
Proc. of the ACM Conf. on OO Programming, Systems, Languages, and Applications (OOPSLA’01), ACM Copyright.

Regression Test Selection for Java Software ∗

Mary Jean Harrold
harrold@cc.gatech.edu

James A. Jones
jjones@cc.gatech.edu

Tongyu Li
tongyu@cc.gatech.edu

Donglin Liang
dliang@cc.gatech.edu

Alessandro Orso
orso@cc.gatech.edu

Maikel Pennings
pennings@cc.gatech.edu

Saurabh Sinha
sinha@cc.gatech.edu

S. Alexander Spoon
lex@cc.gatech.edu

Ashish Gujarathi
ashish.gujarathi@citrix.com

ABSTRACT
Regression testing is applied to modified software to pro-
vide confidence that the changed parts behave as intended
and that the unchanged parts have not been adversely af-
fected by the modifications. To reduce the cost of regres-
sion testing, test cases are selected from the test suite that
was used to test the original version of the software—this
process is called regression test selection. A safe regression-
test-selection algorithm selects every test case in the test
suite that may reveal a fault in the modified software. Safe
regression-test-selection techniques can help to reduce the
time required to perform regression testing because they se-
lect only a portion of the test suite for use in the testing but
guarantee that the faults revealed by this subset will be the
same as those revealed by running the entire test suite. This
paper presents the first safe regression-test-selection tech-
nique that, based on the use of a suitable representation,
handles the features of the Java language. Unlike other safe
regression test selection techniques, the presented technique
also handles incomplete programs. The technique can thus
be safely applied in the (very common) case of Java software
that uses external libraries or components; the analysis of
the external code is not required for the technique to se-
lect test cases for such software. The paper also describes
Retest, a regression-test-selection system that implements
our technique, and a set of empirical studies that demon-
strate that the regression-test-selection algorithm can be ef-
fective in reducing the size of the test suite.

Keywords
Regression testing, testing, test selection, software evolu-
tion, software maintenance

∗All authors except Gujarathi are affiliated with the Col-
lege of Computing, Georgia Institute of Technology, At-
lanta, GA. Gujarathi is affiliated with Citrix Systems, Inc,
Ft. Lauderdale, FL.

1. INTRODUCTION
Regression testing is the process of validating modified

software to provide confidence that the changed parts of
the software behave as intended and that the unchanged
parts of the software have not been adversely affected by
the modifications. Because regression testing is expensive,
researchers have proposed techniques to reduce its cost. One
approach reduces the cost of regression testing by reusing
the test suite that was used to test the original version of
the software. Rerunning all test cases in the test suite, how-
ever, may still require excessive time. An improvement is
to reuse the existing test suite, but to apply a regression-
test-selection technique to select an appropriate subset of
the test suite to be run. If the subset is small enough, sig-
nificant savings in time are achieved. To date, a number of
regression-test-selection techniques have been developed for
use in testing procedural languages (e.g., [3, 8, 22, 29, 35,
37]) and for use in testing object-oriented languages (e.g.,
[14, 16, 19, 31, 36]).

Testing professionals are reluctant, however, to omit from
a test suite any test case that might expose a fault in the
modified software. A safe regression-test-selection technique
is one that, under certain assumptions, selects every test
case from the original test suite that can expose faults in
the modified program [32]. To date, several safe regression-
test-selection techniques have been developed [3, 8, 29, 31,
35]. These techniques use some representation of the origi-
nal and modified versions of the software to select a subset of
the test suite to use in regression testing. Empirical evalua-
tion of these techniques indicates that the algorithms can be
very effective in reducing the size of the test suite while still
maintaining safety [5, 12, 15, 30, 31, 35]. These studies also
show that factors such as the structure of the code, location
of the changes, granularity of the test suite, and frequency
of the testing affect the reduction in test-suite size that can
be achieved by the techniques.

Regression-test-selection techniques are particularly effec-
tive in environments in which changed software is tested fre-
quently [15]. For example, consider an environment in which
nightly builds of the software are performed and a test suite
is run on the newly built version of the software. In this case,
regression test selection can be used to select a subset of the
test suite for use in testing the new version of the software.
The main benefit of this approach is that, in many cases, a
small subset of the test suite is selected, which reduces the
time required to perform the testing. For another example,

consider a development environment that includes such a
regression-test-selection component. In this case, after de-
velopers modify their software, they can use the regression
test selector to select a subset of the test suite to use in
testing. With this approach, developers can frequently test
their software as they make changes, which can help them
locate errors early in development [15]. The techniques are
also effective when the cost of test cases is high. An example
is the regression testing of avionics software. In this case,
even the reduction of one test case may save thousands of
dollars in testing resources.

Although object-oriented languages have been available
for some time, only two safe regression-test-selection algo-
rithms that handle features of object-oriented software have
been developed [31, 36]. However, both approaches are lim-
ited in scope and can be imprecise in test selection. Rother-
mel, Harrold, and Dedhia’s algorithm [31] was developed
for only a subset of C++, and has not been applied to soft-
ware written in Java. The algorithm does not handle some
features that are commonly present in object-oriented lan-
guages; in particular, it does not handle programs that con-
tain exception-handling constructs. Furthermore, the algo-
rithm must be applied to either complete programs or classes
with attached drivers. For classes that interact with other
classes, the called classes must be fully analyzed by the al-
gorithm. Thus, the algorithm cannot be applied to applica-
tions that call external components, such as libraries, unless
the code for the external components is analyzed with the
applications. Finally, because of its treatment of polymor-
phism, the algorithm can be very imprecise in its selection
of test cases. Thus, the algorithm can select many test cases
that do not need to be rerun on the modified software.

White and Abdullah’s approach [36] also does not handle
certain object-oriented features, such as exception handling.
Their approach assumes that information about that classes
that have undergone specification or code changes is avail-
able. Using this information, and the relationships between
the changed classes and other classes, their approach iden-
tifies all other classes that may be affected by the changes;
these classes need to be retested. White and Abdullah’s ap-
proach selects test cases at the class level and, therefore, can
select more test cases than necessary.

This paper presents the first safe regression-test-selection
technique for Java that efficiently handles the features of
the Java language, such as polymorphism, dynamic binding,
and exception handling. Our technique is an adaptation of
Rothermel and Harrold’s graph-traversal algorithm [29, 31],
which uses a control-flow-based representation of the origi-
nal and modified versions of the software to select the test
cases to be rerun. Our new graph representation efficiently
represents Java language features, and our graph-traversal
algorithm safely selects all test cases in the original test suite
that may reveal faults in the modified software. Thus, unlike
previous approaches, our technique can be applied to com-
mon commercial software written in Java. Another novel
feature of our technique is that the representation models
(under certain conditions) the effects of unanalyzed parts of
the software, such as libraries. Thus, the technique can be
used for safe regression test selection of applications with-
out requiring complete analysis of the libraries that they
use. Because most Java programs make frequent use of li-

braries, such as the AWT [28], our technique’s ability to
select test cases for applications without requiring analysis
of the library may provide significant savings during regres-
sion testing. Finally, the technique provides a new way to
handle polymorphism that can result in the selection of a
smaller, but still safe, subset of the test suite.

The paper also describes our regression-test-selection sys-
tem, Retest, and a set of empirical studies that we per-
formed using the system. Retest includes a profiler to de-
termine coverage information for a program, a module that
compares two program versions and identifies the parts of
code that are affected by the modification, and a module
that combines information from the other two modules to
select regression test cases. Using Retest, we performed
two empirical studies on a set of Java subjects. These stud-
ies show that, for the subjects we considered, our algorithm
can provide significant reduction in the size of the test suite
and suggest that the technique scales well to larger software
systems. The studies also indicate that the granularity of
the code entities on which the selection is based (e.g., edges,
methods) can result in considerable differences in the sizes
of the test suites selected by the technique.

In the next section, we discuss regression test selection in
general; we also give details about Rothermel and Harrold’s
regression-test-selection algorithm, and illustrate it with an
example. In Section 3, we discuss our algorithm, including
details about the assumptions for safety. In Section 4, we
discuss our regression-test-selection system, Retest, and in
Section 5, we present the results of our empirical studies
to evaluate our technique. In Section 6, we present related
work and compare it to our work. Finally, in Section 7, we
summarize our results and discuss future work.

2. BACKGROUND
Software testing is the activity of executing a given pro-

gram P with sample inputs selected from the input space
for P, to try to reveal failures in the program. The under-
lying idea is that, under the hypothesis that a test case is
well-designed, its inability to reveal failures increases our
confidence in the tested code. To perform testing, it is nec-
essary to select a set of input data for P, to determine the
expected behavior of P for such data with respect to a given
model, and to check the results of P’s execution against the
expected behavior. A test case consists of the input data
that is provided to P, together with the corresponding ex-
pected output. A test suite is a set of test cases, and a test
run is the execution of P with respect to a test suite T. For
each test case t in T, a test run for T consists of the following
three steps: (1) initialization of the environment, (2) execu-
tion of P with input specified in t, and (3) checking of the
output of the execution with respect to the expected output.

To assess the adequacy of a given test suite T, we mea-
sure the level of coverage achieved by the test run. Al-
though functional coverage can be measured as well, cov-
erage is usually computed for structural entities (i.e., en-
tities in the code). Common examples of entities consid-
ered for structural coverage are statements, branches, and
conditions. Coverage is measured as a percentage. For ex-
ample, statement coverage is defined as the percentage of
statements covered by the test run with respect to the total
number of executable statements. The coverage information
can be obtained in several ways. One method produces an

2. fread(fileptr,n)

3. while (not EOF) do
if (n<0)

print("bad input")

return(error)
else

numarray[count] = n

endif

endwhile

fread(fileptr,n)

if (n<0)

return(error)
else

numarray[count] = n

count++
endif
fread(fileptr,n)

5

F

F

T

T

DD

2

F
T

FT

4

3

5
6

8

9

10 exit

entry

1

7

entry

1

2

3

4

5a
6

8

9

exit

9. avg = calcavg(numarray,count)

8.

6.

5.
5a.

4.

fread(fileptr,n)

10. return(avg)

2.

while (not EOF) do3.

4.

5.

6.
7.

8.

9.

10.

endwhile

avg = calcavg(numarray,count)

return(avg)

1. int count = 0 1. int count = 0

procedure avg

10

procedure avg’

Figure 1: Example program, avg and its control-flow graph (left); modified version, avg′ and its control-flow graph (right).

instrumented version of P such that when this instrumented
version of P is executed with a test case t, it records the en-
tities in the program, such as statements or branches, that
are executed with t. An alternative method for obtaining
the coverage information modifies the runtime environment
so that when P is executed with t, the environment gathers
the information about the entities covered.

Let P′ be a modified version of P, and T be the test suite
used to test P. During regression testing of P′, T and in-
formation about the testing of P with T are available for
use in testing P′. In attempting to reuse T for testing P′,
two problems arise. First, which test cases in T should be
used to test P′ (the regression-test-selection problem). Sec-
ond, which new test cases must be developed to test parts
of P′ such as new functionality (the test-suite augmentation
problem). Although both problems are important, in this
paper we concentrate on the regression-test-selection prob-
lem. Regression-test-selection techniques attempt to reduce
the cost of regression testing by selecting T′, a subset of T,
and using T′ to test P′.

Program P

Coverage Matrix

Execute

Coverage
Record

T’

Identify

Entities

Dangerous Dangerous Entities

Test suite for P

Program P

Program P’

Select

Tests

P /

Figure 2: A general system for regression test selection.

A number of safe regression-test-selection techniques that
vary in precision and efficiency have been presented (e.g.,
[3, 8, 29, 31, 35]). We can view these techniques as a family

of regression-test-selection techniques that use information
about the program’s source code to select T′. Figure 2 illus-
trates a general regression-test-selection system.

In this system, a program P is executed with a test
suite T. In addition to the results of the execution—the
pass/fail information—the system records coverage informa-
tion about which entities in P are executed by each test case
t. The types of entities recorded depend on the specific
regression-test-selection technique. After all test cases have
been run, the coverage information is compiled into a cover-
age matrix that associates each t in T with the entities that
it executes.

In addition to computing coverage information, these
techniques compare P and P′, and identify in P a set of dan-
gerous entities [4]. We define P(i) as the execution of P with
input i. A dangerous entity is a program entity e such that
for each input i causing P to cover e, P(i) and P′(i) may
behave differently due to differences between P and P′.1 The
technique ensures that any test case that does not cover a
dangerous entity will behave in the same way in both P and
P′, and thus, cannot expose new faults in P′. Thus, it is safe
to select only those test cases for which the coverage matrix
indicates coverage of a dangerous entity.

Rothermel and Harrold, for example, describe a
regression-test-selection technique that uses a control-flow
graph (CFG)2 to represent each procedure in P and P′ and
uses edges in the CFGs as potential dangerous entities [29].
Dangerous entities are selected by traversing in parallel the
CFGs for P and the CFGs for P′; whenever the targets of
like-labeled CFG edges in P and P′ differ, the edge is added

1Although an entity is not dangerous in itself, and the term
affected (by a change) may be more appropriate, we use the
term dangerous entity to be consistent with the terminology
used in Reference [4].
2In a control-flow graph, nodes represent program state-
ments and edges represent the flow of control between the
statements.

to the set of dangerous entities.
To illustrate, consider Figure 1, which shows an example

program avg and its control-flow graph (left) and a mod-
ified version avg′ and its control-flow graph (right). From
avg to avg′, statement 5a has been inserted and statement
7 has been deleted. The algorithm begins the traversal at
entry nodes in avg and avg′, and traverses like paths in the
two programs by traversing like-labeled edges until a differ-
ence in the target nodes of such edges is detected. When
the algorithm considers node 4 in avg and node 4 in avg′,
it finds that the targets of the edges with label “T” dif-
fer, and it adds edge (4, 5) to the set of dangerous entities.
The algorithm stops its traversal along this path: any test
case that traverses other dangerous entities, if any, that can
be reached only through this edge (i.e., dominated3 by this
edge) would necessarily traverse this edge, and thus, is al-
ready selected. The algorithm then considers the “F” la-
beled edges from node 4 in avg and node 4 in avg′. When
the algorithm considers node 6 in avg with node 6 in avg′, it
discovers that the targets of the out edges differ; therefore,
it adds edge (6, 7) to the set of dangerous entities, and stops
the traversal along this path. Subsequent traversals find no
additional dangerous edges. In the example, the nodes la-
beled “D” are declaration nodes. In the algorithm, declara-
tion nodes are used to model variable declarations explicitly;
such nodes contain information about all declarations. By
doing so, the algorithm can identify changes that involve
only declarations of variables, which do not appear in the
CFG. For example, if the declaration of variable count in
avg′ changed from int to long, the algorithm would find a
difference between the two declaration nodes and add edge
(entry, D) to the set of dangerous entities.

After dangerous edges have been identified, the select-
tests component of the regression-test-selection system uses
the dangerous entities and the coverage matrix to select the
test cases in T to add to T′.

Continuing with the above example, suppose the test suite
shown in Table 1 were used for avg.

Table 1: A test suite for program avg of Figure 1.
Test Case Input Expected Output

1 empty file 0
2 -1 error
3 1 2 3 2

When the program executes, the edge covered by each test
case in the test suite are recorded. For this example, test
cases 1, 2, and 3 cover edge (entry, 1), test cases 1 and 3
cover edge (2, 9), and test cases 2 and 3 cover edge (3, 4).
Table 2 shows the edge-coverage matrix for this test suite
and program avg.

Table 2: Edge-coverage matrix for test suite of Table 1 and pro-
gram avg of Figure 1.

Edge Test Case

(entry, 1), (1, 2), (2, 3) 1, 2, 3
(3, 9), (9, 10), (10, exit) 1, 3

(3, 4) 2, 3
(4, 5), (5, exit) 2

(4, 6), (6, 7), (7, 8), (8, 3) 3

3An edge ei dominates a edge ej if every path from the
beginning of the program to ej goes through ei.

Using the edge-coverage matrix and the set of dangerous
entities computed by the regression-test-selection algorithm,
the final step in the test selection is performed by simply
indexing into the matrix using the dangerous entities, and
returning the corresponding test cases. In our example, the
dangerous edges are (4, 5) and (6, 7). Thus, test cases 2 and
3 need to be rerun.

3. REGRESSION TEST SELECTION FOR
JAVA

The regression-test-selection technique for Java that we
present is also control-flow based. Like the technique de-
scribed in Section 2 [29], our technique performs three main
steps. First, it constructs a graph to represent the control
flow and the type information for the set of classes under
analysis. Then, it traverses the graph to identify danger-
ous edges. Finally, based on the coverage matrix obtained
through instrumentation, it selects, from the test suite for
the original program, the test cases that exercise the dan-
gerous edges identified in the previous step.

For efficiency, our technique avoids analyzing and instru-
menting code components, such as libraries, that are used by
the program but have not been modified. Therefore, we can
consider the program being tested as divided into two parts:
one part that we analyze and the other that we consider as
external and do not analyze. For convenience, in the rest
of the paper we refer to the set of classes that are analyzed
and instrumented by our regression-test-selection system as
internal classes, and those that are not analyzed and instru-
mented by our system as external classes. Analogously, we
refer to a method in an internal class as an internal method
and a method in an external class as an external method.

In the rest of this section, we present the details of our
regression-test-selection technique for Java: we describe
the assumptions on which the technique is safe; we illus-
trate the representation used to model Java programs; we
present the traversal algorithm; and we discuss two alterna-
tive approaches for Java-program instrumentation that al-
low for gathering the coverage information required by our
regression-test-selection technique.

3.1 Assumptions
To be safe without being too inefficient and too conser-

vative, our technique must rely on some assumptions about
the code under test, the execution environment, and the test
cases in the test suite for the original program. Bible and
Rothermel call this set of assumptions the regression bias [4].

Reflection.Our technique assumes that reflection is not ap-
plied to any internal class or any component of an internal
class. Reflection “allows programmatic access to informa-
tion about the fields, methods and constructors of loaded
classes, and the use of reflected fields, methods, and con-
structors to operate on their underlying counterparts on ob-
jects, within security restriction” [27]. In this paper, we
consider methods that inspect the information about a spe-
cific class, such as the methods in java.lang.Class, as a
form of reflection as well. If a statement uses information
obtained through reflection about either an internal class or
its members, the behavior of this statement may be affected
by several kinds of changes occurring in the class and/or its

members. In such cases, the identification of all the points
in the code affected by a change may require sophisticated
and expensive analysis of all the reflection constructs in the
code. Moreover, if a statement in an external class uses re-
flection to inspect the information about an internal class,
then the external class must be analyzed to identify the code
affected by a change of the internal class.

Independent external classes.Our technique assumes
that the external classes can be compiled without the inter-
nal classes, and that external classes do not load any inter-
nal class explicitly by invoking a class loader with the class
name as a parameter. In other words, we assume that exter-
nal code has no knowledge of the internal classes. This as-
sumption guarantees that the external classes interact with
the internal classes only through a set of predefined virtual
methods. Thus, this assumption reduces the types of in-
teractions between the internal and external classes that we
must consider. In practice, this assumption holds in most
cases because the external classes are often library classes
that are developed independent of, and prior to, the devel-
opment of the applications that use them.

Deterministic test runs.Our technique assumes that a test
case covers the same set of statements, and produces the
same output, each time it is run on an unmodified program.
This assumption guarantees that (1) the coverage informa-
tion contained in the coverage matrix, obtained by running
the original program with the test cases, does not depend on
the specific test run, and (2) the execution of a test case that
does not traverse affected parts of the code yields the same
results for the original and the modified programs. Under
this assumption, if our representation of the internal classes
is correct (i.e., it correctly models all language constructs
addressed and their effects), based on the information in
the coverage matrix, we can safely exclude test cases that
do not traverse modifications.

One possible threat to this assumption is a change in
the execution environment. If the execution environment
changes between the test run on the original program and
the test run on the modified program, the outcome of a
test case may change even if the test execution does not tra-
verse the parts of code that are affected by the modification.
Therefore, for our technique to be applicable, the tester must
ensure that elements such as the operating system, the Java
Virtual Machine, the Java compiler, the external classes,
databases and network resources possibly interacting with
the program are fixed. This requirement, however, is not
overly restrictive—it is a common requirement for testing in
general because it guarantees that, in case of a failure, the
problem can be reproduced.

Another possible threat to this assumption is the presence
of nondeterministic behavior. The assumption holds for se-
quential programs, which contain only one thread of exe-
cution, and for those multithreaded programs in which the
interaction among threads does not affect the coverage and
the outputs (e.g., an ftp server whose multiple threads are
just clones created to handle multiple clients). The assump-
tion, however, does not hold in general for programs that
contain multiple threads of execution. For our technique to
be applicable to such programs, we must use special execu-
tion environments that guarantee the deterministic order in

which the instructions in different threads are executed [24].
This threat too, like the previous one, is a requirement for
testing in general, and therefore, is not unduly restrictive.

3.2 Representation for Java Software
To adequately handle all Java language constructs, a rep-

resentation based on simple CFGs, such as the one presented
in Section 2, is inadequate. A CFG is suitable for repre-
senting the control flow within a single procedure, but can-
not accommodate interprocedural control flow (i.e., control
flow across procedure boundaries) or features of the Java
language such as inheritance, polymorphism and dynamic
binding, and exception handling.

We define a representation that, although general enough
to represent software written in other object-oriented lan-
guages, is tailored to Java. For convenience, we refer to
this representation as Java Interclass Graph. A Java In-
terclass Graph (JIG) accommodates the Java language fea-
tures and can be used by the graph-traversal algorithm to
find dangerous entities by comparing the original and modi-
fied programs. A JIG extends the CFG to handle five kinds
of Java features: (1) variable and object type information;
(2) internal or external methods; (3) interprocedural inter-
actions through calls to internal or external methods from
internal methods; (4) interprocedural interactions through
calls to internal methods from external methods; and (5) ex-
ception handling. We next discuss how the JIG represents
each of these characteristics and constructs of Java. We also
show that the representation is suitable for modeling both
complete and partial programs, such as classes, clusters, or
components in general, because it accounts for the possible
effects of missing parts of the system.

Variable and object types.The graph-traversal algorithm
described in Section 2, uses a representation that contains
declaration nodes to represent declarations in the program.
If a change is made in a global declaration, then the edge
from the entry node to the corresponding declaration node
is marked as dangerous, thus causing all test cases in the
test suite to be selected.

To achieve better precision, in our representation we as-
sociate the type of a variable that is of primitive type with
the name of the variable by augmenting the name with
the type information. For example, a variable a of type
double, is identified as a double in our representation. This
method for representing scalar variables essentially pushes
any change in the variable type down to the location where
that variable is referenced, which gives more precise test se-
lection than the use of the declaration node.

The graph-traversal algorithm described in Reference [31]
models classes and class hierarchies explicitly. In our rep-
resentation, instead of explicitly representing class hierar-
chies, we encode the hierarchy information at each point of
instantiation (e.g., at each point in the code where new is
invoked) using a globally-qualified class name. A globally-
qualified class name for a class contains the entire inher-
itance chain from the root of the inheritance tree (i.e.,
from class java.lang.Object) to its actual type.4 The
interfaces that are implemented by the class are also in-

4For efficiency, a globally-qualified class name can exclude
external classes and interfaces.

6 void bar(A p) {
7 A.foo();
8 p.m();
9 }

4 public void m(){...};

1 class B extends A {
2 };
3 class C extends B {

5 };
return

return

exit

exitexit

exit

A.foo()

CFG edge

Path edge

Call edge

exit

A.foo()

return

return

exit

6 void bar(A p) {
7 A.foo();
8 p.m();
9 }

4 public void m(){...};
3 class C extends B {
2 };

5 };

exit

C.m()

...

exit

B.m()

...

exit

CFG edge

Path edge

Call edge

// and a public method m()
bar()

B

A

C.m()

...

C

// A is externally defined

// and has a public static method foo()

A.m()

7 A.foo()

8 p.m()

(a) representing internal method calls in foo() that uses B and C

1 class B extends A {

7 A.foo();

8 p.m();

bar()

A

B

C

A.m()

// A is externally defined
// and has a public static method foo()

// and a public method m()

(b) representing internal method calls in foo() that uses
modified B and C

1a public void m(){...};

Figure 3: Example of internal method call representation.

cluded in globally-qualified names. If a class implements
more than one interface, the names of the interfaces are
inserted in the globally-qualified name in alphabetical or-
der. For example, if a class B in package foo extends a
class A in the same package, and A implements interface I

in package bar, then the globally-qualified name for B is
java.lang.Object:bar.I:foo.A:foo.B.

Using globally-qualified class names, our technique can
identify the changes in class hierarchies. This method for
representing class hierarchies also pushes the changes in class
hierarchies to the locations where the affected classes are
instantiated. Therefore, our technique can be very precise
in accounting for such changes.

Internal or external methods.A JIG contains a CFG for
each internal method in the set of classes under analysis.
The CFG differs from the one described in Section 2 in two
ways. First, each call site is expanded into a call and a
return node. Second, there is a path edge between the call
and return node that represents the path through the called
method. The graph on the left of Figure 4 illustrates this
representation. The node labeled “p.m()” represents a call
node; it is connected to the return node with a path edge.

return

exit

exit

CFG edge

// B is an internal class // A is an external class

...

p.m()

B.bar A.foo

Path edge

Figure 4: Example of internal method representation (left) and
external method representation (right).

A JIG contains a collapsed CFG for each external method
that is called by any internal method. Usually, the source
code for the external classes is not available, and, even if it
were available, we do not want to analyze it. Because we
assume that external classes do not change, there is no need
to represent and analyze such code. Thus, each collapsed
CFG consists of a method entry node and a method exit
node along with a path edge from the method entry node to
the method exit node. The path edge summarizes the paths
through the method. The graph on the right in Figure 4
illustrates this representation.

Interprocedural interactions through internal method
calls. The JIG represents each call site as a pair of call
and return nodes that are connected with a path edge. The
call node is also connected to the entry node of the called
method with a call edge. If the call is not virtual, the call
node has only one outgoing call edge. To illustrate, consider
Figure 3(a), which shows three classes, A (external), B, and
C, a method bar, and the corresponding JIG. Class B extends
class A without overriding any method; class C extends class
B and overrides method m.

In the example, method bar invokes static method A.foo;
there is no dynamic binding at this call site because A.foo is
a static method. Thus, the call node (node 7) has only one
outgoing call edge connected to the entry node for method
A.foo.

If the call is virtual, the call node is connected to the
entry node of each method that can be bound to the call.
Each call edge from the call node to the entry node of a
method m is labeled with the type of the receiver instance
that causes m to be bound to the call. In the example, the
call to p.m in method bar is a virtual call. Depending on
the dynamic type of p (whose static type is A), the call to
m is bound to different methods: if p’s type is either A or B,
the call is bound to A.m; if p’s type is C, the call is bound
to C.m. Consequently, the call node has three outgoing call
edges: two of them, labeled “A” and “B”, are connected
to the entry node for A.m; the third edge, labeled “C”, is
connected to the entry node for C.m.

B.foo()

...

exit

C.bar()

...

exit

B.foo()

...

exit

B.bar()

...

exitCall edge

CFG edge

Call edge

CFG edge

//A is externally defined
// and has a public method foo()
// and a public method bar()

class B extends A {
 public void foo() {...};

//A is externally defined
// and has a public method foo()
// and a public method bar()

class B extends A {
 public void foo() {...};
}
class C extends B {
 public void bar() {...};
};

 public void bar() {...};

B C

foo() foo()
bar()* *

}
class C extends B {

};

B C

bar()* *

ECN

B entry C entry

defaultdefault

ECN

B entry C entry

defaultdefault

foo()

(a) representing external method calls for B and C

bar() foo()

(b) representing external method calls for modified B and C

Figure 5: Example of external method call representation.

To represent virtual method calls correctly, we must com-
pute, for each virtual call site, the set of methods to which
the call may be bound. Such information can be computed
using various type-inferencing algorithms (e.g., [2, 10, 34])
or points-to analysis algorithms (e.g., [23]). The precision of
this computation determines the efficiency of the represen-
tation. In our technique, we use the class hierarchy analy-
sis [10] to resolve the virtual calls.

Using this representation, our algorithm can identify, by
traversing the JIGs constructed for the original and modi-
fied programs, the internal method calls that may be affected
by a program change. Figure 3(b) shows a modification to
class B that adds a new method m() in B (statement 1a).
This change affects the method that is invoked at state-
ment 8 when p’s type is B. By comparing the outgoing edges
from the call node associated with statement 8 in the JIG
in Figure 3(a) and the outgoing edges from the call node
associated with statement 8 in the JIG in Figure 3(b), our
algorithm identifies that the target of the edge labeled “B”
has changed. Thus, our algorithm identifies this edge as
dangerous.

Interprocedural interactions through external method
calls. Potential subtle interactions between internal classes
and external classes may lead to different behavior in the
program, as a consequence of apparently harmless changes
in the internal classes. Therefore, in the case of incomplete
programs, we must consider the possible effects of the un-
analyzed parts of the system. In particular, unforeseen in-
teractions between internal classes and external classes may
be caused by calls from external methods to internal meth-
ods. To handle this situation, we explicitly represent, in a
summarized form, potential calls to internal methods from
external methods.

Figure 5(a) provides an example of such representation.
External code is represented by a node labeled “ECN” (Ex-
ternal Code Node). For each internal class that is accessible
from external classes (both classes B and C in the example),
the JIG contains an outgoing edge from the ECN node. Each
of these edges is labeled with the name of the class it repre-
sents and terminates in a class entry node.

A class entry node for an internal class A represents an
entry point to the internal code through an object of type

A, and is connected to the entry of each method that can be
invoked by external methods on objects of type A. The only
internal methods that can be invoked by external code are
those methods that override an external method.5 There-
fore, we must create a class entry node for (1) each class
that overrides at least one external methods, and (2) each
class that inherits at least one method overriding an exter-
nal method. For example, in Figure 5(a), class C overrides
A.bar and inherits B.foo, which in turn overrides A.foo;
thus, we must create a class entry node for C and connect
it to B.foo and C.bar, which can both be invoked on ob-
jects of type C by external code through polymorphism and
dynamic binding.

In addition, for each class entry node, we create an out-
going default call edge labeled “*” (see Figure 5(a)), and
we connect it to a default node. The default node for a
class A represents all methods that can be invoked through
an object of a type A, but that are externally defined. This
representation lets us correctly handle modifications that in-
volve addition or removal of internal methods that override
external methods,

Using this representation, our algorithm can identify, by
traversing the JIGs constructed for the original and modified
programs, the external method calls that may be affected
by a program change. Figure 5(b) shows the modification
to classes B and C that deletes bar() from C and adds a
new bar() in B. This change may affect an external call
to these methods when the receiver type is either B or C.
By comparing the outgoing edges from the node labeled “C
entry” in the graph in Figure 5(a) with the outgoing edges
from node labeled “C entry” in the graph in Figure 5(b),
our algorithm identifies that the target of the edge labeled
“bar()” has changed. Thus, our algorithm identifies this
edge as dangerous.

Exception handling.The JIG uses an approach similar to
that described in Reference [33] to model exception-handling
constructs in Java code.

A JIG explicitly represents the try block, the catch blocks,

5As stated in Section 3.1, we assume that external code has
no knowledge of internal methods and, therefore, can call
internal methods only through polymorphism and dynamic
binding.

16

18
exit

excep.
exit

bar()

14 valueOf

return

15

17

T
F

T F CFG edge

Call edge

Path edge

CFG edge

Call edge

Path edge

8 finally

exit

foo()

2 try

3 bar()

return

4 E3

5 ... 6 E1

7 ...
8 finally

9 ...

exit
excep.

8 finally

exit

class E1 extends Exception {};
class E2 extends E1 {};
class E3 extends E2 {};

 1 public static void foo() {

 2 try {
 3 bar("5");
 4 } catch(E3 e3) {
 5 ...
 6 } catch(E1 e1) {
 7 ...
 8 } finally {
 9 ...
10 }
11 ...
12 }

14 int t = Integer.valueOf(s);

13 static void bar(String s)
throws Exception {

15 if(t>0)
16 throw new E3();
17 else if(t<0)
18 throw new E1();
19 }

class E1 extends Exception {};
class E2 extends E1 {};
class E3 extends E2 {};

(a) foo(), bar() and their representations (b) a modified version of foo() and its representation

 1 public static void foo() {

 2 try {
 3 bar("5");

 6 } catch(Throwable e) {
 7 ...
 8 } finally {
 9 ...
10 }
11 ...
12 }

foo()

2 try

7 ...

9 ...

11 ...

3 bar()

return

exception

exception

exception

exception

9 ...

11 ...

caught

caught
6 Throwable

Figure 6: Example of exception handling representation.

and the finally block in each try statement. Figure 6(a)
shows an example JIG for a method that contains exception-
handling constructs. For each try statement, we create a try
node in the CFG for the method that contains the statement
(node labeled “2 try” in the example). We represent the try
block of the try statement using a CFG. There is a CFG
edge from the try node to the entry of the CFG of the try
block.

We create a catch node and a CFG to represent each catch
block of the try statement. A catch node is labeled with the
type of the exception that is declared by the corresponding
catch block. A CFG edge, labeled “caught”, connects the
catch node to the entry of the catch CFG. A path edge, la-
beled “exception”, connects the try node to the catch node
for the first catch block of the try statement. That path edge
represents all control paths, from the entry node of the try
block, along which an exception can be propagated to the
try statement. For example, path edge (2, 4) in the graph in
Figure 6(a) represents all control paths that traverse state-
ment 2 and reach statement 16 or 18, or a throw statement
in Integer.valueOf() that causes Integer.valueOf() to
propagate an exception. A path edge labeled “exception”
connects the catch node for a catch block bi to the catch
node for catch block bi+1 that follows bi. This path edge
represents all control paths, from the entry node of the try
block, along which an exception is (1) raised, (2) propagated
to the try statement, and (3) not handled by any of the catch
blocks that precede bi+1 in the try statement.

We create a finally node and a CFG to represent the fi-
nally block of the try statement. A CFG edge connects the

finally node to the entry of the CFG. For each CFG that rep-
resents the try block or a catch block, a CFG edge connects
the exit node of this CFG to the finally node. The exit of
the CFG for the finally block is connected to the statement
that follows the try statement. If there are exceptions that
cannot be caught by any catch block of the try statement,
we create a copy of the finally node and of the CFG for the
finally block. A path edge labeled “exception” connects the
catch node of the last catch block to this finally node. If
the try statement is not enclosed in another try statement
in the same method, a CFG edge connects the exit of this
duplicated finally CFG to the exceptional exit node. An
exceptional exit node models the effect of an uncaught ex-
ception causing exit from the method. If no finally block is
present and the try statement is not enclosed in any other
try statement in the same method, a path edge labeled “ex-
ception” connects the catch node of the last catch block of
the try statement to the exceptional exit node.

Using this representation, our algorithm can identify the
changes in exception-handling code by traversing the JIGs
constructed for the original and the modified programs. Fig-
ure 6(b) shows a modified version of foo() in which we delete
statements 4 and 5 and change the type of exception han-
dled by statement 6. By comparing the outgoing edges from
the try node in the graph in Figure 6(a) and the outgoing
edges from the try node in the graph in Figure 6(b), our
algorithm discovers that the target of the edge labeled “ex-
ception” has changed. Thus, our algorithm identifies this
edge as dangerous.

Procedure Compare(N,N ′)
input N : a node in the JIG for original program P

N ′: a node in the JIG for modified program P ′

global output E: set of dangerous edges for P
begin Compare
1. mark N “N ′-visited”
2. foreach edge e′ leaving N ′ do
3. e = match(N,e′)
4. if e is null then continue
5. C = e.getTarget()
6. C′ = e′.getTarget()
7. if ¬NodesEquiv(C,C′) then
8. E = E ∪ e
9. elseif C is not marked “C′-visited”
10. Compare(C,C′)
11. endif
12. endfor
13. foreach edge e leaving N and

not matched to any edge leaving N ′ do
14. E = E ∪ e
15. endfor
end Compare

Figure 7: Compare procedure.

3.3 The Traversal Algorithm
Our algorithm that traverses the JIGs and identifies dan-

gerous edges is similar to the algorithm in Reference [29]
that traverses the CFG of a procedure. Our algorithm starts
the traversal by invoking Compare() on the entry node of
method main(), on the ECN node, and on the entry nodes
of all methods called static.6 Compare() accepts as inputs
a node N in the JIG constructed for the original program
P and a node N ′ in the JIG constructed for the modified
program P’; it traverses the JIGs and adds the dangerous
edges that it finds to E . Compare() first marks N as “N ′-
visited” (line 1) to avoid comparing N with N ′ again in a
subsequent iteration. Compare() then examines each outgo-
ing edge e′ from N ′ and calls match() to find an outgoing
edge from N that matches e′’s label (line 3). match() first
looks for an outgoing edge from N that has the same label
as e′. If match() finds such an edge, it returns this edge.
Otherwise, match() looks for the edge whose label is “*”. If
match() finds such an edge, it returns this edge. Otherwise,
it returns null.

After Compare() finds the edge e that matches e′, it com-
pares C, the target of e, with C′, the target of e′ (lines 5–7).
If C is not equivalent to C′, Compare() adds e to set E (line
8). Otherwise, if C has not been marked with “C′-visited”,
Compare() invokes itself on C and C′ to further traverse the
graph (line 10).

One way to determine the equivalence of two nodes is to
examine the lexicographic equivalence of the text associated
with the two nodes [29]. For nodes that represent program
statements, we can examine the lexicographic equivalence
of the program statements associated with the nodes; for
nodes, such as exit nodes, that do not represent program
statements, we can examine the lexicographic equivalence
of the labels associated with the nodes.

After Compare() finishes processing the outgoing edges

6The Java compiler creates, for each class containing initial-
izers for static fields, a special method called static, which
contains all such initializations and is executed when the
class is initialized.

from N ′, it searches for outgoing edges from N that have
not been matched with any outgoing edge from N ′ (line 13).
These edges appear along paths that have been deleted in
P′. Thus, Compare() adds these edges to set E (line 14).

3.4 Instrumentation for Test Selection
Given a JIG for a program P, we can instrument P or mod-

ify the execution environment to record the edges covered by
each test case (the task of gathering coverage was discussed
in Section 2). The coverage information lets the regression-
test-selection technique select test cases that cover the dan-
gerous edges identified by the traversal algorithm. However,
because some edges (e.g., path edges for exception handling)
do not represent actual control flow from one statement to
another, we cannot instrument the program or the execution
environment to find the test cases that cover such edges.
Moreover, because recording the coverage information for
each edge can be very expensive, we may want to record
coverage information for coarser-grained entities, such as
methods, classes, or modules. Thus, some dangerous edges
must be mapped to another set of entities whose coverage
information is recorded in the coverage matrix.

In general, we need an adaptor that takes a set of dan-
gerous edges from the traversal algorithm and maps them
to a set of dangerous entities whose coverage information
is recorded in the coverage matrix. The adaptor must be
designed together with the instrumenter because it needs
to know the entities whose coverage information is being
recorded. To get a better trade-off between precision and
efficiency, the instrumenter also needs to know which en-
tities are of interest to the adaptor. In the following, we
discuss a possible approach for building an adaptor and an
instrumenter in the case of instrumentation at the edge and
at the method level.

Edge-level instrumentation techniques record, for the in-
ternal methods, the CFG edges that are covered by each
execution of a program P. To determine the virtual call
edges that are covered by the execution, we require the in-
strumenter to also record the receiver type of each virtual
method call in internal methods.

In a JIG, edges representing calls from external meth-
ods (see Figure 5) and path edges representing the control
paths on which exceptions are raised (see Figure 6) need
to be mapped to actual CFG edges and nodes, so that the
instrumenter can record the test cases that cover such edges.

For an edge e1 representing a method call from an external
method and whose receiver is an instance of an internal class
C, if the target of e1 is the entry of a method, the adaptor
maps e1 to the corresponding entry node. However, if the
target of e1 is the default node created for C (e.g., the nodes
labeled “default” in Figure 5), the adaptor maps e1 to all
new-instance statements in the internal classes that create
instances of C.

To record the coverage information for exception han-
dling, we require the instrumenter to insert a catch block
at the end of each try statement to catch and to re-throw
all exceptions that are not caught by other previous catch
blocks. Let e2 be a path edge that represents the control
paths on which an exception is raised. If the target of e2

is a catch node for a catch block b, then e2 is mapped to
the entry of b and the entry of each of the catch blocks that

Profiler

Execute P / Record Coverage

JVM

Program P

Test Suite for P

DejaVOO
Control−flow Graph for P’

Identify Dangerous Entities

JABA

Program P

Program P’

Control−flow Graph for P

T’SelectTests

Dangerous

Edges

Coverage Matrix

Events

Dangerous

Method calls,

entrie
s, and

instantiation sites

Adaptor

Figure 8: Our regression-test-selection system, Retest.

appear after b in the try statement. e2 is also mapped to
the entry of the catch block added by the instrumenter.

Method-level instrumentation techniques record the inter-
nal methods that are covered by each execution of the pro-
gram. Using this instrumentation technique, the adaptor
maps each dangerous edge in the JIG for a method m to m.
For each call edge e, if the target of e is the entry node of an
internal method m, the adaptor maps e to m. Otherwise, if
the target of e is the entry node of an external method, the
adaptor maps e to the method that contains the source of e.
However, if e is an edge that represents a call from external
methods and e’s target is the default node (e.g., the nodes
labeled “default” in Figure 5) created for an internal class
C, the adaptor maps e to all the constructors (including the
default constructor) of C.

Instrumentation at a coarser level of granularity is more
efficient than instrumentation at a finer level of granular-
ity. In particular, method-level instrumentation is more
efficient than edge-level instrumentation. Also, the cover-
age matrix computed using method-level instrumentation
is smaller than the one computed using edge-level instru-
mentation. However, using a coverage matrix computed
by method-level instrumentation, a test-selection algorithm
may select more test cases than using a coverage matrix
computed by edge-level instrumentation.

In practice, another viable solution is a hybrid instrumen-
tation approach that, for example, records coverage informa-
tion for all internal methods, and also records coverage in-
formation for those statements, such as exception handling,
that are rarely covered (even when the method that contains
the statements is executed). Hybrid approaches may yield
a good trade-off between precision and efficiency.

4. REGRESSION TEST SELECTION SYS-
TEM

To investigate empirically the regression-test-selection
technique presented in this paper, we implemented a
regression-test-selection system named Retest, which is a
specialization of the general regression-test-selection system
shown in Figure 2. Retest consists of three main compo-
nents: a component named Profiler, which gathers dynamic
information, a static analysis component named DejaVOO,

and a test-selection component named SelectTests. Retest
also consists of a component, Adaptor, which adapts the
output produced by DejaVOO to the type of coverage in-
formation gathered by the profiler. Figure 8 presents the
system architecture of Retest.

The profiler component in Retest uses the Java Virtual
Machine Profiler Interface (JVMPI) [26] to gather coverage
information about P when P is run using each test case in T.
However, due to restrictions in JVMPI, the current profiler
cannot record information about the execution of individual
statements other than class instantiation, method entries,
and method calls. The profiler also cannot record infor-
mation for exception throws and catches. Therefore, the
profiler uses a hybrid instrumentation approach: it records
class instantiation, method calls, and method entries. At
a virtual method call, the profiler also records the receiver
type so that it can determine the method that is actually
invoked.

The DejaVOO module implements the analysis algorithm
described in Section 3, using the Java Architecture for Byte-
code Analysis (Jaba) [1] to construct JIGs and other neces-
sary information about P and P’. The output from DejaVOO
is a list of dangerous edges that can be either CFG edges or
call edges.

The adaptor module treats CFG edges and call edges dif-
ferently. The adaptor maps each dangerous CFG edge e in
a method m to the entry of m, unless the target of e is a
class instantiation or a method call. If this is the case, the
adaptor maps e to the node representing the class instanti-
ation or to the call node, respectively. The adaptor maps
each call edge (mi, me), which represents a call from an in-
ternal method mi to an external method me, to mi’s entry.
The adaptor maps each call edge (A entry, mi), which rep-
resents a call from an external method to an instance of A
that is dynamically bound to an internal method mi, to mi’s
entry. Finally, the adaptor maps each call edge (A entry,
default), which represent a call from an external method to
an instance of A that is dynamically bound to an external
method, to all the instantiation sites for A.

The current implementation of Retest is less precise than
it could be using the technique described in this paper. This
imprecision occurs because the profiler cannot record infor-
mation for each individual statement. Therefore, if a change

Table 3: Software subjects used for the empirical studies.
Subject Description Methods Versions Test cases Method coverage

Siena Internet-based event notification system 185 7 138 70%
JEdit Text editor 3495 11 189 75%
JMeter Web-applications testing tool 109 5 50 67%
RegExp Regular-expression library 168 10 66 46%

occurs only in statements that are traversed by a small frac-
tion of the test cases that cover the method, Retest can
select more test cases than necessary. For example, if an ex-
ception handler that catches infrequently-raised exceptions
has changed, each test case going through the method that
contains the handler is selected, even though the exception
is not raised by a majority of these test cases.

We plan to investigate techniques to enhance our pro-
filer by using the Java Virtual Machine Debug Interface
(JVMDI) [25] instead of the JVMPI. The JVMDI allows
more detailed examination of programs as they run, and
should let us reduce the imprecision described above. We
will also investigate the possibility of instrumenting the
bytecode using a tool such as Bit (Bytecode Instrument-
ing Tool)7 [9], Soot (a Java Optimization Framework),8 or
BCEL (Byte Code Engineering Library),9 to gather the
CFG-edge coverage information. With this approach, we
may be able to improve the precision of the test selection.

5. EMPIRICAL EVALUATION
To evaluate our approach for regression test selection, we

used Retest to perform two empirical studies. This section
describes the software subjects and the empirical studies
that we performed.

5.1 Software Subjects
Our study utilized four software subjects: Siena, JEdit,

JMeter10, and RegExp. Each software subject consists
of an original version P, several modified versions (V1, . . .
Vn), and a set of test cases that was used to test P. Table
3 shows the subjects and, for each subject, lists the number
of methods in the original program, the number of versions,
the size of the test suite, and the percentage of methods
covered by the test suite.

The first subject for our studies is the Java implementa-
tion of the Siena server [6]. Siena (Scalable Internet Event
Notification Architecture) is an Internet-scale event notifi-
cation middleware for distributed event-based applications
deployed over wide-area networks. We obtained seven suc-
cessive versions of the system from the authors, along with
a test suite that had been used to test the software. We also
added test cases to the test suite to increase its coverage (at
the method level); the resulting test suite contains 138 test
cases, which provide 70% method coverage of the system.

The second subject for our studies is JEdit, a Java-based
text editor. JEdit is a versatile, customizable text edi-
tor, which provides several advanced text-editing features,
such as syntax highlighting, regular-expression search and

7See http://www.cs.colorado.edu/~hanlee/BIT/.
8See http://www.sable.mcgill.ca/soot/.
9See http://bcel.sourceforge.net/.

10Copyright 1999-2001, Apache Software Foundation.

replace, multiple clipboards, and macro recording. We ob-
tained two successive development releases of the software—
version 3.0-pre4 and version 3.0-pre5—and, based on the
changes between the releases, created 11 versions of the soft-
ware. The original version of the software contains 3495
methods. We then developed a test suite to exercise various
features of the text editor; the test suite consists of 189 test
cases and provides 75% method coverage.

The third subject for our studies is Apache JMeter.
JMeter is a Java desktop application designed to load test
the functional behavior and measure performance; it was
originally designed for testing web applications but has since
expanded to other test applications. We obtained two suc-
cessive releases of the system from the code repository and,
based on the modifications between the releases, created five
versions of the software. We created 50 test cases by con-
sidering combinations of features available through the user
interface of the system; the test cases provide 67% method
coverage of the system.

The final subject for our studies is RegExp, a GNU li-
brary for parsing regular expressions. Like for JEdit and
JMeter, we obtained two successive releases and built sep-
arate versions based on the differences between the releases;
we created 10 versions of the software. We used the three
drivers and the 22 test cases that are provided with the
library. The test suite thus contains 66 test cases, which
exercise 46% of the methods in the library.

5.2 Studies
To evaluate our technique, we performed two studies; this

section presents the results of those studies. For Siena, we
compared each version to the previous versions, whereas for
JEdit, JMeter, and RegExp, we compared each version
to the original version.

Study 1: Test Suite Reduction.The goal of this study was
to determine the reduction in the number of test cases that
could be achieved using our regression-test-selection tech-
nique. For each subject program P, and each version P’,
we used Retest, shown in Figure 8, to select test cases for
regression testing.

Figure 9 shows the results for the four software subjects.
For each subject, the figure shows the percentage of test
cases that were selected for each version of that subject.
The data in the figure illustrate that the reduction in the
number of selected test cases varies widely both across and
within the subjects. For example, for Siena, the technique
selected less than 2% of the test cases for one version, but
between 60% and 90% of the test cases for the remaining six
versions. Similarly, for JEdit, the technique selected fewer
than 15% of the test cases for four versions, but over 90% of
the test cases for five versions. The extremely low number
of test cases selected for some versions, such as version V6

10

20

30

40

50

60

70

80

90

100

0

Pc
t.

of
 T

es
t C

as
es

 S
el

ec
te

d

Software subjects

Siena JEdit RegExpJMeter
V1 V2 V3 V4 V5 V6 V7 V1 V2 V3 V4 V5 V1 V2 V3 V4 V5 V6 V7 V8 V9V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

Figure 9: Regression test selection results for our software subjects.

of Siena and version V5, V10, and V11 of JEdit, depends
on the fact that, for those versions, the changes are minor,
involving few methods, and methods encountered by only a
few test cases.

The test reduction illustrated in Figure 9 is similar to
results of other studies that have evaluated regression-test-
selection techniques for procedural software [12, 30]. The
data does not reveal any trends that may be peculiar
to the object-oriented paradigm; further experimentation
with a bigger and diverse set of subjects will help deter-
mine whether such trends exist. The success of code-based
regression-test-selection techniques depends not only on the
magnitude of changes to the modified software—which, in
turn, depends of the frequency of regression testing—but
also on the location of those changes and the characteris-
tics of the software. For example, a modification in the
startup code of a software causes each test case to be se-
lected. For further example, the characteristics of certain
classes of software, such as language parsers, are such that
most of the test cases exercise a significant percentage of the
code in the software; therefore, for such software, most of
the modifications cause a majority of the test cases to be
selected. In such cases, code-based regression-test-selection
techniques may fail to provide any benefit in terms of re-
duced regression test suites.

Study 2: Test Selection Granularity.The goal of the sec-
ond study was to determine whether any additional reduc-
tion in the size of the selected test suite could be achieved
by selecting dangerous edges instead of dangerous methods.
The results of this study will guide our development of pro-
filers in the future.11

To perform this study, we used DejaVOO to select dan-
gerous edges in P. We then used a data-flow analysis that
considers each method M , and determines whether some
dangerous edge in M is reached on all paths from the entry
point of M . If a dangerous edge is reached over all paths
in M , all test cases that enter M will be selected by an
edge-level version of Retest. Thus, in this case, no further

11The development of a profiler for recording information at
the edge level requires significant effort, and the results of
this study can help us decide whether this effort is worth-
while for regression test selection.

reduction in the test suite can be achieved by considering
changes at the edge level over changes at the method level.
However, if there exists some path in M over which a dan-
gerous edge in M is not reached, then, assuming that the
test suite covers all edges in P, there is at least one test case
through M that the edge-level version of Retest will not
select. Thus, in this case, additional reduction of the test
suite can be achieved by considering regression test selection
at the edge level.

The total number of dangerous methods in all four sub-
jects is 51; of these, in 51% of the methods, the dangerous
edges are reached along all paths from the entry of the re-
spective methods. Thus, in many cases, performing the test
selection at a finer granularity—at the edge level—can re-
duce the size of the test suite selected. Previous empirical
studies that have examined procedural software have also
found edge-level selection to differ from method-level selec-
tion [5].

Modified Version

��
��
��
��method level edge level

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

10

20

30

40

50

60

70

80

90

100

0

Pc
t.

of
 T

es
t C

as
es

 S
el

ec
te

d

 V1 V2 V3 V4 V5 V6 V7
Siena

Figure 10: Percentage of test cases that are selected for Siena
using method-level and edge-level test selections.

We also wanted to determine the accuracy of our esti-
mates for edge-level test selection. Thus, for Siena, we
manually determined the test cases that would be selected
by the edge-level version of DejaVOO. The graph in Figure
10 shows the results of this study. For all but three of the

versions of Siena, the test suite selected by the method-level
version of DejaVOO and the edge-level version of DejaVOO
selected the same number of test cases. For those versions
that differed—V2, V6, and V7—the graph shows that there
can be a significant difference in the size of the reduction.
Thus, in cases where running test cases is particularly ex-
pensive, the additional overhead in selection required by an
edge-level version of DejaVOO may be justified.

6. RELATED WORK
Many researchers have considered the problem of regres-

sion test selection for procedural software. A number of
regression-test-selection algorithms fit into the general sys-
tem shown in Figure 2, and are thus related to our work.
Ball [3] presents an edge-optimal regression-test-selection al-
gorithm that, under certain conditions, provides more preci-
sion than Rothermel and Harrold’s algorithm. His algorithm
also identifies dangerous edges. Ball also presents additional
algorithms based on control flow that are even more precise
than edge-based algorithms, at greater computation cost.
Vokolos and Frankl present a regression-test-selection algo-
rithm based on text differencing [35]. Their algorithm main-
tains an association between basic blocks and test cases in
T, and compares the source files of P and P’ to identify the
modified program statements. We can think of this algo-
rithm as selecting dangerous blocks of code in the program.
Their algorithm performs the comparison using UNIX diff

utility, and is based on statements, not control flow; thus,
it may select more test cases than the control-flow-based al-
gorithms, at a lesser computation cost. Chen, Rosenblum,
and Vo [8] present a regression-test-selection algorithm that
detects modified code entities (i.e., dangerous code entities),
which are defined as functions or as non-executable compo-
nents, such as storage locations. The technique selects all
test cases associated with changed entities. Because this
technique is based on entities that are coarser-grained than
those used by statement- or control-flow-based techniques,
it may select more test cases than those techniques, with
lesser computation cost.

Other researchers have developed regression-test-selection
techniques for object-oriented software. In the Introduc-
tion, we discussed two techniques: Rothermel, Harrold, and
Dedhia’s technique for C++ [31] and White and Abdullah’s
firewall technique [36]. We compared both techniques to
our approach: our approach is more precise, can be applied
to Java programs, handles exception-handling constructs,
can be applied to incomplete programs, and provides a new
method for handling polymorphism.

Several techniques have been developed to reduce the ef-
fort required to test subclasses (e.g., [7, 11, 13]). These
techniques use information associated with a parent class in
the design of test suites for derived classes. However, the
techniques do not address the problem of regression testing
of modified classes.

Kung et al. [17, 18] and Hsia et al. [14] present a technique
for selecting regression test cases for class testing. This tech-
nique is based on the concept of firewalls defined originally
by Leung and White for procedural software [21, 20, 37] and
later extended to object-oriented software [36]. The tech-
nique of Kung, Hsia et al. (here called the “ORD technique”)

constructs an object relation diagram (ORD) that describes
static relationships among classes. The represented relation-
ships include inheritance, aggregation (the use of compos-
ite objects), and association (the existence of data depen-
dence, control dependence, or message passing relationships
between classes). The ORD technique instruments code to
report the classes that are exercised by test cases. The fire-
wall for a class C is defined as the set of classes that are
directly or transitively dependent on C (by virtue of inheri-
tance, aggregation, or association) as described by an ORD.
When class C is modified, the ORD technique selects all
test cases that were determined through instrumentation to
exercise one or more classes within the firewall for C.

The ORD technique and the technique presented in this
paper are similar in that they both select all test cases as-
sociated with some set of code components, and the associ-
ation of test cases with code components is determined dy-
namically through instrumentation. The primary difference
between the techniques is the granularity at which they con-
sider components. The ORD technique selects all test cases
associated with classes within the firewall; it performs no
further analysis within classes and methods to attach test
cases to entities at a finer granularity. Not all of those test
cases necessarily execute changed code, or code that accesses
changed data objects. Similarly, a class D may be deter-
mined by the ORD technique to be dependent by message
passing on some class C, and if C is modified, all test cases
associated with D will be selected. Not all of these test cases
necessarily exercised code involving interactions with C. In
such cases, the ORD technique selects test cases that could
be omitted from retesting with no ill effects—test cases that
our technique does not select. Thus, our technique is more
precise than the ORD technique.

7. CONCLUSIONS
In this paper, we have presented the first safe regression-

test-selection algorithm that handles the Java language fea-
tures, that can be applied (under certain conditions) to par-
tial programs, and that is more precise than existing ap-
proaches for object-oriented software. We also presented
a regression-test-selection system for Java, called Retest,
that implements our technique. With Retest, we per-
formed empirical studies to evaluate the effectiveness of our
technique. Our empirical studies indicate that the technique
can be effective in reducing the size of the test suite but that
the reduction varies across subjects and versions. These re-
sults are consistent with results reported for C programs,
and, for our subject programs, do not show any trends that
are peculiar to Java software. Additional studies are re-
quired to identify such trends. Our studies also indicate that
regression-test-selection at a finer granularity may provide
further reductions in the test-suite size. However, additional
evaluation is required to determine the granularity of the
test selection that provides the best trade-offs in precision
and efficiency.

Our future work will include investigating viable alterna-
tives for instrumenting at different levels, gathering addi-
tional subjects, and performing empirical studies to evalu-
ate the effectiveness of our technique. We will also perform
studies to determine the efficiency of our technique in prac-
tice.

8. ACKNOWLEDGMENTS
This work was supported in part by grants to Georgia

Tech from Boeing Aerospace Corporation, by National Sci-
ence Foundation awards CCR-9988294, CCR-0096321, and
EIA-0196145, and by the State of Georgia under the Ya-
macraw Mission. The work was also partially supported
by the ESPRIT Project TWO (EP n.28940) and by the
Italian Ministero dell’Università e della Ricerca Scientifica e
Tecnologica (MURST) in the framework of the MOSAICO
Project. Antonio Carzaniga, David Rosenblum, and Alexan-
der Wolf provided the Siena system and its versions. The
anonymous reviewers provided many comments and sugges-
tions that helped improve the presentation of the paper.

9. REFERENCES
[1] Aristotle Research Group, Georgia Institute of Tech-

nology. Java Architecture for Bytecode Analysis. 2000.

[2] D. F. Bacon and P. F. Sweeney. Fast static analysis
of C++ virtual function calls. In Proceedings of the
11th Annual Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, pages 324–
341, Oct. 1996.

[3] T. Ball. On the limit of control flow analysis for re-
gression test selection. In ACM Int’l Symp. on Softw.
Testing and Analysis, pages 134–142, Mar. 1998.

[4] J. Bible and G. Rothermel. A unifying framework sup-
porting the analysis and development of safe regres-
sion test selection techniques. Technical Report 99-60-
11, Oregon State University, Dec. 1999.

[5] J. Bible, G. Rothermel, and D. Rosenblum. A com-
parative study of coarse- and fine-grained safe regres-
sion test selection. ACM Transactions on Software En-
gineering and Methodology, 10(2):149–183, Apr. 2001.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and evaluation of a wide-area event notification service.
ACM Transactions on Computer Systems, 19(3):332–
383, Aug. 2001.

[7] T. Cheatham and L. Mellinger. Testing object-oriented
software systems. In Proceedings of the 1990 Computer
Science Conference, pages 161–165, 1990.

[8] Y. F. Chen, D. S. Rosenblum, and K. P. Vo. TestTube:
A system for selective regression testing. In Proceed-
ings of the 16th International Conference on Software
Engineering, pages 211–222, May 1994.

[9] B. F. Cooper, H. B. Lee, and B. G. Zorn. Profbuilder:
A package for rapidly building java execution profilers.
Technical report, University of Colorado.

[10] J. Dean, D. Grove, and C. Chambers. Optimizations
of object-oriented programs using static class hierachy
analysis. In European Conference on Object-Oriented
Programming, pages 77–101, 1995.

[11] S. P. Fielder. Object-oriented unit testing. Hewlett-
Packard Journal, 40(2):69–74, Apr. 1989.

[12] T. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test se-
lection techniques. In Proceedings of the International
Conference on Software Engineering, pages 188–197,
Apr. 1998.

[13] M. J. Harrold, J. D. McGregor, and K. J. Fitzpatrick.
Incremental testing of object-oriented class inheritance

structures. In Proceedings of the 14th International
Conference on Software Engineering, pages 68–80, May
1992.

[14] P. Hsia, X. Li, D. Kung, C-T. Hsu, L. Li, Y. Toyoshima,
and C. Chen. A technique for the selective revalidation
of OO software. Software Maintenance: Research and
Practice, 9:217–233, 1997.

[15] J.-M. Kim, A. Porter, and G. Rothermel. An empirical
study of regression test application frequency. In Pro-
ceedings of the 22nd International Conference on Soft-
ware Engineering, pages 126–135, Jun. 2000.

[16] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen.
Firewall regression testing and software maintenance
of object-oriented systems. Journal of Object-Oriented
Programming, 1994.

[17] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, C. Chen, Y-
S. K im, and Y-K. Song. Developing an object-oriented
software testing and maintenance environment. Com-
munications of the ACM, 38(10):75–87, Oct. 1995.

[18] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Ch en. On regression testing of object-oriented pro-
grams. The Journal of Systems and Software, 32(1):21–
40, Jan. 1996.

[19] D. Kung, J. Gao, P. Hsia, Y. Wen, and Y. Toyoshima.
Change impact identification in object-oriented soft-
ware maintenance. In Proceedings of the International
Conference on Software Maintenance ’94, pages 202–
211, Sep. 1994.

[20] H. K. N. Leung and L. J. White. A study of integration
testing and software regression at the integration level.
In Proceedings of the Conference on Software Mainte-
nance - 1990, pages 290–300, Nov. 1990.

[21] H. K. N. Leung and L. J. White. Insights into testing
and regression testing global variables. Journal of Soft-
ware Maintenance: Research and Practice, 2:209–222,
Dec. 1990.

[22] H. K. N. Leung and L. J. White. A cost model to com-
pare regression test strategies. In Proceedings of the
Conference on Software Maintenance ’91, pages 201–
208, Oct. 1991.

[23] D. Liang, M. Pennings, and M. J. Harrold. Extending
and evaluating flow-insensitive and context-insensitive
points-to analyses for java. In Proceedings of the ACM
Workshop on Program Analyses for Software Tools and
Engineering, Jun. 2001.

[24] C. E. McDowell and D. P. Helmbold. Debug-
ging concurrent programs. ACM Computing Surveys,
21(4):593–622, Dec. 1989.

[25] Sun Microsystems. Java Vir-
tual Machine Debug Interface.
http://java.sun.com/products/jdk/1.2/docs/guide/jvmdi/.

[26] Sun Microsystems. Java Virtual Machine Pro-
filer Interface. http://java.sun.com/products/jdk/-
1.2/docs/guide/jvmpi/jvmpi.html.

[27] Sun Microsystems. Java2 Platform, API Specification.
http://java.sun.com/j2se/1.3/docs/api/.

[28] Sun Microsystems. The Java Founda-
tion Class Abstract Window Toolkit.
http://java.sun.com/products/jdk/awt/.

[29] G. Rothermel and M. J. Harrold. A safe, efficient re-

gression test selection technique. ACM Transactions on
Software Engineering and Methodology, 6(2):173–210,
Apr. 1997.

[30] G. Rothermel and M. J. Harrold. Empirical studies of
a safe regression test selection technique. IEEE Trans-
actions on Software Engineering, 24(6):401–419, Jun.
1998.

[31] G. Rothermel, M. J. Harrold, and J. Dedhia. Regres-
sion test selection for C++ software. Journal of Soft-
ware Testing, Verification, and Reliability, 10(6):77–
109, Jun. 2000.

[32] Gregg Rothermel and Mary Jean Harrold. Analyzing
regression test selection techniques. IEEE Transactions
on Software Engineering, 22(8):529–551, Aug. 1996.

[33] S. Sinha and M. J. Harrold. Analysis and testing of
programs with exception-handling constructs. IEEE
Transactions on Software Engineering, pages 849–871,
Sep. 2000.

[34] F. Tip and J. Palsberg. Scalable propagation-based call
graph construction algorithms. In Proceedings of the
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 281–293, Oct. 2000.

[35] F. Vokolos and P. Frankl. Pythia: A regression test se-
lection tool based on text differencing. In International
Conference on Reliability, Quality, and Safety of Soft-
ware Intensive Systems, May 1997.

[36] L. J. White and K. Abdullah. A firewall approach for
regression testing of object-oriented software. In Pro-
ceedings of 10th Annual Software Quality Week, May
1997.

[37] L. J. White and H. K. N. Leung. A firewall concept for
both control-flow and data-flow in regression integra-
tion testing. In Proceedings of the Conference on Soft-
ware Maintenance - 1992, pages 262–270, Nov. 1992.

