 100) {
1 readi; 8 s
2 read j; } = 0
3 sum:O;_ o Sum= sum+ |
2 while (1 <10) { 10 read j;
5 sum = add(sum); f N
11 i =i + 1;
} ;
6 print sum 12 return sum }
}

Figure 1. Program Sunt.

havior in the program.

Interprocedural slicing techniques based on the system-
dependence graph (SDG) [11, 22] and data-flow equations
[10, 24] form two alternative, general classes of slicing tech-
niques. To compute incremental slices, we extend the SDG-
based approach for slicing: we extend the SDG to accom-
modate data-dependence types, and we modify the SDG-
based slicing algorithm to compute summary information
for procedures while slicing.

In this paper, we also present empirical results that illus-
trate the performance of the incremental slicing technique
in practice. We also present a case study in which we inves-
tigate the usefulness of the incremental slicing technique for
debugging.

The main contributions of the paper are:

e An incremental slicing technique that computes a slice
in steps, by incorporating additional types of data de-
pendences at each step.

e Empirical studies that illustrate the performance of the
incremental slicing technique in practice.

e A case study that illustrates the use of the incremental
slicing technique for debugging.

2 Background
2.1 Program dlicing

For this work, we extend the SDG-based slicing ap-
proach [11, 22]; the approach based on data-flow equations
[10, 24] could be extended similarly.

A system-dependence graph (SDG) [11] is a collection
of procedure-dependence graphs (PDGs) [7]—one for each
procedure—in which nodes are statements or predicate ex-
pressions. Data-dependence edges represent flow of data
between statements or expressions; control-dependence
edges represent control conditions on which the execution
of a statement or expression depends. A data dependence is
atriple (d, u, v) where d and u are statements and v is a vari-
able, d defines v, u uses v, and there exists a path from d to
u along which v is not redefined. For example, in program
Sumil (shown in Figure 1), (1, 4, i) is a data dependence.

—— control dependence
rrrrrrr = flow dependence
————— > parameter—in/-out

— » call
—» Ssummary

Figure 2. System-dependence graph for Sunt.

Each PDG contains an entry node that represents entry
into the procedure. To model parameter passing,® an SDG
associates formal parameter nodes with each procedure-
entry node: a formal-in node is created for each formal pa-
rameter that may be referenced or modified by the proce-
dure; a formal-out node is created for each formal parame-
ter that may be modified [13] by the procedure and for the
return value of a function. An SDG associates a call node
and a set of actual parameter nodes with each call site in
a procedure: an actual-in node for each actual parameter at
the call site that may be referenced or modified by the called
procedure; an actual-out node for each actual parameter that
may be modified by the called procedure and for the return
value if it is assigned to a variable at the call site.

An SDG connects PDGs at call sites. A call edge con-
nects a call node to the entry node of the called procedure’s
PDG. Parameter-in and parameter-out edges represent pa-
rameter passing: parameter-in edges connect actual-in and
formal-in nodes, and parameter-out edges connect formal-
out and actual-out nodes.

Figure 2 shows the SDG for program Suni. In the
figure, ellipses represent program statements (labeled by
statement numbers), parameter nodes, entry points, and call
sites; various types of edges (shown by the key) represent

1Global variables are treated as parameters.

int i;

mai n() { int add(int val,
int *p; int sum) {
int j, suml, sun®; int *q, k;
1 sunl = 0; 12 read k;
2 sunR = 0; 13 if (sum> 100) {
3 read i, j; 14 i =9;
4 while (i <10) { }
5 if (j <0) { 15 sum= sum+ i;
6 p = &sunt; 16 if (i <k) {
} 17 g = &val;
el se { }
7 p = ♪ el se {
} 18 g = &;
8 *p = add(j, *p); }
9 read j; 19 sum = sum + *q;

} 20 i =i + 1
10 sunl = add(j, sunl); 21 return sum
11 print suml, sung; }

Figure 3. Program Sung.

dependences and bindings. The parameter nodes are labeled
by the variable name to which they correspond; the formal-
out node for the return value is labeled ‘ret’.

Horwitz, Reps, and Binkley [11] compute interprocedu-
ral slices by solving a graph-reachability problem on an
SDG. To restrict the computation of interprocedural slices
to paths that correspond to legal call/return sequences, an
SDG uses summary edges to represent the transitive flow of
dependence across call sites caused by data dependences or
control dependences. A summary edge connects an actual-
in node and an actual-out node if the value associated with
the actual-in node may affect the value associated with the
actual-out node.

The interprocedural backward slicing algorithm consists
of two phases. The first phase traverses backwards from
the node in the SDG that represents the slicing criterion
along all edges except parameter-out edges, and marks those
nodes that are reached. The second phase traverses back-
wards from all nodes marked during the first phase along
all edges except call and parameter-in edges, and marks
reached nodes. The slice is the union of the marked nodes.

For example, consider the computation of a slice for
< 5,{i} >; this slicing criterion is represented in the SDG
of Figure 2 by the actual-out node for i at the call site to
add. In its first phase, the algorithm adds to the slice the
nodes shaded darkly in Figure 2. In its second phase, the al-
gorithm adds to the slice the nodes that are reachable (along
a backward traversal) from those added in the first phase;
these nodes are shaded lightly in the figure.

2.2 Datadependencesin the presence of pointers
The presence of pointer dereferences gives rise to com-

plex data dependences in a program. In such programs,
when analyzing a definition or a use, it may not be possi-

Table 1. Classifi cation of data dependences [17].

Ddef- | Ddef- Pdef- Pdef—

Duse Puse Duse Puse
DRD-K type 1 type 7 | type 13 | type 19
DPRD-K type 2 type 8 | type 14 | type 20
DRD+K type 3 | type9 | type 15 | type2l
DPRD+K || type4 | type 10 | type 16 | type 22
PRD-K type 5 | type 11 | type 17 | type 23
PRD+K type 6 | type 12 | type 18 | type 24

ble to identify unambiguously the variable that is defined
or used; such a definition or use could modify or use one
of several variables. For example, consider program Sun?
(Figure 3).2 The definition in statement 8 can modify either
suml or sun® depending on how the predicate in state-
ment 5 evaluates. To distinguish such definitions from those
in which the variable can be identified unambiguously—for
example, the definition of suml in statement 1—we clas-
sify the definition of suml (and of Sun®) in statement 8 as
a possible definition and the definition of Sumil in statement
1 as a definite definition. Like definitions, we also classify
uses as definite or possible. Finally, based on the occur-
rence of types of the definitions along a path, we classify
paths from the definition to the use into one of six types.
Table 1 lists the types of data dependences that result
from combining the types of definitions, uses, and paths
[17]. The first column in the table lists the types of paths;
these paths are distinguished based on whether they con-
tain definite or possible redefinitions of the relevant variable.
The naming convention for the paths reflects the types of re-
definitions that occur along the paths. The letters preceding
“RD” in the name indicate the type of reaching definition: a
“D” indicates a definite reaching definition, whereas a “P”
indicates a possible reaching definition. A “+K” or a “-K”
indicates the presence or absence, respectively, of a definite
kill of the relevant variable. For example, the set of paths
IT from a definition of variable v to a use of v is classified
as DPRD+K if (1) at least one path in II contains no defi-
nite redefinition of v, (2) at least one path in II contains a
possible redefinition of v, and (3) and at least one path in IT
contains a definite redefinition of v. For further example, IT
is is classified as DPRD-K if previously defined conditions
(1) and (2) hold, but condition (3) does not. To illustrate
some of the types of data dependences that occur in Sun,
(1, 8, suml) is a type 8 data dependence: node 1 contains a
definite definition of suml; node 8 contains a possible use
of sunt; the set of paths from node 1 to 8 is DPRD-K be-
cause the set includes a path that satisfies condition (1) (this
path does not iterate the loop in statement 4) and a path that
satisfies condition (2) (this path iterates the loop in state-

2sun® is an extension of Surrl with the addition of pointers; it is overly
complicated to illustrate our technique and the complex dependences that
can be introduced by pointers.

ment 4 at least once). Similarly, (8, 11, sun®) is a type 14
data dependence. Reference [17] provides additional details
of the classification scheme and describes the algorithm for
computing the types of data dependences.

3 Incremental Slicing in the Presence of
Pointers

The classification of data dependences into distinct types
leads to a new slicing paradigm, in which only statements
that are related to the slicing criterion by one or more spec-
ified types of data dependences are included in the slice. In
the next subsection, we describe this paradigm. Based on
the new paradigm, we then describe an incremental slicing
technique for computing a slice.

3.1 New dlicing paradigm

Traditional slicing techniques (e.g., [10, 11, 24]) include
in the slice all statements that affect the slicing criterion
through direct or transitive control and data dependences.
Such techniques compute a slice by computing the transitive
closure of all control dependences and all data dependences
starting at the slicing criterion. The classification of data
dependences into different types leads to a new paradigm
for slicing, in which the transitive closure is performed over
only the specified types of data dependences, rather than
over all data dependences. In this slicing paradigm, a slic-
ing criterion is a triple < s, V,T >, where s is a program
point, V' is a set of program variables referenced at s, and T’
is a set of data-dependence types. A program slice contains
those statements that may affect, or be affected by, the val-
ues of the variables in V' at s through transitive control or
specified types of data dependences.

To compute slices in the new paradigm using the SDG-
based approach, we extend the SDG in two ways. The
first extension consists of annotating each data-dependence
edge with the type of the corresponding data dependence.
The traditional SDG does not distinguish data dependences
based on their types and, therefore, does not contain such
annotations. To illustrate, Figure 4 presents the SDG for
Sun®. Each data-dependence edge in the figure is labeled
with the type of that data dependence. For example, the
data-dependence edge from node 1 to the actual-in node
for *p at call node 8 is labeled ‘t8’; similarly, the data-
dependence edge from the actual-out node for * p at that
call node to node 11 is labeled ‘t14°.

Because the SDG introduces placeholder definitions
and uses at formal-in and formal-out nodes, the data-
dependence edges that are incident from, or incident to, such
nodes have placeholder definition and use types associated
with them; such definitions or uses are always definite. In

Figure 4, such data-dependence edges—whose source con-
tains a placeholder definition type or whose target contains a
placeholder use type—are distinguished. For example, the
data-dependence edge from the formal-in node for sumat
call node 8 to node 13 has a placeholder definition type as-
sociated with it.

The second extension consists of associating a type with
each summary edge. The traditional SDG does not asso-
ciate types with summary edges. Because data-dependence
edges have types associated with them, the summary edges
computed using those data dependences also have types as-
sociated with them—these types are the types of data de-
pendences that are followed while computing the summary
edges. For example, the SDG in Figure 4 contains the sum-
mary edges that are created by traversing only type 1 data
dependences; thus, the summary edges have the same type
associated with them and are labeled ‘t1’ in the figure. As-
sociating data-dependence types with summary edges lets
us use the two-phase slicing algorithm [11] with minimal
changes.

To compute a slice for criterion < s, V,T >, the SDG
must contain summary edges for data-dependence types 7.
After the summary edges are computed, the slicing algo-
rithm proceeds like the two-phase slicing algorithm [11].
During the first phase, the algorithm traverses backward
along control, flow, call, parameter-in, and summary edges.
During the second phase, the algorithm traverses backward
along control, flow, parameter-out, and summary edges.
However, the algorithm traverses backward along a flow-
dependence or a summary edge only if the data-dependence
types associated with that edge appear in the set 7' of data-
dependence types mentioned in the slicing criterion. If an
edge has placeholder definition or use type associated with
it, the algorithm extracts the other components of the data-
dependence type—for example, in case of a placeholder
definition, the algorithm extracts the use type and the path
type—and matches them with the types specified in the slic-
ing criterion.

The nodes included in the slice for criterion
< 10, {sum1}, {¢t1} > are shaded lightly in Figure 4.

3.2 Incremental dicing technique

Using the new slicing paradigm, we define an incremen-
tal slicing technique. The incremental slicing technique
computes a slice in steps, by incorporating additional types
of data dependences at each step; the technique thus in-
creases the scope of a slice in an incremental manner. In
a typical usage scenario, the technique starts by considering
the stronger types of data dependences and computes a slice
based on those data dependences. Then, it increments the
slice by considering additional, weaker data dependences
and adding to the slice statements that affect the criterion
through the weaker data dependences.

——= control dependence
A I = flow dependence

; o - flow dependence
(dummy def/use type)

77777 > parameter—in/-out

— » call

—» summary

Figure 4. System-dependence graph for Sun® to support slicing using types of data dependences. The lightly shaded nodes
are included in the slice for < 10, {sum1}, {¢t1} >. The darkly shaded nodes are the additional nodes included in the slice for

< 10, {sum1}, {¢1,¢2,¢3} >.

Figure 5. Summary edges, with the associated data-
dependence types, required at call node 8 in the SDG for
Sunt.

For example, the lightly shaded nodes in Figure 4 are in-
cluded in the slice for < 10, {sum1}, {¢t1} >. Using the
incremental technique, when type 2 and type 3 data de-
pendences are also considered, the darkly shaded nodes are
added to the slice. Figure 5 shows all summary edges that
are required at call node 8.

To support incremental slicing using the SDG, we need
to compute summary edges not only for the different types
of data dependences (24 in our classification scheme), but
also for the various combinations of data-dependence types
(224 —1 combinations in our scheme). Clearly, it is not prac-
tical to precompute summary edges for all possible com-
binations of data-dependence types, even if all the data-
dependence types do not occur in programs. An alternative
is to compute the summary edges on demand, as and when
they are required while computing a slice. Although, in
the worst case, the demand approach can compute as many
summary edges as the precompute approach, the results of
our experiments indicate that this may not occur in practice;
we discuss this aspect further in Section 4.

We modified the SDG-based slicing algorithm to com-
pute summary edges on demand; Figure 6 presents the mod-
ified algorithm, Conput eSl i ce.

Like Horwitz, Reps, and Binkley’s slicing algorithm,
Conput eSl i ce proceeds in two phases. To identify

algorithm Conput eSl i ce

input < s, V,T > slicing criterion

output slice slice for < s, V, T >

global G SDG for program P

begin Conput eSl i ce

1. n =node in G corresponding to s

2. slice = Get Reachabl eNodes({n}, T, {call, param-in})
3. slice = Get Reachabl eNodes(slice, T', {param-out})
4. return slice
end Conput eSl i ce

function Get Reachabl eNodes
input N set of SDG nodes

T data-dependence types

edge Types interprocedural edges to follow
output slice nodes for a slicing phase
declare worklist ~ nodes traversed in the SDG
begin Get Reachabl eNodes
5. worklist = N; slice = ¢
6. while worklist # ¢ do

7. remove node n from worklist

8. case n is actual-out node:

9. foreach m s.t. (m—n) € control do

10. add m to worklist and slice

11. endfor

12. if Am s.t(m—n) € summary(T) then

13. x = formal-out node corresponding to n

14. Conput eSunmar yEdges(z, T')

15. endif

16. foreach m s.t. (m—n) € summary(T") do

17. add m to worklist and slice

18. endfor

19. default:

20. foreach m s.t. (m—n) € flow(T), control,
edge Types do

21. add m to worklist and slice

22. endfor

23. endcase

24. endwhile

25. return slice
end Get Reachabl eNodes

Figure 6. Algorithm for computing a slice that computes
summary edges on demand.

nodes that are included in the slice in each phase, Com
put eSl i ce calls function Get Reachabl eNodes()
(lines 2, 3). During the first call, Get Reach-
abl eNodes() computes reachability starting at the slic-
ing criterion. During the second call, Get Reach-
abl eNodes() computes reachability starting at the nodes
traversed during the first call.

Get Reachabl eNodes() uses a worklist to traverse
backward along matching flow-dependence edges, control
edges, and the specified types of interprocedural edges:
call and parameter-in edges during the first phase, and
parameter-out edges during the second phase (lines 19—22).
On reaching an actual-out node n (line 8), first, the func-
tion traverses backward along control edges incident on n
(lines 9-11). Next, the algorithm checks whether summary
edges for the relevant data-dependence types 7' have been

function Conput eSunmar yEdges

input =z a formal-out node in G

T data-dependence types

declare worklist nodes traversed in the SDG
begin Conput eSummar yEdges

1. worklist =z

2. while worklist # ¢ do

3. remove node n from worklist

4 case n is actual-out node:

5. foreach m s.t. (m—n) € control do

6. add m to worklist

7 endfor

8. if Am st (m—n) € summary(T) then

9. x = formal-out node corresponding to n
10. Conput eSunmar yEdges(z, T')
11. endif

12. foreach m s.t. (m—n) € summary(T") do
13. add m to worklist

14. endfor

15. case n is formal-in node:

16. foreach m s.t (m—n) & param-in edge do
17. y = corresponding actual-out

18. create summary(T") (m—y)

19. endfor

20. default:

21 foreach m s.t. (m—n) & flow(T’), control do
22. add m to worklist

23. endfor

24. endcase

25. endwhile

end Conput eSummar yEdges

Figure 7. Algorithm for computing summary edges on
demand.

computed for n (line 12). If the summary edges for 7" have
not been computed, the function computes them on demand,
starting at the formal-out node that is connected to n (lines
13-14). After computing the summary edges, the function
traverses backward along those edges (lines 16—18).

Conput eSumrar yEdges(), shown in Figure 7, is a
recursive function that takes as inputs a formal-out node z
and a set of data-dependence types T'. It identifies those
formal-in nodes (in the PDG that contains x) that are reach-
able from x backward along control edges and flow edges of
type T (lines 20—23). On reaching an actual-out node (line
4), the function performs actions similar to Get Reach-
abl eNodes() : it traverses backward along control edges
(lines 5-7) and, if required, invokes itself recursively to
compute summary edges for type T' (lines 8—10), and then
traverses along those edges (lines 12—14). On reaching a
formal-in node n (line 15), the function has identified a sum-
mary dependence from n to x. Therefore, the function as-
cends along each parameter-in edge connected to n, and cre-
ates a summary edge for type 7" at each such call site (lines
16-19).

Conput eSl i ce involves two traversals of the SDG,
both of which are linear in the size of the SDG; therefore,
the time complexity of Conput eSl i ce is linear in the size

Table 2. Programs used for the empirical studies.

[Subject [Description [LOC |
armenu | Aristotle Analysis system interface 11320
dejavu Regression test selector 3166
lharc Compress/extract utility 2550
replace | Search-and-replace utility 551
space3 Parser for antenna array description | 6201

language
tot_info | Statistical information combiner 477
unzip Compress/extract utility 2906

Table 3. Setsof slices computed for each subject. Each
set contains slices that were computed starting at each pro-
gram statement and corresponding to the specifi ed data
dependence types.

Subject [Slices Computed |

armenu | S1{tl} S2{t1-t3} S3{t1-t24

dejavu | S1{tl} S2{t1-t3} S3{t1-t19} S4{t1-t20}
S5{t1-t24}

Tharc SI{tl} S2{t1—t3} S3{t1t19} S4{tl-t20}
S5{t1-t24}

replace | S1{tl} S2{t1-t3} S3{t1-t20} SA{t1-t24}
space S1{t1} S2{t1-t3} S3{t1-t19} S4{t1-t20}
S5{t1-t24}

tot.info | S1{tl} S2{t1t3} S3{ti-t14} SA{tI—t24}
unzip S1{t1} S2{t1-t3} S3{t1-t20} SA{t1-t24}

of the SDG. The more significant cost element is the space
complexity because of the exponential worst-case theoret-
ical bound on the number of summary edges. In practice,
we do not expect this worst case to occur. However, if this
cost is realized, it makes the storage of summary edges in-
feasible. A more practical approach would be to discard and
recompute the summary edges for each slice. Such an ap-
proach retains the linear time complexity of Conput eS-
I i ce, while avoiding its exponential space complexity.
This approach trades off the exponential space complexity
of the algorithm for the number of slices that may need to
be computed: in the worst case, a slice for each combina-
tion of the data-dependence types may be computed. Our
empirical evidence, presented in the next section, suggests
that considering all combinations of data-dependence types
is not required in practice.

4 Empirical Results

To investigate the performance of the incremental slic-
ing technique in practice, we implemented a prototype and

3Alberto Pasquini, Phyllis Frankl, and Filip Vokolos provided Space
and many of its test cases. Chengyun Chu assisted with further preparation
of the Space program and development of its test cases.

performed empirical studies with a set of C subjects. We im-
plemented the reaching-definitions algorithm, the SDG con-
struction algorithm, and the SDG-based slicing algorithm
using the ARISTOTLE analysis system [2]. To account for
the effects of aliases, we replaced the ARISTOTLE front-end
with the PROLANGS Analysis Framework (PAF) [19]. We
used PAF to gather control-flow, local data-flow, alias, and
symbol-table information; we then used this information to
interface with the ARISTOTLE tools. We used the programs
listed in Table 2 for the empirical studies. The size of the
programs that we considered is constrained by the compu-
tational cost of the flow- and context-sensitive alias analysis
[12] that we used.

The goal of the study was to evaluate how the sizes of
slices increase as additional types of data dependences are
considered during the computation of the slices. For each
subject, we computed intraprocedural data dependences,
and classified them into the types listed in Table 1. Then,
based on the distribution of the data-dependence types,
we selected the slices to compute; Table 3 lists the slices
that were computed for each subject. The table lists the
data-dependence types that we considered when computing
slices for the subjects. For example, for unzi p, we com-
puted four sets of slices: S1, S2, S3, and S4. The slices
in the first set were based only on data-dependence type
1, whereas those in the second, third, and fourth sets were
based on data-dependence types 1 through 3, 1 through 20,
and 1 through 24, respectively. The last set of slices—those
based on all types of data dependences—are the same that
would be computed by a slicer that ignores the distinctions
among data dependences. The data-dependence types for
each successive set of slices are inclusive of the types for
the previous set of slices. Thus, each slice from a set is a
superset of the corresponding slice from the previous set,
which lets us study the growth in the sizes of the slices.

We envision that such usage of the incremental slicing
technique would be typical and the most beneficial when
the technique is incorporated into a software-maintenance
tool. The tool would present the distribution of the data-
dependence types, whose computation is far less expensive
than the computation of slices, to the user. The user then,
based on the distribution, would select one or more set of
data-dependence types to consider for the computation of
the slices.

The data distribution that we observed for our subjects
suggests that the worst-case exponential complexity of the
summary-edge computation may not occur in practice [17].
For all subjects, only four or five types of data depen-
dences appeared predominantly. Although other types of
data dependences occurred, they were insignificant in num-
ber. Therefore, for each subject, we identified only three
to five meaningful sets of data-dependence types for which
to compute slices—those for which we expected significant

100 10C

s s s (s

Slice sizes iIn percentage

B \\ . I\Y [e e . o \
a® g dt e g e 5966‘0\ A0t ®

Figure 8. Increase in the sizes of the dlices for the slice
setslisted in Table 3. Thefi rst segmented bar illustrates the
average increase in the slice sizes from one set to the next.

The second segmented bar illustratestheincreasein the size
of the dlice that exhibited the maximum growth from the
fi rst set to thefi nal set.

differences in the slices. Moreover, we observed that, for
our subjects, the occurrence of different types of data de-
pendences is independent of the program size. Therefore,
we expect such a trend to occur in larger programs, and
consider unlikely for all data-dependence types to occur in
equally significant numbers, even in large programs.

For each subject, we computed slices starting at each
program statement (for variables that are used at that
statement)—one such set of slices for each combination of
data-dependence types listed in Table 3. Figure 8 presents
data about the increase in the sizes of the slices. The vertical
axis represents the sizes of the slices as percentages of the
number of statements in the program. The figure contains
two segmented bars for each subject. The first segmented
bar in Figure 8 illustrates the average increase in the slice
sizes; each segment shows the average increment in the slice
size for a set over the previous set. For example, consider
the first segmented bar for | har c. The average size of the
slices in set S1, which were computed for data-dependence
type 1, is 6% of the program size. The slices in set S2 were
computed for data-dependence types 1 through 3. On aver-
age, the slices in S2 are larger than the slices in S1 by 10%
of the program statements; therefore, the average size of the
slices in S2 is 16% of the program size. Similarly, the slices
in set S3, which were computed for data-dependence types
1 through 19, include on average an additional 15% of the
program statements; the average size of the slices in S3 is
thus 31% of the program size. The average size of the slices
increases by another 2% (of the program size) when data-
dependence type 20 is also considered—this is illustrated
by the segment for set S4 in the figure. The slices in the fi-
nal set for | har c—set S5—were computed using all data-
dependence types. However, the slices in this set showed

no increase in their sizes compared with the slices in S4;*
therefore, the segmented bar for | har ¢ has no segment for
set S5.

The second segmented bar in Figure 8 illustrates the in-
crease in the size of the slice that exhibited the maximum
growth from the first set to the final set; each segment il-
lustrates the increase in the size of this slice for a set over
the previous set. For example, for | har c, the slice that
showed that maximum growth from the first set to the final
set included an additional 47% of the program statements in
the final set than in the first set. This slice grows from 10%
of the program size in set S1 to 38% in set S2, 56% in set
S3, and finally to 57% in set S4.

The increases in the sizes of the slices vary across the
subjects as additional data-dependence types are consid-
ered. For example, on average, the slice sizes for de-
j avu increase by only 2% of the program size when data-
dependence types 2 and 3 and considered in addition to data-
dependence type 1; however, for unzi p, the slice sizes for
the same types increase by over 25%. The addition of data-
dependences caused by pointers, which occurs starting in
slice set S3 for each subject, also causes increases in slice
sizes that vary across subjects. On average, pointer-related
data-dependences cause the slices to increase by only a little
over 1% for ar menu, 9% for space, but 17% for | har c
and over 19% for r epl ace. As stated above, the second
segmented bar illustrates growth in the slice size for the slice
that had the largest increase caused by the additional data-
dependence types for each subject. Such slices grew by over
60% of the program size from S1 to S3 for unzi p, and by
over 51% from S1 to S3 for r epl ace. The data in Fig-
ures 8 illustrate the usefulness of the new slicing paradigm
in controlling the sizes of the slices.

5 Application of the Incremental Slicing
Technique

We performed a case study to investigate the usefulness
of incremental slices for debugging. The goal of the study
was to determine how incremental approximations to dy-
namic slices succeed in isolating a fault. For the study, we
chose a version of space that contains a known fault, and a
test case that exposed the fault. To simulate a typical debug-
ging scenario, we examined the output of the fault-revealing
test case and selected a suitable slicing criterion at an output
statement in the program. Next, we examined the distribu-
tion of data-dependence types for space and, based on the
occurrences of various types, selected eight combinations
of data-dependence types for computing the slices: {t1},
{t1-t3}, {t1-t7}, {t1-t13}, {t1-t14}, {t1-t19}, {t1-t20},

4This occurs because the statements related through the additional types
of data-dependences were already included in the slices in the previous set
through control dependences or other types of data dependences.

100 T T T T T T t
dynamic slice
static slice

°
+

60 -

40

20 |-

o

Sizes of incremental slices as percentages of the final static slice

0 I I I I I I I
0 1 2 3 4 5 6 7 8

Figure 9. Eight incremental static and dynamic dlices
computed for space to locate the fault.

and {t1-t24}. Using these types, we computed incremen-
tal slices and intersected them with the statement trace of
the fault-revealing test case to obtain approximations to the
corresponding dynamic slices.

Figure 9 presents a plot of the sizes of the eight static
and dynamic slices computed for space; the figure shows
the sizes of the slices as percentages of the size of the last
static slice. The sixth incremental slice, which was com-
puted for data-dependence types 1 through 19, contains the
fault. The static-slice increment that contains the fault is
70% of the final static slice, whereas the dynamic-slice in-
crement that contains the fault is 25% of the final static slice.
The distribution of data-dependence types for space were
such that inclusion of the additional data dependences in
the third, fourth, and fifth slices caused no increases in the
slice sizes, whereas the additional data dependences in the
sixth slice caused a significant increase in the slice size. It
is difficult to speculate whether such behavior would per-
sist across larger and more varied subjects. Nonetheless, the
case study does suggest the benefits of incremental slices
in narrowing the search space for faults during debugging;
thus, incremental slicing could be usefully incorporated into
a software-maintenance tool.

6 Related Work

Several researchers have considered the effects of point-
ers on program slicing and have presented results to perform
slicing more effectively in the presence of pointers (e.g.,
[1, 3, 5, 15]). Some researchers have also evaluated the ef-
fects of the precision of the pointer analysis on subsequent
analyses, such as the computation of def-use associations
(e.g. [23]) and program slicing (e.g. [4, 14, 21]). However,
none of that research distinguishes data dependences based
on types of the definition, the use, and the paths between the

definition and the use—it views uniformly each data depen-
dence that arises in the presence of pointers.

Other researchers (e.g. [6, 9]) have investigated vari-
ous ways to reduce the sizes of slices. However, they have
not considered classifying data dependences and comput-
ing slices based on different types of data dependences as a
means of reducing the sizes of slices.

Ostrand and Weyuker [18] extend the traditional data-
flow testing techniques [8, 20] to programs that contain
pointers and aliasing. To define testing criteria that ade-
quately test the data-flow relationships in programs with
pointers, they consider the effects of pointers and aliasing
on definitions and uses. They classify definitions, uses,
and def-clear paths depending on the occurrences of pointer
dereferences in those entities. Based on these classifica-
tions, they identify four types of data dependences: strong,
firm, weak, and very weak. The classification proposed
by Ostrand and Weyuker, however, is coarser grained with
respect to the one that we are using. The strong data de-
pendence corresponds to data-dependence types 1 and 3 in
our classification; the firm data dependence corresponds to
types 2 and and 4; the weak data dependence corresponds
to types 5 and 6; and finally, the very weak data dependence
corresponds to the remaining 18 types of data dependences.
Ostrand and Weyuker’s classification groups together sev-
eral types of dependences, and thus, may miss the differ-
ences caused by such dependences. Furthermore, Ostrand
and Weyuker do not investigate how such classification af-
fects the computation of program slices.

Merlo and Antoniol [16] present techniques to identify
implications between nodes and data dependences. They
distinguish definite and possible definitions and uses. They
define relations to estimate the data dependences whose
coverage is implied by the coverage of a node.

7 Summary and Future Work

In this paper, we presented a new incremental slicing
technique, in which slices are computed by considering sub-
sets of data dependences based on their types. Using this
technique, we can increase the scope of a slice in steps,
by incorporating additional types of data dependences at
each step. To compute incremental slices, we extended
the SDG representation and modified the SDG-based slic-
ing algorithm to accommodate data-dependence types. We
presented empirical results to illustrate the performance of
the technique in practice. The results show that computing
slices in increments can be useful for software-maintenance
tools because each increment to the slice can be significantly
smaller than the complete slice.

We also presented the results of a case study that shows
how the new technique can be used for debugging purposes.
We computed slices for a subject containing a known, sub-

tle pointer-related fault and showed how incremental slicing
can be used to narrow the search space for that fault. More
generally, by decreasing the amount of information that is
presented to software maintainers and by focusing on spe-
cific types of dependences, incremental slices can reduce
the complexity of software-maintenance tasks, such as de-
bugging.

Our future work includes extensions to our tool to use
different, and more efficient, alias-analysis algorithms. This
improvement will enable us to (1) perform experiments on
subjects of bigger sizes, and (2) study the relation between
the distribution of data dependences and the precision of
the underlying alias analysis. We will also study the source
code of the subjects to try to identify patterns in that code
that can cause specific types of data dependences. We be-
lieve that such patterns could be of great help to tune anal-
ysis algorithms and provide guidelines for the program-
mers. Finally, we plan to further investigate the practicality
and usefulness of our slicing paradigm for various applica-
tions, and to extend and generalize the incremental-slicing
approach by considering additional parameters that can be
used to compute slices in increments.

References

[1] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Dynamic
slicing in the presence of unconstrained pointers. In Proceed-
ings of the symposium on Testing, Analysis, and Verifi cation,
pages 60-73, Oct. 1991.

Aristotle Research Group. ARISTOTLE: Software engineer-
ing tools. http://www.cc.gatech.edu/aristotle/, 2000.

D. C. Atkinson and W. G. Griswold. Effective whole-
program analysis in the presence of pointers. In Proceed-
ings of ACM SIGSOFT 6" Intl. Symposium on the Found. of
Software Engineering, pages 46-55, Nov. 1998.

L. Bent, D. C. Atkinson, and W. G. Griswold. A compar-
ative study of two whole-program dlicers for C. Technical
Report UCSD TR CS2000-0643, University of California at
San Diego, May 2000.

D. W. Binkley and J. R. Lyle. Application of the pointer state
subgraph to static program slicing. The Journal of Systems
and Software, 40(1):17-27, Jan. 1998.

G. Canfora, A. Cimitile, and A. D. Lucia. Conditioned pro-
gram dlicing. Information and Software Technology, 40(11-
12):595-608, Nov. 1998.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. ACM Trans-
actions on Programming Languages and Systems, 9(3):319—
349, Jul. 1987.

P. G. Frankl and E. J. Weyuker. An applicable family of data
flow testing criteria. |EEE Transactions on Software Engi-

neering, 14(10):1483-1498, Oct. 1988.

M. Harman and S. Danicic. Amorphous program dlicing. In
Proceedings of the 5" Intl. Workshop on Program Compre-
hension, pages 70-79, Mar. 1997.

(2]
(3]

(4]

(5]

(6]

(8]

(9]

10

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

M. J. Harrold and N. Ci. Reuse-driven interprocedura slic-
ing. In Proceedings of the 20" Intl. Conference on Software
Engineering, pages 74—83, Apr. 1998.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on Program-
ming Languages and Systems, 12(1):26—-60, Jan. 1990.

W. Landi and B. G. Ryder. A safe approximate algorithm for
interprocedural pointer aliasing. In Proceedings of the ACM
S GPLAN’92 Conference on Program Language Design and
Implementation, pages 235-248, Jun. 1992.

W. Landi, B. G. Ryder, and S. Zhang. Interprocedural modi-
fi cation side effect analysiswith pointer aliasing. In Proceed-
ings of the ACM S GPLAN ' 93 Conference on Program Lan-
guage Design and Implementation, pages 56-67, Jun. 1993.
D. Liang and M. J. Harrold. Effi cient points-to analysis for
whole-program analysis. In Proceedings of ESEC/FSE '99,
vol. 1687 of LNCS pages 199-215. Springer-Verlag, Sep.
1999.

D. Liang and M. J. Harrold. Reuse-driven interprocedural
dlicing in the presence of pointers and recursion. In Pro-
ceedings of the Intl. Conference on Software Maint., pages
421-432, Aug. 1999.

E. Merlo and G. Antoniol. A static measure of a subset of
intra-procedural data fow testing coverage based on node
coverage. In Proceedings of CASCON '99, pages 173-186,
Nov. 1999.

A. Orso, S. Sinha, and M. J. Harrold. Effects of pointers on
data dependences. In Proceedings of the 9" Intl. Workshop
on Program Comprehension, pages 39-49, May 2001.

T. J. Ostrand and E. J. Weyuker. Data flow-based test ad-
equacy anadysis for lang. with pointers. In Proceedings of
the Symposium on Testing, Analysis, and \erifi cation, pages
74-86, Oct. 1991.

Programming Language Research Group. PROLANGS
Analysis Framework. http://www.prolangs.rutgers.edu/, Rut-
gers University, 1998.

S. Rapps and E. J. Weyuker. Selecting software test data
using data fow information. |EEE Transactions on Software
Engineering, SE-11(4):367—375, Apr. 1985.

M. Shapiro and S. Horwitz. The effects of the precision of
pointer analysis. In 4" Intl. Satic Analysis Symposium, vol.
1302 of LNCS, pages 1634, Sept. 1997.

S. Sinha, M. J. Harrold, and G. Rothermel. System-
dependence-graph-based dlicing of programs with arbitrary
interprocedural control flow. In Proceedings of the 21 ** Intl.
Conference on Software Engineering, pages 432—441, May
1999.

P. Tonella. Effects of different flow insensitive points-to anal -
yses on DEF/USE sets. In Proceedings of the 3rd European
Conference on Software Maint. and Reengineering, pages
62—69, Mar. 1999.

M. Weiser. Program slicing. |EEE Transactions on Software
Engineering, 10(4):352-357, July 1984.

