SCARPE: A Technique and Tool for Selective
Capture and Replay of Program Executions*

Shrinivas Joshi
Advanced Micro Devices
Shrinivas.Joshi@amd.com

Abstract

Because of software’s increasing dynamism and the het-
erogeneity of execution environments, the results of in-house
testing and maintenance are often not representative of the
way the software behaves in the field. To alleviate this prob-
lem, we present a technique for capturing and replaying par-
tial executions of deployed software. Our technique can be
used for various applications, including generation of test
cases from user executions and post-mortem dynamic anal-
ysis. We present our technique and tool, some possible appli-
cations, and a preliminary empirical evaluation that provides
initial evidence of the feasibility of our approach.

1 Introduction

Today’s software is increasingly dynamic, and its complexity
is growing, together with the complexity of the environments
in which it executes. Because modern software can behave
quite differently in different environments and configurations,
it is difficult to assess its performance and reliability outside
the actual time and context in which it executes. Therefore,
the results of traditional testing and maintenance activities—
performed in-house, on a limited number of configurations,
and using developer-created inputs—are often not represen-
tative of how the software will behave in the field [4,9, 11].

To help address the limitations of purely in-house ap-
proaches, we present a technique for capturing and replay-
ing executions of deployed software. Our technique works
by (1) letting users specify a subsystem of interest, (2) auto-
matically identifying the boundary between such subsystem
and the rest of the application, (3) efficiently capturing at run-
time all interactions across this boundary, and (4) replaying
the recorded interactions on the subsystem in isolation.

The technique can be useful for many maintenance tasks.
In testing, for instance, the ability to capture and replay ex-
ecutions can allow for automatically getting test cases from
users. Given a deployed program, we could capture user exe-
cutions, collect and group them into test suites, and then use
such test suites for validating the program in the way it is

*We presented an early version of this work at WODA 2005 [10]. In this
paper, we extend the technique, describe the SCARPE tool, discuss possible
applications of the approach, and present a more extensive empirical study.

Alessandro Orso
Georgia Institute of Technology
orsolcc.gatech.edu

used. For another example, capture and replay would also
allow for performing dynamic analyses that impose a high
overhead on the execution time. In this case, we could capture
executions of the uninstrumented program and then perform
the expensive analyses off-line, while replaying.

State of the Art. Most existing capture-replay techniques
and tools (e.g., WinRunner [17]) are defined to be used in-
house, typically during testing. These techniques cannot
be used in the field, where many additional constraints ap-
ply. First, traditional techniques capture complete executions,
which may require to record and transfer a huge volume of
data for each execution. Second, existing techniques typi-
cally capture inputs to an application, which can be difficult
and may require ad-hoc mechanisms, depending on the way
the application interacts with its environment (e.g., via a net-
work, through a GUI). Third, there are issues related to side
effects. If a captured execution has side effects on the sys-
tem on which it runs, which is typically the case, replaying it
may corrupt the system. Furthermore, the environment may
have changed between capture and replay time, and there is
no guarantee that the system will behave in the same way
during replay. Finally, existing techniques are not concerned
with efficiency because they are not designed to be used on-
line or on any kind of deployed software. Therefore, these
techniques typically impose a huge overhead during capture.

To better illustrate the above issues, Figure 1 shows a soft-
ware system that will be used as an example in the rest of
the paper. The system is a networked, multi-user application
that receives inputs from users and performs read and write
accesses to both a database and the filesystem. The example
is representative of situations in which capturing all of the in-
formation required to replay a whole execution would involve
technical challenges (e.g., collecting the data that flows from
the users to the application and vice versa), storage problems
(e.g., the technique may have to record consistent portions of
the database), and privacy issues (e.g., the information pro-
vided by the users may be confidential). Using this kind of
application as an example lets us stress that many systems
are complex and operate in a varied and complicated envi-
ronment. However, the above issues would arise, to different
extents, for most applications (e.g., mail clients, word proces-
sors, web servers).

dlc_é_ls;fg_:d{_e{}} double getRatio(HugeTree ht) {
class Compute { Iter_ator it = ht.iterator();
int norm = 0; while (it.hasNext()) {
DB db; Node n = (Node)it.next();
double res = n.val;
if (res > 0)

void setup(int x) { return res / norm;

|nt y = db.getSomelnt();

norm=x-y; return 0.0;
}
} }
\\‘\ _-7 Software
LN i System
: Captured :
Subsystem
-
-_—
\
Users
3
File
Database System

Figure 1. Example application.

Advantages of our Approach. Defining a technique for
capture-replay of field executions that accounts for practi-
cality, safety, and (to some extent) privacy issues involves
many challenges. Our technique is based on selective capture
and replay of executions, is specifically designed to be used
on deployed software, and addresses the issues with exist-
ing capture-replay techniques through a combination of novel
technical solutions and careful engineering.

When practicality is concerned, our technique allows for
limiting the volume of data that we need to record because
it lets users select a specific subset of the application for
which to capture information. Moreover, it disregards data
that, although flowing through the boundary of the subsys-
tem of interest, does not affect its execution, further reducing
the amount of data collected. (Intuitively, we capture only
the subset of the application’s state and environment required
to replay the execution on the selected subsystem.) Finally,
our technique addresses the problems represented by com-
plex execution environments because it always captures (and
replays) at the boundary between parts of the application.
Therefore, no custom capture mechanism is required when
different types of applications are considered.

When safety is concerned, our technique eliminates all
side effects because it replays the subsystem in a sandbox—
all interactions with the rest of the application and with the
environment are only simulated during replay.

When privacy is concerned, the use of our technique can
help in two ways. First, it allows for excluding from the sub-
system of interest parts of the application that may handle
confidential information. Second, when this is not possible,
our technique can be used to perform the replay on the users’
machines instead of retrieving the captured execution and re-
playing it in-house. For example, if the technique is used to
perform expensive dynamic analyses on some part of an ap-

plication, it could capture executions for that part while users
are running the application, replay them on an instrumented
version when free cycles are available, and collect only sani-
tized results of the analysis.

The main contributions of this paper are:

e a detailed definition of our technique (Section 2),

e adiscussion of its possible applications (Section 3),

e adescription of SCARPE, our publicly available tool that
implements the technique (Section 4), and

e an empirical study that provides initial evidence of the
feasibility of our approach (Section 5).

2 Capture and Replay Technique

In this section, we define our technique. For space consid-
erations, we limit the discussion to the main technical char-
acteristics of the work. We discuss some additional details
separately, in Section 2.4, and provide complete details in a
technical report [5].

Because the characteristics of the programming language
targeted by the technique considerably affect its definition,
we define our technique for a specific language: Java. How-
ever, the technique should be generally applicable to other
object-oriented languages with similar features.

Terminology. We refer to the selected application subsys-
tem as the observed set and to the classes in the observed set
as the observed classes (or code). Observed methods and ob-
served fields are methods and fields of observed classes. We
define analogously unobserved set, unobserved classes, un-
observed code, unobserved methods, and unobserved fields.
The term external code indicates unobserved and library code
together. The term unmodifiable classes denotes classes
whose code cannot be modified (e.g., java.lang.Class)
due to constraints imposed by Java Virtual Machines, and the
term modifiable classes refers to all other classes.

2.1 Overview of the Approach

Our technique consists of two main phases: capture and re-
play. Figure 2 informally depicts the two phases. The capture
phase takes place while the application is running. Before
the application starts, based on the user-provided list of ob-
served classes, the technique identifies the boundaries of the
observed set and suitably modifies the application to be able
to capture interactions between the observed set and the rest
of the system. The application is modified by inserting probes
into the code through instrumentation.

When the modified application runs, the probes in the code
suitably generate events for the interactions between the ob-
served classes and the external code. The events, together
with their attributes, are recorded in an event log.

In the replay phase, the technique automatically provides
a replay scaffolding that inputs the event log produced during
capture and replays each event in the log by acting as both
a driver and a stub. Replaying an event corresponds to ei-
ther performing an action on the observed set (e.g., writing

Capture:

Y

Output

% Event
Log

Rest of the A{Iicaﬁon
¥~ Captured~ !

Input @ | Subsystem >
_—w '

Libraries

¥~ Captured)
: Subsystem 9|
1 '

Figure 2. Overview of the technique.

an observed field) or consuming an action from the observed
set (e.g., receiving a method invocation originally targeted to
external code). We now discuss the two phases in detail.

2.2 Capture Phase

Before discussing the details of this phase, we need to intro-
duce the concept of object ID. In our technique, an object ID
is a positive numeric ID that uniquely identifies a class in-
stance. To generate such IDs, our technique uses a numeric
global ID that is initialized to zero when capture starts. For
modifiable classes, the object ID is generated by adding a nu-
meric field to the classes and by adding a probe to the classes’
constructors. The probe increments the global ID and stores
the resulting value in the numeric field of the object being
created. Therefore, given an instance of a modifiable class,
the technique can retrieve its object ID by simply accessing
the ID field in the instance.

For unmodifiable classes, we associate IDs to instances
using a reference map, which contains information about how
to map an object to its ID and is populated incrementally.
Every time the technique needs an object ID for an instance
of an unmodifiable class, it checks whether there is an entry in
the reference map for that instance. If so, it gets from the map
the corresponding ID. Otherwise, it increments the global ID
and creates a new entry in the map for that instance with the
current value of the global ID.

2.2.1 Capturing Partial Information

When capturing data flowing through the boundary of a sub-
system (e.g., values assigned to a field), the types of such data
range from simple scalar values to complex objects. Whereas
capturing scalar values can be done relatively inexpensively,
collecting object values is computationally and space expen-
sive. A straightforward approach that captures all values
through the system (e.g., by serializing objects passed as pa-
rameters) would incur in a tremendous overhead and would
render the approach impractical. In preliminary work, we
measured several orders of magnitude increases in the exe-
cution time for a technique based on object serialization. Our

key intuition to address this problem is that (1) we only need
to capture the subsets of those objects that affect the compu-
tation, and (2) we can conservatively approximate such sub-
set by capturing it incrementally and on demand, without the
need for sophisticated static analyses.

Consider a call to method getRat io in Figure 1, such that
the first node whose value is greater than zero is the fifth node
returned by the iterator. For that call, even if ht contains mil-
lions of nodes, we only need to store the five nodes accessed
within the loop. We can push this approach even further: in
general, we do not need to capture objects at all. Ultimately,
what affects the computation are the scalar values stored in
those objects or returned by methods of those objects. There-
fore, as long as we can automatically identify and intercept
accesses to those values, we can disregard the objects’ state.
For instance, in the example considered, the only data we
need to store to replay the considered call are the boolean val-
ues returned by the calls to the iterator’s method hasNext,
which determine the value of the while predicate, and the
double values associated with the five nodes accessed.

Although it is in general not possible to identify in advance
which subset of the information being passed to a method is
relevant for a given call, we can conservatively approximate
such subset by collecting it incrementally. To this end, we
leverage our object-ID mechanism to record only minimal
information about the objects involved in the computation.
When logging data that cross the boundaries of the observed
set (e.g., parameters and exceptions), we record the actual
value of the data only for scalar values. For objects, we only
record their object ID and type. (We need to record the type
to be able to recreate the object during replay, as explained in
Section 2.3.) With this approach, object IDs, types, and scalar
values are the only information required to replay executions,
which can dramatically reduce the cost of the capture phase.

2.2.2 Interactions Observed—-External Code

Method Calls. The most common way for two parts of an
application to interact is through method calls. In our case,
we must account for both calls from the unobserved to the
observed code (incalls) and calls from the observed to the
unobserved code (outcalls). Note that the technique does not
need to record calls among observed methods because such
calls occur naturally during replay. Our technique records
four kinds of events related to method calls:

OUTCALL events, for calls from observed to unobserved code.
INCALL events, for calls from unobserved to observed code.
OUTCALLRET events, for returns from outcalls.

INCALLRET events, for returns from incalls.

OUTCALL/INCALL events have the following attributes:

Receiver: Fully qualified type and object ID of the receiver
object. For static calls, the object ID is set to —1.

Method called: Signature of the method being called.

Parameters: A list of elements, one for each parameter. For
scalar parameters, the list contains the actual value of
the parameters, whereas for object parameters, the list
contains the type of the parameter and the corresponding
object ID (or a zero value, if the parameter is null).

OUTCALLRET and INCALLRET events have only one at-
tribute: the value returned. Like call parameters, the attribute
is the actual value in the case of scalar values, whereas it is
the type of the value and the corresponding object ID if an
object is returned. To capture OUTCALL events, our tech-
nique modifies each observed method by adding a probe be-
fore each call to an external method. The signature of the
method called is known statically, whereas the receiver’s type
and object ID and the information about the parameters is
generally gathered at runtime.

To capture INCALL and INCALLRET events, our tech-
nique performs two steps. First, it replaces each public ob-
served method m with a proxy method and an actual method.
The actual method has the same body as m (modulo some
instrumentation), but has a different signature that takes an
additional parameter of a special type. The proxy method,
conversely, has exactly the same signature as m, but a differ-
ent implementation. The proxy method (1) creates and logs
an appropriate INCALL event, (2) calls the actual method by
specifying the same parameters it received plus the parameter
of the special type, (3) collects the value returned by the ac-
tual method (if any) and logs an INCALLRET event, and (4)
returns to its caller the collected value (if any). In this case,
all the information needed to log the events, except for the
object ID and the return value, can be computed statically.

Second, it modifies all calls from observed methods to
public observed methods by adding the additional parame-
ter of the special type mentioned above. In this way, we are
guaranteed that calls that do not cross the boundaries of the
observed code invoke the actual (and not the proxy) method
and do not log any spurious INCALL or INCALLRET event
(these calls and returns occur naturally during replay).

Finally, to capture OUTCALLRET events, our technique
again modifies the observed methods: it instruments each call
to an external method by adding a probe that stores the value
returned by the call (if any) and logs it.

Access to Fields. Interactions between different parts of an
application also occur through field accesses. To account
for these interactions, our technique records accesses to ob-
served fields from unobserved code and accesses from ob-
served code to unobserved fields and fields of library classes.
For accesses from unobserved code to observed fields, we
only record write accesses—read accesses do not affect the
behavior of the observed classes and are irrelevant for replay.
We record three kinds of events for accesses to fields:

OUTREAD events, for read accesses from observed code to un-
observed or library fields.

OUTWRITE events, for write accesses from observed code to
unobserved or library fields.

INWRITE events, for modifications to an observed field per-
formed by external code.

These three events have the following attributes:

Receiver: Fully qualified type and object ID of the object
whose field is being read or modified. As before, value
—1 is used in the case of access to a static field.

Field Name: Name of the field being accessed.

Value: Value being either read from or assigned to the field.
Also in this case, the value corresponds to the actual
values for scalar fields and to an object ID or zero (for
null) otherwise.

To capture OUTREAD and OUTWRITE events, the tech-
nique first analyzes the observed code and identifies all the
accesses to fields of external classes. Then, it adds a probe
to each identified access: for read accesses, the probe logs
an OUTREAD event with the value being read; for write ac-
cesses, the probe logs an OUTWRITE event with the value
being written. The information about the field name is com-
puted statically and added to the probes, whereas the informa-
tion about the type and object ID is computed dynamically.

INWRITE events are captured similarly to OUTWRITE
events. The only difference is that the technique analyzes the
modifiable external classes, instead of the observed ones, and
instruments accesses to observed fields.

Exceptions. Exceptions too can cause interactions between
different parts of an application. For example, for the code in
Figure 1, if the callto ht . iterator () in method getRatio
terminated with an exception, the rest of the code in the
method would not be executed. Not reproducing the excep-
tion during replay would result in a complete execution of
the method, which does not correctly reproduce the recorded
behavior. However, there is no point in getRatio’s code in
which the fact that an exception has occurred is explicit.

To capture interactions that occur due to exceptions, our
technique records two types of events: (1) EXCIN, for ex-
ceptions that propagate from external to observed code; and
(2) EXCOUT, for exceptions that propagate from observed to
external code. EXCIN and EXCOUT events have only one
attribute that consists of the type and object ID of the corre-
sponding exception. The mechanism to capture exceptions is
fairly complex [5]. Intuitively, our techniques captures excep-
tions by wrapping relevant methods in try-catch block
that suitably log exceptions and re-throw them.

2.3 Replay Phase

In the replay phase, our technique first performs two steps
analogous in nature to the first two steps of the capture phase:
it (1) identifies all the interactions between observed and ex-
ternal code, and (2) suitably instruments the application code.
Then, it inputs an event log generated during capture and, for
each event, either performs some action on the observed code
or consumes some action coming from the observed code.

2.3.1 Object Creation

In Section 2.2, we discussed how our technique associates ob-
ject IDs to objects during capture. Although we use a global
ID and a reference map also during replay, the handling of
IDs is different in this case. Unlike the capture phase, which
associates IDs to objects flowing across the subsystem bound-
aries, the replay phase extracts object IDs from the events’
attributes and retrieves or creates the corresponding objects.
Another difference between the two phases is that, during re-
play, all object IDs are stored in a reference map.

Instances of External Classes. Every time the technique
processes an event whose attributes contain an object ID, it
looks for a corresponding entry in the reference map. (The
only exception is the case of object IDs with values zero or
—1, which correspond to null values and static accesses, re-
spectively.) If it finds an entry, it retrieves the object associ-
ated with that entry and uses it to reproduce the event. Oth-
erwise, the technique increments the global counter, creates a
placeholder object of the appropriate type, and creates a new
entry in the map for that instance with the current value of the
global ID. A placeholder object is an object whose type and
identity are meaningful, but whose state (i.e., the actual value
of its fields) is irrelevant. We need to preserve objects’ iden-
tity and type during replay for the execution to be type safe
and to support some forms of reflection (e.g., instanceof).
Our technique uses placeholder constructors to build place-
holder objects. For modifiable classes, the placeholder con-
structor is a new constructor added by our technique. The
constructor takes a parameter of a special type, to make sure
that its signature does not clash with any existing constructor,
and contains only one statement—a call to its superclass’s
placeholder constructor.

For unmodifiable classes, our technique searches for a
suitable constructor among the existing constructors for the
class. In our current implementation, for simplicity, we hard-
code the constructor to be used in these special cases (e.g.,
java.lang.Class), but other approaches could be used.

Instances of Observed Classes. The case of observed
classes is simpler. When replaying the incall to a construc-
tor, the technique retrieves the object ID associated with the
INCALL event, creates the object by calling the constructor
(see Section 2.3.2), and adds an entry to the reference map
for that instance and object ID. Note that, because of the way
in which we replay events, instances will always be created
in the same order. Therefore, we can use object IDs to cor-
rectly identify corresponding instances in the capture and re-
play phases and correctly reproduce events during replay.

2.3.2 [Events Replaying

During replay, our technique acts as both a driver and a stub.
It provides the scaffolding that mimics the behavior of the ex-
ternal code for executing the observed code in isolation. The
replay scaffolding processes the events in the event log and

passes the control to the observed code for INCALL, OUT-
CALLRET, and EXCIN events. When control returns to the
scaffolding (e.g., because an incall returns or an exception is
thrown), the scaffolding checks whether the event received
from the code matches the next event in the log. If so, it reads
the following event and continues the replay. Otherwise, it re-
ports the problem and waits for a decision from the user, who
can either stop the execution or skip the unmatched event and
continue. The case of events that do not match (out-of-sync
events) can occur only when replaying events on a different
version of the observed code than the one used during capture
(e.g., if the technique is used for regression testing).

Note that, whereas recording INCALL, INWRITE, OUT-
CALLRET, and EXCIN events (incoming events) is neces-
sary to replay executions, the need for recording the events
generated in the observed code(outgoing events) depends on
the specific use of our technique. For example, if we use the
technique to generate unit or subsystem test cases for regres-
sion testing, outgoing events are useful because they can be
used as oracles. For a different example, if we use the tech-
nique to compute def-use coverage off-line, we can disregard
outgoing events. For space reason, instead of discussing how
our technique replays the various events, we only illustrate
the replay of one type of events, OUTCALL events, using the
example code in Figure 1. The mechanisms used to replay all
other types of events are discussed in detail in [5].

OUTCALL events are consumed by the replay scaf-
folding. Our technique instruments all observed classes
so that each call to external classes is divided into two
parts: the invocation of a specific method of the scaffold-
ing (consumeCall), whose parameters contain information
about the call, and an assignment that stores the value re-
turned by consumeCall, if any, in the right variable in the
observed code. For example, for the code in Figure 1, state-
ment “Iterator it = ht.iterator();” would be re-
placed by the code (assuming that classes HugeTree and
Iterator are defined in package foo):

Object tmp = scaffolding.consumeCall (*‘foo/HugeTree’’,
< object ID for ht >,
“‘iterator: () Lfoo/Iterator’’,

< empty array of paramters >);

Iterator it = (Iterator)tmp;

Method consumeCall retrieves the next event from the event
log and checks whether the event is of type OUTCALL and
the parameters match the attributes of the event. If so, the
replay continues with the next event. Otherwise, if either the
event is of the wrong type or the parameters do not match
(e.g., the target of the call differs between capture and replay
or a parameter of the outcall does not match the correspond-
ing captured parameter), an error is reported to the user.

2.4 Additional Technical Details

To simplify the presentation, we purposely glossed over some
of the technical details of the approach. In this section, we
concisely discuss the most relevant ones.

24.1 Assumptions.

Our technique works under some assumptions. First, we as-
sume that there is no direct access from an unmodifiable class
to a field of an observed class. Unmodifiable classes are typ-
ically in system libraries, so we expect this assumption to
hold in most cases—Tlibraries do not typically know the struc-
ture of the application classes. Second, because our current
implementation does not instrument native code, we also as-
sume that there is no direct access from native code to an
observed field. Except for this case, our technique can handle
native methods in external code like any other method. Fi-
nally, we assume that the interleaving due to multi-threading
does not affect the behavior of the observed code because our
technique does not order “internal events” (e.g., calls between
observed methods), which occur naturally during replay.

2.4.2 Special handling of specific language features.
Reflection. Our technique can handle most uses of re-
flection. However, in some cases (e.g., when reflection
is used in external code to modify fields of observed
classes), additional instrumentation is required. For in-
stance, to capture reflection-based field access events, the
additional instrumentation intercepts calls to “getter” (e.g.,
getByte (java.-lang.Object)) and “setter” (e.g.,
setBoolean (java.lang.Object)) methods of class
java.lang.reflect.Field.

Arrays. To correctly handle all accesses to arrays, some
additional instrumentation is also required. In particular, our
technique needs to intercept Java’s special instructions for
array operations performed on the observed code, such as
BALOAD, CALOAD, and arraylength, and capture them
as pairs of OUTCALL and OUTCALLRET events.

Garbage Collection. To account for garbage collection,
our technique must ensure that it does not keep references to
objects that would be otherwise garbage collected. For exam-
ple, the reference map must use weak references (i.e., refer-
ences that do not prevent the referenced objects from being
garbage collected) to avoid memory leaks.

Finalize. Because calls to finalize are non-
deterministic in Java, they can generate out-of-sync events
during replay. Therefore, we treat calls to finalize (and
method calls originated within a finalize method) in a
special way: by not ordering them like the other events and
matching them even if out of sync.

3 Possible Applications of our Technique

We discuss three possible applications of our technique: post-
mortem dynamic analysis of user executions, debugging of
deployed applications, and user-based regression testing.

3.1 Post-mortem Dynamic
User Executions

Analysis of

This first application involves the use of the technique for
selectively capturing user executions and performing vari-
ous dynamic analyses while replaying these executions. Be-
ing able to perform dynamic analysis on the users platforms
would provide software producers with unprecedented in-
sight on the way their software is used in the field. A per-
fect example is the identification of memory-related problems
performed by tools like Valgrind [14]. These tools have been
used very successfully in-house to identify such problems,
but may miss problems that occur only in some specific con-
figuration or for some specific runs. Unfortunately, the over-
head imposed by these runtime memory-checking tools is too
high for them to be usable on deployed software.

Our technique could be used to capture user executions,
store them on the user machines, and rerun them while per-
forming dynamic analysis when free cycles are available
(e.g., at night). The only data collected in-house would be
the results of the analysis, possibly further sanitized, which
would help address privacy issues and also limit the amount
of data to be transferred over the network. Additionally, if
capturing all executions would still result in too much data
being collected, some criterion could be used to decide which
executions to collect. There are several criteria that could
be used to this end, some of which may depend on the spe-
cific kind of analysis the software producer is interested in
performing. For example, one criterion could be to collect
only executions that terminate with an exception and discard
normally-terminating runs.

3.2 Debugging of Deployed Applications

Consider again the example in Figure 1, which contains
the following fault: if (1) the integer passed to setup
has the same value as the integer returned by the call to
db.getSomeInt within setup, (2) the value of field normis
not redefined, (3) method getRatio is called, and (4) pred-
icate “res > 07 evaluates to true at least once, then the ap-
plication generates a division by zero and fails. An execution
that terminates with such failure could be arbitrarily long and
involve a number of interactions between users, application,
and database/filesystem. However, capturing only the execu-
tion of class Compute would provide enough information to
locate and remove the fault.

In situations like this one, our technique could be applied
to capture executions that can reproduce a failure in the field
and send them to the software developer. As a possible sce-
nario for this application, consider a program that is deployed
in a number of instances, and for each instance a different
subsystem is captured (e.g., by partitioning the program in
subsystems and assigning the capturing of each subsystem to
one or more user sites). When a failure occurs at a given site,
in a subsystem that is being captured at that site, the corre-
sponding execution is saved for later debugging.

Capture Phase |

Vo Instrumented [c—=>| Java
<— Program <—=| Runtime
System

Replay Phase

Observed Set P
e | 2

Excoution
Log

Y exceution
0
O o System .
.u% c‘$§5¢5 3% [events
Users e
Instrumentation Capture Instrumentation st Replay
Module Module
SCARPE Toolset — SCARPE Toolset

class execution
names events

Lmim—J Otsrved S

[}
[}
1
1
1
1
1
Module Module 1
1
1
1
1
|
|

Figure 3. scARPE during capture (left) and replay (right).

At this point, one option is to send the captured execution
to the software producer, who could use it for traditional de-
bugging. Being able to debug failing executions collected in
the field would be extremely useful in itself. Alternatively,
we could perform (semi)automated debugging remotely, on
the site(s) where the application fail. To this end, our capture-
replay technique could apply an automated debugging tech-
nique to executions captured in the field and send back to the
software producer minimized executions, as we did in [2].

3.3 User-based Regression Testing
Regression testing is performed on a modified version of a
program to provide confidence that the changed parts behave
as intended and the unchanged parts are not adversely af-
fected by the modifications. A typical way to perform re-
gression testing is to keep a regression test suite and to rerun
all or part of it on the changed program. The effectiveness of
regression testing highly depends on how well the regression
test suite represents the way the program is used in the field.
The problem of unrepresentativeness of a test suite can ac-
tually be more serious for regression testing than for testing
of new applications: the release of a new software version is
typically targeted to users who are already familiar with the
application. Differences in behavior between the old and the
new versions are likely to generate more user dissatisfaction
than, for instance, the lack of a feature in a new product.

Unfortunately, regression test suites often exercise the ap-
plication in a very different way than the actual users, as
shown by some of our previous work [9]. Our capture-replay
technique could address this problem by generating regres-
sion subsystem and unit test cases from complete, real user
executions captured in the field. These test cases would have
the advantage of testing the software exactly in the way it is
used on the field. These subsystem and unit test cases could
be collected, for example, in the form of JUnit test cases, and
could be used to test new versions of such subsystems and
units. Test cases could be captured in the field and sent back
to the software producer, where they are collected and used
as a regular regression test suite. Test cases could also be
stored on the users’ machine and be run on the new version
of the program remotely, with only their outcome collected
at the software producer’s site. Like for the previous appli-
cation, this second approach would allow for (1) eliminating
privacy issues, and (2) reducing the amount of information to
be transfered over the network.

4 The Tool: SCARPE

We implemented our technique in a tool called SCARPE (Se-
lective Capture And Replay of Program Executions), which
is written in Java and consists of three main modules. The
Instrumentation Module adds probes to the program being
captured or replayed. It instruments at the bytecode level,
using the Byte Code Engineering Library (BCEL — http:
//3jakarta.apache.org/bcel/). The Capture Module
is invoked at runtime by the probes added by the instrumen-
tation module. It uses the information provided by the probes
and suitably generates execution events. The Replay Module
produces events for the observed code according to the exe-
cution events in the execution log. It also consumes events
produced by the observed code.

Figure 3 provides a high-level view of how the tool works
during capture and replay. During capture, SCARPE’s instru-
mentation module inputs the program to be captured and the
observed set, instruments the classes in the observed set and
the classes that access fields of such classes, and produces
an instrumented version of the program that is ready to be
deployed. (SCARPE can also instrument classes on the fly;
we do not discuss this functionality here for brevity.) While
users interact with the program, the instrumentation probes
send raw events to the capture module. Raw events contain
enough information for the module to build the actual execu-
tion events that are then recorded into an execution log.

During replay, the replay module inputs an execution log
and suitably reproduces and consumes execution events, as
described in Section 2.1. It is worth noting that SCARPE
needs to instrument the program also during replay, to en-
sure that the program operates in a sandbox. To this end,
all interactions between the observed and the external code
are transformed, through bytecode rewriting, into interactions
between the observed code and the replay module. The re-
play module acts as the replay scaffolding, that is, it mimics
the behavior of the external code.

5 Empirical Evaluation

To assess the feasibility and the efficiency of our ap-
proach, we performed two preliminary empirical studies us-
ing SCARPE on two software subjects. In the studies, we in-
vestigated two research questions:

RQ1 (feasibility): Can our technique correctly capture and
replay different subsets of an application?

RQ2 (efficiency): Can our technique capture executions
without imposing too much overhead on the executions?

5.1 Study 1: RQ1 — Feasibility

The goal of this study is to assess how reliable is our tech-
nique in capturing and replaying partial executions. To
achieve this goal, we selected a software subject and used
SCARPE to capture and replay a large number of execu-
tions for different subsets of the application. As a subject
for this study, we used NANOXML, an XML parser that
consists of about 3,500 LOC and 19 classes. We obtained
NANOXML, along with a test suite of 216 test cases, from
the Subject Infrastructure Repository (http://cse.unl.
edu/~galileo/php/sir/). We performed the study in two
parts. In the first part, we captured executions for subsystems
containing only one class. For each class ¢ in the applica-
tion, we defined an observed sets consisting of ¢ only and
ran all test cases in the test suite using SCARPE. In this way,
we recorded 216 event logs (one for each test case in the test
suite) for each of the 19 classes in the application, for a total
of more than 4,000 logs. We then replayed, for each class, all
of the recorded executions for that class.

In the second part, we captured executions for observed
sets of sizes two, three, four, and five. We randomly created
25 observed sets for each of the sizes considered, so as to
have a total number of 100 observed sets. Then, analogously
to the first part of the study, we ran all of NANOXML’s test
cases for each of the observed sets and later replayed the so
collected execution logs. Therefore, overall, we recorded and
replayed more than 20,000 partial executions.

The study was successful, in that all executions were cor-
rectly captured and replayed. We checked the correctness of
the replay by both making sure that all of the events generated
by the observed set were matching the logged events and spot
checking some of the executions. Although this is just a feasi-
bility study, the successful capture and replay of about 25,000
executions is a promising result.

5.2 Study 2: RQ2 — Efficiency

The goal of Study 2 is to assess the efficiency of our approach.
Although NANOXML is an appropriate subject for Study 1,
because its size let us check and verify SCARPE’s results, for
this second study we used a larger and more realistic sub-
ject: JABA. JABA (Java Architecture for Bytecode Analy-
sis) is a framework for analyzing Java bytecode that performs
complex control-flow and data-flow analyses and consists of
about 60,000 lines of code and 400 classes. JABA has an ex-
tensive regression test suite that was created and used over the
last several years of the system’s evolution. Because JABA is
an analysis library, each test case consists of a driver that uses
JABA to perform one or more analyses on an input program.
The test suite that we used for the study contains 4 drivers
and 100 input programs, for a total of 400 test cases.

To measure the efficiency of our technique, we proceeded
as follows. First, we ran all 400 test cases and collected the

Table 1. Overhead results for the four drivers.
[[ACDGDriver | CFGDriver | DefUseDriver [ICFGDrover |

Min Ovh 6% 3% 4% 4%
Max Ovh 494% 306% 877% 501%
Avg Ovh 104% 72% 145% 69%

normal execution time for each test case. Because SCARPE’s
initialization code takes around 1.5 seconds to run, we only
considered executions that take more than a second to run (all
but 60 executions). We could have considered also shorter
executions, but we believe that an overhead dominated by a
fixed cost, when the cost is in the order of a second, does not
provide useful information. Second, for each driver, we iden-
tified nine classes in JABA that were covered by the test cases
involving that driver. Third, for each driver and each class ¢
considered, we defined c as the observed set and ran all 340
(400 — 60) test cases using SCARPE. In this way we captured
3060 (340 * 9) executions of JABA test drivers. Fourth, we
measured the overhead imposed by SCARPE in terms of per-
centage increase between the execution times computed with
and without SCARPE.

Together with the timing data, we also collected the num-
ber of events captured for each execution, which is simply the
number of entries in the execution log for that execution. We
performed all experiments on a dedicated Pentium III, with
2GB of memory, running the GNU/Linux Operating System
(2.6.16). We repeated all measures 10 times and averaged the
results to limit the risk of imprecision introduced by external
effects, such as caching.

Results and Discussion. Table 1 shows a summary of the
overhead measured in the study. For each driver (ACDG-
Driver, CFGDriver, DefUseDriver, and ICFGDriver) the ta-
ble shows the minimum, maximum, and average percentage
overhead (computed over all of the test cases for that driver).
The absolute minimum and maximum are highlighted using
a boldface font.

To provide a better idea of the distribution of the results
we also report, in Figure 4, the overhead information for each
captured class (for each of the four drivers). Also in this case,
the figure shows average, maximum, and minimum overhead
(measured, this time, over the executions involving a specific
captured class and driver). As far as space overhead is con-
cerned, the average size of the execution logs collected, in un-
compressed and unoptimized format, is in the order of S0KB
per 1000 events (i.e., about 60MB for our largest log, consist-
ing of 114,953,200 events).

As the results show, SCARPE’s overhead varies consider-
ably across drivers and observed classes, ranging from 3%
to 877%. A careful examination of the raw data collected in
the study revealed that the cost of collecting a single event is
similar across different types of events, and that the overhead
is by and large proportional to the number of events collected
per unit of time. For example, for driver ACDGDriver, the
execution with 6% overhead generates 470 events, takes 22

X Max Overhead — Min Overhead ® Avg. Overhead

| ACDGDriver

CFGDriver

% Overhead

DefUseDriver

TCFGDriver

Captured Classes

Figure 4. Performance results for SCARPE.

seconds for the uninstrumented code, and takes about 23 sec-
onds for the instrumented code. Considering the 1.5s fixed
cost imposed by SCARPE, we can see that the overhead due
to the 470 events is mostly negligible. For another example,
for the same driver, the execution with the highest overhead
(494%) produces 3,528,210 events, takes about 9 seconds
during normal execution, and takes about 53 seconds when
the code is instrumented. In this case, the high number of
events per second is the cause of the considerable overhead.
(The execution that causes 877% overhead has similar char-
acteristics to this one). For yet another example, the lowest
overhead for driver CFGDriver (3%) corresponds to an exe-
cution that produces 114,458 events, which is a fairly large
number of events. However, in this case, the execution takes
about 87 seconds, that is, the number of events per second is
two orders of magnitude lower than for the previous example.

Looking at the results in Figure 4, we can also observe
that there are many cases in which the overhead imposed by
SCARPE is on average between 30% and 50%, in the worst
case around 100%, and in the best case in the single dig-
its. Although 100% overhead is likely to be problematic in
many cases, we must consider that JABA is a processing in-
tensive applications with no interaction with the user. There
may be cases in which even a 100% overhead is not relevant
for an application that runs completely in batch mode (e.g.,
overnight). More importantly, we hypothesize that the same
overhead may become acceptable for interactive applications,
such as word processors or Web browsers. For these applica-
tions, the user“thinking time” is likely to decrease consid-
erably the amount of events per second produced and also
provide free cycles that SCARPE could leverage.

To get some initial evidence that could support our hypoth-
esis, we performed an informal study in which both authors
used a graph-drawing application while the execution of dif-
ferent subsets of the drawing classes was being captured. Al-
though we cannot claim any generality of the result, and our

assessment may be biased, we can report that the slowdown
in the drawing operations that involved the instrumented class
was barely noticeable, despite the fact that a large number of
events was being captured.

In summary, we believe that our results are encouraging
and show that the approach we propose can be feasible, es-
pecially considering that the optimization of SCARPE is still
ongoing, and the performance of the tool can be further im-
proved. Nevertheless, it is likely that there will be cases
where the current technique is too expensive to be used in the
field. To account for these cases, we are currently investigat-
ing variation of the approach in which the capture stops after
a given number of events or when the frequency of events
produced (measured using a buffer that is flushed at regular
intervals) is too high. We are also investigating ways in which
preliminary information, collected in-house, could be used to
identify problematic part of an application (in terms of over-
head) and exclude them from the capture.

6 Related Work

The technique that is most related to ours is JRAPTURE, by
Steven and colleagues [15], which captures and replays exe-
cutions of Java programs. Although able to completely cap-
ture and replay executions, this technique incurs in many of
the problems that we mention in the Introduction because it
captures complete information for each execution. Moreover,
JRAPTURE requires two customized versions of the Java API
for each Java version targeted.

More recently, Saff and Ernst [13] and Elbaum and col-
leagues [3] presented two techniques for deriving unit tests
from system tests to speed up regression testing. These tech-
niques, designed to be used in-house, would impose unnec-
essary overhead if used in the field. The first technique in-
struments all classes and, for each method call, stores all pa-
rameters and return values. The second technique captures
executions at the method level, and each run results in a large
number of independent method-level test cases, each includ-

ing a partial dump of the program state. Although effective
in-house, these techniques would be difficult to use for our
goals due to the time and space overhead they impose.

Other related techniques perform record and replay for
testing and debugging (e.g., [6, 8, 17]). Also in this case,
these techniques are designed to be used in-house, and the
overhead they impose (on space, time, or infrastructure re-
quired) is reasonable for their intended use, but would make
them impractical for use on deployed software. In particular,
commercial capture-replay tools typically focus on a specific
domain (e.g., GUI-based applications) and require a complex
infrastructure and setup to be used. The few record and re-
play techniques that may be efficient enough to be used in
the field (e.g., [6]) require a specialized operating-system or
hardware support, which considerably limits their applicabil-
ity in the short term.

Other related techniques aim to reproduce the concurrent
behavior of applications (e.g., [1,7,12,16]). Although re-
lated, these techniques have different goals and, thus, a dif-
ferent set of constraints and tradeoffs. They focus on re-
producing, giving the same inputs, the same application be-
havior in terms of concurrency-related events, have no need
to store input and output values, and do not have efficiency
constraints (being targeted to debugging). Our technique is
mostly concerned with automatically capturing and replay-
ing subsystems and has efficiency as a priority because we
want the technique to be usable also on deployed software.

A general difference between our technique and many
other existing techniques is that it works at the application
level, through bytecode rewriting. Because our technique
does not require any runtime-system or library support, it can
be used on any platform that provides a standard implementa-
tion of the Java Virtual Machine, which improves portability
and enables the use of the technique on users’ platforms.

7 Conclusion

We have described a technique for partial capture-replay of
user executions that allows for capturing executions for a
given subsystem and replaying them in a sandbox. We have
also discussed three possible applications of the technique
and presented a tool, SCARPE, that implements the tech-
nique and is freely available (http://www.cc.gatech.
edu/~orso/software.html). Finally, we have presented
an initial empirical evaluation showing that, although there is
room for improvement, the approach is feasible.

Our immediate goal in future work is to improve the im-
plementation of SCARPE in terms of performance. This im-
provement will be performed in parallel with additional ex-
perimentation on more subjects and executions, to further re-
fine and extend the approach.

Other future work involves investigating the three applica-
tions proposed in the paper. We have already started investi-
gating the use of capture-replay techniques for debugging of
deployed applications and got promising results [2].

Acknowledgments

This work was supported in part by NSF awards CCF-
0541080 and CCR-0205422 to GA Tech. Bryan Kennedy
helped implementing a first prototype of SCARPE. Gregg
Rothermel provided NANOXML and associated test cases.

References

[1]1 B. Alpern, T. Ngo, J.-D. Choi, and M. Sridharan. Dejavu: Deterministic
java replay debugger for jalapefio java virtual machine. In Proc. of
the Conf. on Object-Oriented Programming, Systems, Languages, and
Applications, pages 165-166, 2000.

[2

—

J. Clause and A. Orso. A Technique for Enabling and Supporting De-
bugging of Field Failures. In Proc. of the 29th Intl. Conf. on Software
Engineering, pages 261-270, May 2007.

S. Elbaum, H. N. Chin, M. Dwyer, and J. Dokulil. Carving Differential
Unit Test Cases from System Test Cases. In Proc. of the 14th Sympo-
sium on the Foundations of Software Engineering, Nov. 2006.

[3

=

[4] S. Elbaum and M. Diep. Profiling Deployed Software: Assessing
Strategies and Testing Opportunities. IEEE Transactions on Software
Engineering, 31(4):312-327, 2005.

[5

[ty

S. Joshi and A. Orso. Capture and Replay of User Executions and its
Applications. Technical Report 2006-04-14, Georgia Tech — College of
Computing, Apr. 2006. http://www.cc.gatech.edu/~orso/
papers/abstracts.html#joshiO6apr—tr.

[6

=

S. King, G. Dunlap, and P. Chen. Debugging operating systems with
time-traveling virtual machines. In Proc. of the Usenix Annual Techni-
cal Conf., pages 1-15, Apr. 2005.

[7

—

R. Konuru, H. Srinivasan, and J.-D. Choi. Deterministic replay of dis-
tributed java applications. In In Proc. of the 14th Intl. Parallel & Dis-
tributed Processing Symposium, pages 219-228, 2000.

[8

=

Mercury LoadRunner, 2006. http://www.mercury.com/us/
products/performance—center/loadrunner/.

[9

—

A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data
for impact analysis and regression testing. In Proc. of the 9th European
Software Engineering Conf. and 10th Symposium on the Foundations of
Software Engineering, pages 128—-137, Sep. 2003.

[10] A. Orso and B. Kennedy. Selective Capture and Replay of Program
Executions. In Proc. of the Third Intl. ICSE Workshop on Dynamic
Analysis, pages 29-35, May 2005.

[11] C. Pavlopoulou and M. Young. Residual test coverage monitoring. In
Proc. of the 21st Intl. Conf. on Software Engineering, pages 277-284,
May 1999.

[12] M. Russinovich and B. Cogswell. Replay for concurrent non-
deterministic shared-memory applications. In Proc. of Conf. on Pro-
gramming Languages and Implementation, pages 258-266, 1996.

[13] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic Test Fac-
toring for Java. In Proc. of the 20th Intl. Conf. on Automated Software
Engineering, pages 114—123, Nov. 2005.

[14] J. Seward. Valgrind, an Open-Source Memory Debugger for x86-
Gnu/Linux, 2002. http://valgrind.kde.org/.

[15] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jrapture: A cap-
ture/replay tool for observation-based testing. In Proc. of the Intl. Sym-
posium on Software Testing and Analysis, pages 158-167, Aug. 2000.

[16] K. C. Tai, R. H. Carver, and E. E. Obaid. Debugging concurrent ada
programs by deterministic execution. IEEE Transactions on Software
Engineering, 17(1):45-63, 1991.

[17] Mercury WinRunner, 2006. http://www.mercury.com/
us/products/quality-center/functional-testing/
winrunner.

