Improving Test Case Generation for Web Applications
Using Automated Interface Discovery

William G.J. Halfond and Alessandro Orso
College of Computing
Georgia Institute of Technology

{whalfond, orso}@cc.gatech.edu

ABSTRACT

With the growing complexity of web applications, identify-
ing web interfaces that can be used for testing such applica-
tions has become increasingly challenging. Many techniques
that work effectively when applied to simple web applica-
tions are insufficient when used on modern, dynamic web
applications, and may ultimately result in inadequate test-
ing of the applications’ functionality. To address this issue,
we present a technique for automatically discovering web
application interfaces based on a novel static analysis algo-
rithm. We also report the results of an empirical evaluation
in which we compare our technique against a traditional ap-
proach. The results of the comparison show that our tech-
nique can (1) discover a higher number of interfaces and (2)
help generate test inputs that achieve higher coverage.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging;

General Terms: Algorithms, Experimentation, Reliabil-
ity, Verification

Keywords: Web application testing, interface extraction

1. INTRODUCTION

Web applications play an increasingly important role in
our day-to-day activities, such as banking and shopping.
The growing popularity of web applications has been driven
by the introduction of new web technologies that allow for
a higher level of integration among services and provide a
richer user experience. Whereas web applications used to be
a collection of mostly static content and involved minimal
user interaction through simple forms, modern web appli-
cations are increasingly customizable, generate content dy-
namically, combine information gathered from a range of
sources, and interact extensively with the user.

This growing complexity has made testing these web ap-
plications more challenging because their interfaces tend to
be difficult to identify. In testing, a general assumption is
that the interfaces of the software being tested are known

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ESEC/FSE’'07September 3—7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

(e.g., the API for a library or the options and parameters
for a command-line utility). For simple web applications
that consist of static HTML pages only, identifying the ap-
plication interface is generally straightforward—it is enough
to parse each web page within the application and identify
the entities in the page that represent input elements, such
as forms’ input fields. However, the complexity of modern
web applications precludes such a straightforward solution.
Modern web applications often have interfaces that are com-
pletely hidden, in that they do not correspond to any input
elements exposed on a static or dynamically-generated page.

Incomplete information about web application interfaces
can limit the effectiveness of testing because it may pre-
vent testers from exercising parts of an application that are
accessible only through unidentified interfaces. This can re-
sult in unexpected behaviors in the field or even in the de-
ployment of vulnerable applications that could be exploited
by attackers. Unfortunately, current techniques for testing
web applications either require manual specification of an
application’s interfaces (e.g., [1,11,14]) or use automated
approaches that are purely dynamic and, consequently, in-
herently incomplete (e.g., [4,5,10,12]).

To address the limitations of existing approaches, we present
a new technique for automatically discovering the interfaces
of a web application. The core of our approach is a novel
static analysis algorithm that can analyze web applications
that are highly dynamic and have multiple, possibly hid-
den, interfaces. Our algorithms works in two phases. In the
first phase, it identifies domain information (i.e., informa-
tion about type and possible values) for the parameters that
may be part of a web application’s set of interfaces. In the
second phase, the algorithm identifies how these parameters
are grouped in the different interfaces exposed by the web
application. The final output of the algorithm is a set of
interfaces, where each interface consists of a set of named
parameters and domain information for those parameters.
This set of interfaces can then be used to support web ap-
plication testing and verification.

In this paper, we also present a set of studies that eval-
uate our approach. To perform the studies, we developed
a prototype tool, WAM, that implements our technique and
compared it to a widely-used approach for interface extrac-
tion based on web crawling. The results of the comparison
show that, for the web applications considered, (1) our ap-
proach identifies a considerably higher number of web in-
terfaces, and (2) the additional accuracy in the interface
identification provided by our approach can significantly im-
prove the effectiveness of testing (measured in terms of the

structural coverage achieved on the web applications under
test). These results are promising, in that they show that
our technique has the potential to improve the effectiveness
of web application testing and, consequently, the quality of
web applications. The contributions of this paper are:

e A novel algorithm for accurately extracting web applica-
tion interfaces.

e An implementation of the algorithm in a prototype tool.

e Two empirical studies that show the effectiveness of our
approach and the usefulness of the information it pro-
duces.

2. BACKGROUND

A web application is a software system that users can ac-
cess over the Internet. Web applications are used extensively
to provide a number of online services, such as banking and
shopping. Typical web applications take user input and gen-
erate dynamic pages, customize their response for the user,
and interact with other systems such as databases and enter-
prise servers. Users typically access a web application using
a client application, such as a web browser, that allows them
to enter input data (e.g., into a form) and submit such data
to the web application.

At an abstract level, web applications interact with client
applications through logical interfaces that consist of a col-
lection of named Input Parameters (IP), each of which is
associated with a domain. More precisely, we define a logi-
cal interface for a web application as follows:

inter face = I Px

IP = name, domain_in formation

name =< string >

domain_in formation = domain_type, relevant_valuex
domain_type = ANY|NUMERIC

relevant_value =< string > | < number >

Each interface consists of zero or more IPs; each IP con-
sists of a name and some domain information; domain infor-
mation consists of a domain type, which is either ANY or
NUMERIC, and zero or more relevant values, which can be
string or numeric literals. IPs can carry data that includes
user input (e.g., web form data fields), cookie session data,
and state information for the web application. In order to
access a web application, a client issues an HTTP request
that contains a set of (name, value) pairs corresponding to
an interface, and submits it to the web application.

A typical, but unsound, approach for identifying web ap-
plication interfaces is to assume that the interfaces to a web
application can be accurately identified through examina-
tion of the HTML pages generated by the application. The
approach is based on parsing each HTML page generated by
the application to identify its web input forms and assum-
ing that (1) each identified form corresponds to an interface,
and (2) each input element in the form (e.g., text box, radio
button, or hidden field) corresponds to an IP in that inter-
face. Such an approach is incomplete and inaccurate, in that
it can produce a set of interfaces that do not correspond to
the actual interfaces of the web application.

In general, this mismatch can exist for several reasons.
First, developers are not required to make all interfaces ac-
cessible via HTML web forms. Second, even if an interface is
made available via a web form, it might be difficult to inter-
act with the application so as to ensure that all possible web
forms that can be generated are actually generated. Third,

even when a given web form that correspond to an interface
can be generated and analyzed, the web application may use
a subset (or even a superset) of the parameters exposed as
input elements in the web form. (We provide examples of
these situations when we discuss our empirical results, in
Sections 5.2 and 5.3.) Such discrepancies between visible
and hidden interfaces occur frequently and could occur be-
cause of a coding error or could be purposely created by a
developer (e.g., to provide additional functionality that is
intended to be accessed only by certain clients or to account
for future extensions).

Since there is generally no formal definition of a web ap-
plication’s interfaces, and examining exposed web forms can
produce inaccurate and incomplete results, analyzing a web
application’s source code is the only way to conservatively
identify the application’s interfaces; the source code contains
information on the actual interfaces of a web application,
which are the interfaces accessed along specific paths of ex-
ecution in the application. However, examining the code of
a web application and extracting these implicit interfaces is
a fairly complex task because of the way IPs are accessed
within the application and because different paths in the
application can correspond to different interfaces. (i.e., in-
terfaces cannot be extracted by a simple local analysis).

A web application accesses IPs that compose an interface
by invoking a specific library function PF (Parameter Func-
tion), which parses the HTTP request containing the IP and
returns the values of the requested IPs. More precisely, given
a web request wr, and an IP with name “foo,” the value val
of the IP can be retrieved as val = wr.PF(” foo”). Note
that retrieving the value of an IP that is not defined in wr
or not retrieving the value of an IP that is defined in wr
does not typically result in an error in the web applications.

Typically, the domain of an IP is also implicitly defined
in the code and can be inferred by analyzing the operations
performed on the IP value after it is returned by PF. For
example, the fact that an IP value is cast to an integer along
a path implies that the domain of the IP is expected to be
an integer on that path. Similarly, the fact that an IP is
compared against a specific value implies that such value is
relevant in the IP’s domain. We refer to IPs for which such
relevant values can be identified as state parameters, as they
are commonly used by web applications to maintain state
across web requests.

Web applications can be implemented using a wide range
of languages, such as C, Java, or Perl. In Java-based web
applications, which we target in our evaluation, the basic
component is called a servlet. A servlet is a Java program
that runs on a web server and provides a root method that
is invoked when a web request from a client application to
the servlet is received. A web application is generally com-
prised of many servlets, each of which implements part of
the application functionality.

3. MOTIVATING EXAMPLE

Before discussing our technique, we introduce an exam-
ple servlet that is partially shown in Figure 1. This servlet
implements the different steps of a generic user-registration
process. In the servlet, state parameter formAction is used
to identify the current phase of the registration process. As-
sume that, when a user accesses the registration servlet for
the first time, the value of state parameter formAction is
not defined. The servlet would then execute the body of the

else statement at line 20 and generate an initial registra-
tion page with a form where users can choose a login and
pin. This form would invoke the same servlet with the login
and pin chosen by the user and with parameter formAction
set to “chooseLogin.” On this second invocation, the servlet,
based on the value of formAction, would execute the body
of the if statement at line 6 and retrieve the values for the
IPs named “login” and “pin.” To retrieve the value of the
“login” 1P, the server calls the PF directly with string “lo-
gin” as a parameter. To get the value of the IP named “pin,”
it calls method getNumParam, which in turns calls the PF
and casts the retrieved IP value to an integer. The servlet
then registers the new login and generates a second page
with a form that collects additional personal information.
This form would also invoke the same servlet with the user-
provided input and with formAction now set to “personal-
Info.” When the user submits this form, the servlet would
check the state parameter and execute the body of the else
statement at line 11, which collects and validates the infor-
mation provided by the user. It does this by calling method
getNumParam, which ensures that the value of the IP named
“zip” is an integer and matches a pre-defined zip code. One
of the interfaces for our example servlet is the following:

interface = {‘formAction’, ‘login’, ‘pin’}, where:

formAction’s domain type is ANY, with relevant values ‘chooseLogin’
and ‘personallnfo’,

login’s domain type is ANY, with no relevant values,

pin’s domain type is NUMERIC with no relevant values.

Knowing this interface, we could generate several test in-
puts for the servlet by creating a URL consisting of the loca-
tion of the servlet followed by (name,value) pairs for each
IP in the interface. For example, assuming that the servlet
is accessible at http://my.dom/myservlet.jsp, a possible in-
vocation of the servlet through the above interface would be
http://my.dom/myservlet. jsp?formAction=chooselLogin&login=
foo&pin=1234.

Although this is a simple servlet, it has a number of
interesting characteristics: (1) it uses a state parameter
(formAction) to drive the execution along three different
paths, each of which accesses a different set of IPs; (2) its
different parts can be executed only by specifying the cor-
rect values for formAction or by entering the right data in
the various forms it generates; (3) it accepts two IPs, pa-
rameter “zip” and cookie field “sessionlD,” that can only be
numeric; and (4) it requires parameter “zip” to have a spe-
cific value to successfully complete the registration process.
These are exactly the kind of characteristics that make the
identification and testing of a servlet’s interfaces difficult for
conventional approaches.

4. INTERFACE DISCOVERY ALGORITHM

The goal of our approach is to automatically identify the
different interfaces that a web application exposes. The ap-
proach is based on a two-phase static analysis algorithm that
computes the set of interfaces for each servlet in a web ap-
plication. In the first phase, our analysis computes domain
information (i.e., types and possibles values) for each IP in
the servlet. In the second phase, our analysis identifies 1P
names and groups them into logical interfaces based on the
servlet’s control and data flow. In the following sections,
we explain the two phases of the algorithm in detail and
illustrate how they work using our example servlet.

int approvedZip = 30318;

1

2. String actionChooseLogin = "chooseLogin";

3. String actionPersonallnfo = "personallnfo";

4. String ID = "sessionID";

5. String formAction = request.getParameter("formAction");
6. if (formAction.equals(actionChooseLogin)) {

7. String requestedLogin = request.getParameter("login");
8 int pin = getNumParam(request, "pin");

9. registerLogin(requestedLogin, pin);
10. ... // generate second registration page
11. } else if (formAction.equals(actionPersonallnfo)) {
12. int id = Integer.parseInt(getCookie(request, ID));
13. String name = request.getParameter("name");
14. int zip = getNumParam(request, "zip");
15. if (zip == approvedZip) {
16. finishRegistration(id, name);
17. } else {
18. error("You do not live in " + approvedZip);
19. }

20.) else { ... } // generate initial registration page

21. int getNumParam(ServletRequest request, String paramName) {

22. String paramValue = request.getParameter (paramName) ;
23. int param = Integer.parselnt(paramValue)

24. return param;

25. }

26. String getCookie(HttpServletRequest request, String name) {
27. return request.getAttribute(name);
28. %}

Figure 1: Example servlet.

4.1 Phase1: Discover Domain I nformation

In Phase 1 our technique analyzes each IP in each servlet
and computes its domain information. The input of the
analysis is the set of servlets in the web application, and
its output is an Interprocedural Control Flow Graph (ICFG)
of the web application annotated with domain information.
The algorithm annotates two kinds of nodes: nodes that
contain a call to a PF and nodes that represent a call to a
method that invokes, directly or indirectly, a PF. An anno-
tation for a node n contains three elements: (1) the location
of the PF call that retrieved the original IP value v, (2) the
domain type of v, and (3) possible values for v.

The general approach that we use to compute annotations
is to start from a PF call, identify the variable that is de-
fined by the return value of the PF call (i.e., the variable
that stores the IP value), identify the operations performed
on that variable along chains of definitions and uses, and
use this information to compute domain information. More
specifically, if a variable that contains an IP value is con-
verted to any numeric value, we can infer that the domain
type of the corresponding IP value is NUMERIC. Also, if
a variable that contains an IP value is compared against a
specific value val, we can deduce that val is a special value
for that IP and add wal to the IP’s set of relevant values.

Algorithm 1 shows our Phase 1 algorithms, GetDomain-
Info and GDI. Without loss of generality, in the rest of
the discussion we assume that (1) there are no global vari-
ables in the applications under analysis, (2) each node in
the ICFG contains only one definition, and (3) the variable
defined with the value returned by a function (in particular,
a PF) is used in only one statement. Note that we make
these assumptions only to simplify the presentation of the

algorithms, and they do not limit the applicability of the
approach in any way; any program could be automatically
transformed so that it satisfies all three assumptions.

GetDomainlInfo first builds an ICFG for the servlets in
the web application and computes data-dependence infor-
mation. We assume that data-dependence information is
available through function DU chain(v,n), which returns the
set of nodes that (1) are reached by the definition of variable
v at node n and (2) use variable v.

After computing ICFG and data-dependence information,
GetDomainInfo identifies and processes each PF call.! For
each PF call, it first identifies PFnode, the ICFG node that
contains the PF call considered (line 4) and P Fvar, the vari-
able defined with the return value of the PF call (line 5).
Then, GetDomainlnfo creates a new annotation and initial-
izes its IP node to PFnode (lines 6-7), its type to ANY (line
8), and its values to the empty set (line 9), and associates
the newly-created annotation with PFnode. Finally, it in-
vokes the GDI algorithm, providing as input the node that
uses the definition of PFvar at PFnode, PFvar, PFnode,
and an empty set. When all PF calls have been processed,
GetDomainInfo returns the resulting annotated ICFG.

GDI is a recursive algorithm that computes domain infor-
mation for an IP. GDI takes four parameters as input: node
is the node to be analyzed; I Pvar is the variable that stores
the current IP value or a value derived from the current
IP value and that is used at node; root_node is the node
to be annotated with the discovered domain information;
visited_nodes is the set of nodes encountered in the path
being traversed (used to ensure that cyclic data dependen-
cies are explored only once in a path). To understand the
algorithm, it is important to note that, by construction, the
statement represented by node is always a use of variable
I Pvar, which stores the current IP value or a value derived
from it. The output of GDI is the set of annotations added
to the ICFG while processing its nodes.

If node is not in the visited_nodes set (line 1), GDI per-
forms one of three different operations based on the type of
statement represented by node. If node is an exit node (i.e.,
it corresponds to a return statement), GDI first identifies
all return sites for the method that contains node (line 3).
Then, for each return site, retsite, it identifies the variable
defined at retsite, retvar (which contains the IP value af-
ter the call returns) (line 5), copies root_node’s annotation
(line 6), and associates the annotation with node retsite
(line 7).2 Finally, it invokes GDI recursively, passing as in-
puts the node that uses the definition of retvar at retsite,
retvar, retsite, and the current set of visited nodes plus
node (line 8).

If node represents a statement that performs a compar-
ison of IPvar against a specific value (line 11), GDI adds
that value to the set of values in the annotation associated
with root_node (lines 12-13). Currently, our implementa-
tion handles comparisons with string and numeric constants.
It also handles a subset of cases where [Pvar is compared
against a variable; to do this, it tries to identify the value
of the variable at the point of the comparison by following
definition-use chains to the variable’s initialization. (This

IThe specific set of PFs considered depends on the language
in which the web application is written.

2 Annotations are copied to ensure that domain information
is computed in a context-sensitive fashion, which improves
the precision of Phase 2, as explained in Section 4.2.

Algorithm 1 — Phasel

/* GetDomainlInfo */
Input: servlets: set of servlets in the web application
Output: ICFG: ICFG for the servlets, annotated with domain in-
formation
begin
1: ICFG «— ICFG for the web application
2: compute data-dependence information for the web application
3: for each PFcallintheservlets do
PFnode «+— ICFG’s node representing PF'
PFuvar < lhs of the PF call statement
newannot «— new annotation
newannot.I Pnode < P Fnode
newannot.type «— ANY
. newannot.values — {}
10: associate newannot with PFnode
11: GDI(DUchain(PFvar, node), PFvar, PFnode, {})
12: end for
13: return ICFG /* returns annotated ICFG */
end
/* GDI */
Input: node: current node to examine
IPvar: variable storing the IP value and used at node
root_node: node to be annotated
visited_nodes: nodes visited along current path

begin

1: if node ¢ visited_nodes then

2: if node is an exit node then

3: returnsites < possible return sites for node’s method

4: for each retsite € returnsites do

5: retvar < variable defined at retsite

6: newannot < root_node’s annotation

7 associate newannot with node retsite

8: GDI(DUchain(retvar, retsite), retvar, retsite,
visited_nodes U {node})

9: end for

10: else

11: if node represents a comparison with a constant then

12: compval <— value used in the comparison

13: addValueToAnnotation(root_node, compval)

14: else if node is a type cast/conversion of I Pvar then

15: casttype «— target type of the cast operation

16: setDomainTypelnAnnotation(root_node, casttype)

17: end if

18: if node contains a definition of a variable then

19: var < variable defined at node

20: for each n € DUchain(var, node) do

21: GDI(n, var, root_node, visited_nodes U {node})

22: end for

23: end if

24: end if

25: end if

end

type of value resolution is similar to the one we use to iden-
tify IP names in Phase 2, as described in Section 4.2.)

Otherwise, if node represents a type cast statement per-
formed on I Pvar, GDI updates the domain type of the an-
notation associated with root_node (lines 15-16).

At this point, GDI checks whether the statement repre-
sented by node defines a variable (line 18). If so, it first
identifies variable var defined at node (line 19). Then, for
each node n that uses the definition of variable var at node
node (line 20), GDI invokes itself recursively, providing as
input n, var, the current root_node, and the current set of
visited nodes plus node (line 21).

To illustrate Phase 1 with a concrete example, we show the
application of algorithm GDI to the PF at line 22 of our ex-
ample servlet in Figure 1, whose partial ICFG is represented
in Figure 2. The first call to GDI, performed by the GetDo-
mainInfo algorithm, is “GDI (23, paramV alue,22,{})” node
23 has not been visited before, so GDI proceeds to check
whether the node is an exit node, which is not the case.
GDI then checks whether the node corresponds to a pred-

IPnode: 22
type: NUMERIC
values: {}

IPnode: 22
type: NUMERIC
values: {}

IPnode: 22
type: NUMERIC

values: {30318}

Figure 2: Annotated control flow graphs for two of
the methods in the code of Figure 1.

icate statement, which is also not the case. Finally, the
algorithm checks whether the node represents a type cast
operation. Because the statement at node 23 is indeed a
type cast (it parses an integer in a string), it annotates the
root_node, node 22, with domain type NUMERIC. node 23
also contains a definition of variable param, so GDI com-
putes DUchain(param,23), which returns a set containing
only node 24, and invokes itself recursively as

“GDI(24, param,22,{23})”

Because node 24 is an exit node, GDI identifies the cor-
responding return sites: nodes 8ret and 14ret. At this
point, GDI associates the current annotation of root_node
with nodes 8ret and 14ret. Then GDI calls itself recursively
twice, once for each return site, as

“GDI(9, pin, 8ret, {23,24})” and “GDI(15, zip, 14ret, {23, 24})”

The first of these two invocations of GDI would identify

node 9 as a definition of the formal parameter of register Login

corresponding to the actual parameter pin and continue by
exploring uses of that formal parameter in registerLogin
(not shown here). The second invocation of GDI would iden-
tify node 15 as a predicate node that performs a comparison
with value 30318 (by identifying the initialization of variable
approvedZip) and add that value to the set of values in the
annotation for the current root_node (node 14ret). At this
point, the algorithm would terminate because node 15 does
not contain a definition and, thus, there are no further data
dependencies to follow.

The final result after GDI processes this PF would be
the three annotations attached to nodes 8ret, 14ret, and 22
shown in Figure 2.

4.2 Phase2: ComputeInterfaces

In its second phase our analysis identifies IP names, groups
them into logical interfaces, and associates the domain in-
formation computed in the first phase with the identified IP
names. The input of the analysis is the annotated ICFG
produced by GetDomainlnfo, and its output is the set of in-
terfaces exposed by each servlet. Intuitively, Phase 2 works
by grouping sets of IPs that are used along a path and,
thus, could be part of the same interface. To avoid an ex-
ponential explosion of the computational cost, the analysis
processes one method at a time, computes summary infor-
mation for the method, and then uses the summary informa-
tion when analyzing methods that invoke methods already
analyzed. Within each method (or set of strongly connected
methods), the analysis computes summary information us-
ing a worklist-based forward iterative algorithm. Methods
involved in recursion are handled by treating them as one
“super-method” and assigning the same summary to each
of them. The analysis terminates when each servlet’s root
method has been processed. At that point, the summary
of a servlet’s root method represents all of the interfaces
exposed by the servlet.

Algorithm 2 shows our Phase 2 algorithms, ExtractInter-
faces and SummarizeMethod. ExtractInterfaces first builds
a Call Graph (CG) for the web application servlets. Then,
it identifies the sets of strongly connected components in the
CG, SCC, and creates a set, CC, which consists of SCC plus
singleton sets, one for each node that does not belong to any
set in SCC. In this way, every element of CC is either a set
of strongly connected nodes in the CG or a single node.

In the presentation, we assume that the ICFG is globally
available, together with the individual Control Flow Graphs
(CFGs). We also assume that the following functions are
available: target(n), which returns the method called at a
call site n; succ(n), which returns all successors of n in n’s
CFG; and pred(n), which returns all predecessors of n in
n’s CFG. If n is a call (resp., return) site, succ(n) (resp.,
pred(n)) returns the corresponding return (resp., call) site.
For example, pred(14ret), for the ICFG in Figure 2, would
return 14call.

ExtractInterfaces iterates over the sets in CC in reverse
topological order to ensure that a method is processed be-
fore any method that calls it. When all methods have been
processed, the algorithm simply returns the interfaces com-
puted for each servlet’s root method.

SummarizeMethod is the core algorithm of Phase 2. It
takes as input methodset, a set of one or more methods,
computes the interfaces exposed by these methods, and at-
taches these interfaces to the methods as summaries. The
output of the algorithm is the set of summaries associated
to the methods in methodset.

SummarizeMethod first initializes the data structures used
in the rest of the algorithm. In particular, set N is initial-
ized with all of the nodes in all of the methods in methodset
(line 1) and Gen sets for a node n are initialized in one of
four ways.

If n represents a PF call, a new IP entity that corresponds
to the parameter accessed at node n is created, initialized,
and used to initialize the Gen set for n (lines 6-14). If Phase
1’s annotation for node n contains domain information (i.e.,
type or values), SummarizeMethod associates such informa-
tion with the IP entity (lines 9-13). All successors of n are
then added to the worklist (line 10).

If n is a callsite and the target of the call is a summarized
method with summary s, n’s Gen set is initialized with the
value returned by function map invoked on n and s (line
17). The map function takes a method m’s summary and
a callsite invoking m and modifies the summary by replac-
ing each IP name that is not concrete (i.e., each IP name
that corresponds to a variable or to a formal parameter—
see below) with the corresponding actual parameter at the
callsite. Then, for each IP entity in each interface contained
in n’s Gen set, SummarizeMethod checks whether the anno-
tations created by Phase 1 for n’s return site apply to any
of the IP entity, that is, whether they refer to the same 1P
node (line 19-21). If so, it updates the domain information
for the IP entity using the domain information in the rele-
vant annotations (line 22). After performing this operation,
SummarizeMethod adds n’s successors to the worklist. If
n is a method entry point, its Gen set is initialized to a
set containing an empty set (line 28) and n’s successors are
added to the worklist.

Finally, if n is not a callsite, SummarizeMethod initializes
n’s Gen set to the empty set (line 31).

The Out set for n is then initialized with the value of n’s
Gen set (line 33).

Note that, for this algorithm, the Out set for a node n
represents the set of interfaces exposed by n (where each
interface is a set of IP elements, as described in Section 2),
and the set of interfaces for a method consists of the Out
set of its exit node.

After initializing sets and data structure, SummarizeMethod

enters its iterative part, where it keeps processing nodes un-
til the worklist is empty (lines 35-52). For each node n in
the worklist, SummarizeMethod computes the value of n’s
In and Out sets as follows. The In set is computed straight-
forwardly as the union of the Out sets of n’s predecessors.
SummarizeMethod computes n’s Out set as the product of
n’s In and Gen sets; for each interface (i.e., set of IP ele-
ments) 7 in In (line 39) and each interface g in Gen (line 40),
SummarizeMethod generates an interface that is the union
of i and g and adds it to Out (line 41).

If the Out set for n changed since the previous iteration
over n (line 44), SummarizeMethod updates n’s Out set (line
45) and updates the worklist as follows. If n is a callsite and
its target method m is one of the methods in the input set
(i.e., m is in the same strongly connected component of the
CG as the current method), SummarizeMethod adds m’s
entry node to the worklist (line 47).* Otherwise, Summa-
rizeMethod simply adds n’s successors to the worklist (line
49). Note that, if n is a callsite but its target method m is
not in the input set, m’s return site would be added to the
worklist.

When the worklist is empty, SummarizeMethod performs
the following operations for each method m in the input set.
First, it associates the set of interfaces in the Out set of
m’s exit node to m as its summary (lines 54-55). Then, it
considers all IPs in all such interfaces whose name is not a
concrete value and tries to resolve them by calling function
resolve. If successful, the resolution of a reference provides
the actual names of the IPs in an interface. For space consid-
erations, we do not show function resolve and only provide
an intuitive description of it.

3By doing so, SummarizeMethod treats nodes in a set of
strongly connected methods as a single super-method, as
described above.

Algorithm 2 — Phase 2

/* ExtractInterfaces */

Input: ICFG: annotated ICFG produced by GetDomainInfo

Output: interfaces[]: interfaces exposed by each of the servlets

begin

1: CG « call graph for the web application

2: SCC « set of strongly connected components in CG

3: SINGLETONS « set of singleton sets, one for each node in CG
that is not part of a strongly connected component

4: CC — SCCUSINGLETONS

5: for each mset € CC, in reverse topological order do

6 SummarizeMethod(mset)

7: end for

8: return interfaces of each servlet’s root method

end

/* SummarizeMethod */

Input: methodset C C'G nodes: singleton set or set of strongly con-
nected methods in the call graph

begin

1: N — U, nemethodse: nodes in m’s CFG

2: worklist — {}

3: for each n € N do

4: Tnnj— {}
5 if n corresponds to a PF call then
6: newlP «— new IP
7 newl P.node < n
8 newl P.name «— parameter of the PF call
9: if n’s annotation has domain information dominfo then
10: newl P.domaininfo <« dominfo
11: else
12: newl P.domaininfo «— null
13: end if
14: Gen[n] «— {{newIP}}
15: add nodes in succ(n) to worklist
16: else if n is a callsite AN D target(n) has summary s then
17: Gen[n] «— map(n, s)
18: for each inter face € Gen[n] do
19: for each IP € interface do
20: annot < annotation associated with n’s return site
21: if IP.node == annot.I Pnode AND
annot has domain information dominfo then
22: IP.domaininfo «— dominfo
23: end if
24 end for
25: end for
26: add nodes in succ(n) to worklist

27: else if n is a method entry point then
28: Gen[n] «— {{}}

29: add nodes in succ(n) to worklist
30: else

31: Gen[n]— 0

32: end if

33: Out[n] < Gen[n]

34: end for

35: while |worklist| # 0 do

6: n « first element in worklist
37: In[n]e— Upeprean) Outlp]
38: Out’[n] — {}
39: for each i € In[n] do

40: for each g € Gen[n] do
41: Out’[n] «+ Out’[n] U {i U g}
42: end for

43: end for
44: if Out’[n] # Out[n] then

45: Out[n] + Out’[n]

46: if n is a callsite AND target(n) € methodset then
47: add target(n)’s entry node to worklist

48: else

49: add nodes in succ(n) to worklist

50: end if

51: end if

52: end while
53: for each m € methodset do

54: summary < Out[m’s exit node]

55: associate summary to method m

56: for each interface € summary do

57: for each IP € interface such that I P.name is not a
concrete value do

58: IP.name « resolve(IP)

59: end for

60: end for

61: end for

end

Function resolve takes as input a string variable and at-
tempts to find one or more statements in the current method
where the variable is initialized. To do this, it follows back-
ward definition-use chains starting from the variable and
without crossing the current method’s boundaries until it
reaches a definition involving (1) a string constant, (2) an
expression, or (3) a method parameter. In the first case,
resolve terminates successfully and returns the identified
string constant. In the second case, it tries to compute a
conservative approximation of the values of the string ex-
pression using the Java string analysis developed by Chris-
tensen, Mgller, and Schwartzbach [2]. If the analysis termi-
nates, resolve returns the resulting set of strings. Finally, in
the third case, resolve returns the formal parameter iden-
tified. In this latter case, (1) the formal parameter will be
mapped to the corresponding actual parameter when the
summary information is used in one of the current method’s
callers, and (2) resolve will be invoked on the actual pa-
rameter when computing the summary information for that
caller.

We illustrate Phase 2 using our example servlet. In the
interest of clarity, we focus only on excerpts that illustrate
some of the subtleties of the algorithm and ignore annota-
tions and calls to resolve. The first two methods processed
by the algorithm are getNumParam and getCookie. The pro-
cessing of getNumParam begins at node 22, which contains
a PF call, so its Gen set consists of a newly created IP
entity for that PF, whose name is “paramName” (the pa-
rameter of the PF call). Traversing nodes 23 and 24 does
not add any additional information. After reaching node 24,
SummarizeMethod creates a summary with a single interface
in it, consisting of the newly created IP. The processing of
method getCookie is almost identical and creates a similar
summary. In the main method, processing starts at node 5,
which is a PF call. Therefore, also in this case, its Gen set
contains a newly created IP entity for that PF, with name
“formAction.”

SummarizeMethod then proceeds to node 6, at which point
either branch can be taken; we assume that SummarizeMethod
follows the branch to node 7 first. Node 7 is also a PF call
and results in a Gen set with another newly created IP en-
tity, whose name is “login.” Node 8 is a call to method get-
NumParam, whose summary we computed above. The map
function, applied to this summary, replaces formal param-
eter paramName with actual parameter pin. Nodes 9 and
10 do not add any information, so the Out set of node 10
contains the set of three IPs whose names are “formAction,”
“login,” and “pin.”

Along the branch starting with node 11 and ending at
node 19, the analysis generates an Out set (for node 19)
consisting of four IPs, with names “formAction,” sessionID,
“name,” and “zip.” At node 20, SummarizeMethod computes
the union of the Out sets of nodes 10, 11, and 19, which
results in a set containing three possible interfaces: {{“for-
mAction”, “login”, “pin”}, {“formAction”}, {“formAction”,
“sessionID”, “name”, “zip”}}.

5. EMPIRICAL EVALUATION

In our empirical evaluation, we assess the usefulness of our
approach in supporting web application testing. To do this,
we compare WAM’s performance with the performance of an
approach based on web crawling (SPIDER, hereafter). Web
crawlers, also known as web spiders, are widely used tools

Table 1: Subject programs for our empirical studies.

| Subject | LOC | Servlets |
Bookstore 19,402 28
Checkers 5,415 33
Classifieds 10,702 19
Employee Directory | 5,529 11
Events 7,164 13
Office Talk 4,670 38
Portal 16,089 28

that explore web sites by visiting web pages, identifying links
in the visited pages, and visiting the linked pages recursively.
Web spiders provide an ideal baseline for our evaluation be-
cause they are the tools most commonly used for extracting
web application interfaces, and many approaches to web ap-
plication testing rely on the information produced by web
spiders. In the evaluation, we investigate the following two
research questions:

RQ1: Does wAM discover a higher number of interfaces
than SPIDER?

RQ2: Does testing effectiveness improve when using inter-
face information generated by WAM instead of interface
information generated by SPIDER?

In the following sections, we describe our experiment setup,
present the studies we performed to address RQ1 and RQ2,
and discuss the results of these studies.

5.1 Experiment Setup
5.1.1 Experimental Subjects

Our experimental subjects consist of seven Java-based web
applications: five commercial applications available from
GotoCode (http://wwu.gotocode.com/) and two student-deve-
loped projects. This set of subjects was used in previous
work by us and also other researchers [7-9]. Table 1 provides
general information about the subject applications. For each
application, the table lists the application’s size (LOC') and
number of servlets (Serviets).

5.1.2 Tools Used in the Evaluation

The spider we use in our study is based on the web crawler
available as part of the widely-used OWASP WebScarab
Project [13]. This is a state-of-the-art implementation that
is representative of most spider-based approaches. We ex-
tended the OWASP spider by adding to it the capability
of extracting from web pages (1) form-related information,
including information about <form> and <input> elements,
and (2) default values specified for those elements. Addi-
tionally, we gave the spider administrator-level access to the
web applications used in the study by providing it with lo-
gin information for the various applications. In this way, we
enabled SPIDER to perform a more thorough exploration.

For the evaluation we developed a prototype tool, wWaM,
that implements our approach for web applications devel-
oped using the JEE framework (http://java.sun.com/javaee/).
As input WAM takes the set of Java classes in a web application.
For each servlet in the application, WAM analyzes its bytecode
and outputs a list of the servlet’s interfaces. To generate call-
graphs, CFGs, and ICFGs, WAM uses the SOOT program anal-

Table 2: Number of interfaces identified.

identified interfaces

Subject SPIDER | WAM Improvement
Bookstore 21 24 3 (14%)
Checkers 1 29 28 (2,800%)
Classifieds 11 17 6 (55%)
Employee Dir. 6 9 3 (50%)
Events 9 11 2 (22%)
Office Talk 5 31 26 (520%)
Portal 20 25 5 (25%)

ysis framework (http://www.sable.mcgill.ca/soot/). To com-
pute data-dependency information, WAM leverages INDUS (http:
//indus.projects.cis.ksu.edu/), a data analysis library built
on top of sOOT. Lastly, the resolve function that we use in Phases
1 and 2 uses the Java String Analysis (JSA) library [2] to com-
pute a conservative approximation of the different values a string
can assume at a given point in a program.

52 Study 1l

To address RQ1, we ran SPIDER and WAM on our subject ap-
plications, counted the number of interfaces extracted by the two
tools, and compared these numbers. Table 2 shows our results.
For each application, the table reports the number of interfaces
identified by SPIDER (SPIDER), the number of interfaces identified
by wAaM (WAM), and the absolute and relative (in parentheses) in-
crease in the number of interfaces identified by wAM with respect
to SPIDER.

As the table shows, wWAM always identifies a higher number
of interfaces than SPIDER, and in some cases the increase in the
number of interfaces identified is dramatic.

We manually inspected several of the servlets that showed a
high difference in the number of interfaces discovered by SPIDER
and WAM to check the correctness of our results and improve our
understanding of the reasons for WAM’s better performance. We
found that the difference in the results is generally due to a com-
bination of two factors.

First, many servlets interact with users through a series of
forms that must be completed in sequence and by providing a
suitable set of values. One example of this situation is a registra-
tion servlet, similar to the servlet example in Figure 1, that we
found in one of our subjects. The servlet required users to select
a login and then enter their password twice before proceeding to
the next form, which prompted them for additional information.
Unless a spider could provide appropriate information for the var-
ious forms, it would only be able to discover the initial default
form. While a spider can be trained to solve specific instances
of this problem, the problem of generating suitable values for a
form is, in general, unsolvable without specific knowledge of the
application and its underlying database.

Second, many servlets contain hidden interfaces. These inter-
faces would not appear in any web page and, thus, could not
be detected by a web spider. We found many occurrences of
this type of hidden interfaces that were used as a mechanism for
inter-servlet communication, where one servlet would invoke an-
other servlet and pass parameters to it for processing. Although
designed for inter-servlet use, these interfaces are accessible ex-
ternally because each servlet in a web application can be invoked
directly. Therefore, they should be identified and suitably tested.

Additional findings.During manual inspection of the results,
we found some additional evidence of the usefulness of our ap-
proach that, although not directly related to the results of Study
1, is worth reporting. Specifically, we encountered many situa-
tions where web forms contained input elements that were never
actually retrieved by the servlet (i.e., their corresponding in-
put values were simply ignored during execution of the servlet).
Without additional information, it is difficult to asses whether

these situations correspond to errors in the application. However,
they do represent cases in which our technique would identify a
more accurate set of interfaces and provide testers or developers
with more relevant information; since SPIDER reports all input el-
ements it identifies, regardless of whether they are actually used
by the application, as being part of the application’s interface,
this could result in wasted testing effort that targets the unused
input elements.

53 Study 2

Our goal in investigating RQ2 is to assess whether identify-
ing more interfaces actually results in a more thorough testing of
web applications. In other words, we want to confirm that the
additional interfaces discovered by our technique actually provide
value for the tester. To address this question, we compared the
coverage achieved by a test-input generation technique when rely-
ing on the interfaces identified by wAM and on the ones generated
by SPIDER. Although higher coverage does not necessarily imply
better fault detection, coverage is an objective and commonly-
used indicator of the quality of a test suite.

We measured and compared coverage for four criteria: basic-
block, branch, command-form, and input-parameter coverage.
Basic-block coverage and branch coverage measure the percentage
of basic-blocks and branches exercised, respectively. Command-
form coverage [9] measures the number of distinct types of database
commands and queries (i.e., commands and queries that differ in
their structure) generated by an application that interacts with
an underlying database. Since most web applications are data-
centric, this measure is useful in determining whether a test suite
has caused a servlet to exhibit different behavior with regards
to its interactions with the underlying database. Lastly, input-
parameter coverage measures the percentage of an application’s
unique IPs that are accessed by a servlet during its execution,
which is an indicator of how thoroughly the possible input chan-
nels have been exercised.

To exercise the subject applications, we generated two test
suites for each application: one based on the interfaces identi-
fied by wAM and one based on the interfaces identified by SPIDER.
To avoid introducing bias into the test suite generation, we used
the same process to create both test suites. For each interface
identified by the two approaches, we iterated over each input pa-
rameter param in the interface and created a set of test cases that
varied the value of param by setting it to a “normal” value (e.g.,
a random string or number), the empty string, or an erroneous
value (e.g., a numeric parameter when a non-numeric value is
expected). The empty string and erroneous values were used to
try to exercise error checking code in the application. The other
parameters in the interface were set to legal values. In the case
of sPIDER-discovered interfaces, we used the default legal values
supplied by the crawled HTML pages. For wAM-discovered inter-
faces, we used the set of relevant values discovered by waM. In
this way, we were able to generate test cases in the exact same
way for both wAM and SPIDER, and differences in the resulting
test sets were due only to differences in the interfaces identified
by the two approaches.

After generating the sets of test inputs, we deployed versions
of the subject applications instrumented to monitor the differ-
ent types of coverage. We used the INSECTJ framework [16] to
handle instrumentation and monitoring for basic block, branch,
and input-parameter coverage, and the DITTO tool [9] to mea-
sure command-form coverage. We then ran all of the test in-
puts against the instrumented applications and computed the
amount of coverage achieved using each criterion. The results
of this study are presented in Table 3. For each application,
we show the amount of basic block (Block), branch (Branch),
command-form (Cmd-form), and input-parameter (Param) cov-
erage achieved. For each coverage criterion, we also show the
coverage achieved by the SPIDER-based approach (), the cover-
age achieved by the waM-based approach (W), and the percentage
improvement achieved when using our approach (£). Note that,
in the table, command-form coverage is reported only in absolute
terms because we do not currently have a way of computing the
exact number of test requirements for this criterion.

Table 3: Test criteria coverage achieved using the spider-based and the wam-based test generation approaches.

Block (%) Branch (%) | Cmd-form (abs.) Param (%)
Subject S| W | x| S| W| £ S| W + S| W +
Bookstore 62| 70 |13 |50 | 63 | 26 | 59 | 102 73 97 | 100 4
Checkers 17 31|18 | 5 | 10 | 100 | 7 14 100 | 29 | 63 | 120
Classifieds 58 | 70 | 20 [44 | 61 | 39 | 35| 77 120 | 96 | 98 2
Employee Dir. | 69 | 78 | 13 | 52 | 64 | 22 | 27 | 51 89 98 | 100 2
Events 58 | 71 | 22 | 46 | 61 | 34 | 27 | 64 137 | 97 | 100 3
Office Talk 25| 37 |49 |12 | 24 | 100 | 16 | 26 63 27 | 69 | 150
Portal 65| 71|10 | 55| 64 | 17 | 88 | 156 77 99 | 100 1
Average 51161 | 30 | 38| 50 | 48 | 37 | 70 94 781 90 | 40

The results reported in the table show that test input gen-
eration based on the interfaces discovered by wAM resulted in
consistently higher coverage across the four testing criteria con-
sidered. There is an average increase of 30% for basic block cov-
erage, 48% for branch coverage, 94% for command-form coverage,
and 40% for input-parameter coverage. These results provide ev-
idence that, for the subjects considered, the discovery of more
interfaces, along with the domain information extracted by our
analysis, allows testers to create test inputs that will more thor-
oughly exercise the different parts of a web application.

In an inspection of several servlets, we found that it was com-
mon that large sections of code were either executed or skipped
based on the values of state parameters. The ability to set these
state parameters to meaningful values, provided by our approach,
allows for exercising these sections of code. Conversely, spiders
cannot, in general, discover legal values for these state parame-
ters without human intervention or some form of heuristics-based
guessing. As the results confirm, this limits the ability of spider-
based approaches to thoroughly exercise web applications. We
also found that the way many web applications handle parame-
ters of the incorrect type (e.g., string instead of numeric) often
involves exiting the servlet with an error message or an exception.
In these cases, the domain information provided by our analysis
can help generate test inputs that satisfy type constraints and
can execute larger parts of the servlets.

For two of the applications, Officetalk and Checkers, the av-
erage increase in coverage achieved by the wAM-based approach
is considerably higher than for the other applications. Through
manual inspection of the code, we found that the servlets in the
other five applications read all input parameters as soon as in-
voked and perform an extensive and systematic error checking on
all of them. Therefore, even if a test input causes an error during
input validation, it would still execute a considerable percent-
age of the servlets’ code (albeit not its main logic). Conversely,
the servlets in Officetalk and Checkers check state parameters
first and, based on their values, direct the execution along dif-
ferent paths that access and check different input parameters as
needed. As a result, identifying the right relevant values for the
state parameters, as WAM does, leads to test inputs that achieve
a considerably higher coverage.

A final observation is that command-form coverage exhibited a
much higher increase than other criteria. Intuitively, the different
types of queries generated by a web application represent differ-
ent types of behaviors that an application can perform. Such a
high increase correlates to our intuition that accurately identify-
ing interfaces and domain information can result in a larger and
more varied set of behaviors exhibited by the servlets under test.

Threats to Validity.As with all empirical evaluations, there
are threats to the validity of our results. The threats that we
identified include the quality of SPIDER’s implementation, subject
selection, and test input generation strategies. First, a flawed im-
plementation of SPIDER could result in an inadequate exploration
of the web applications and, thus, in missing interfaces that a spi-

der could indeed identify. To mitigate this issue, we used exist-
ing spider infrastructure built by the OWASP group and simply
extended its functionality. This infrastructure is actively sup-
ported and implements state-of-the-art practices and strategies
for web crawling. Second, if the selection of experimental sub-
jects is not representative, our results may not generalize. To
mitigate this issue, we used seven different applications that were
gathered from different sources and have been used previously
in related work [7-9]. Finally, the use of an inadequate test in-
put generation strategy may negatively affect the coverage results
achieved using one or both of the considered approaches. To mit-
igate this threat, we applied standard test-generation techniques
and used the same test generation strategy for both approaches.
The only difference is that we leveraged the specific information
provided by wAM and SPIDER when creating the set of test inputs
for the two approaches.

6. RELATED WORK

Many techniques for testing web applications have been pro-
posed in the literature. Most of the spider-based approaches have
been developed in the commercial sector and are based on tradi-
tional web crawling, with the notable exception of WAVES [10].
WAVES is a sophisticated web spider that uses heuristics to ad-
dress many of the shortcomings of conventional crawlers. How-
ever, these heuristics have to be customized for a particular web
application and require extensive developer intervention.

Many approaches generate test inputs for a web application
based on a model of the application. An early technique by Ricca
and Tonella [14] is based on UML models. In this approach,
developers model the links and interface elements of each page
in the web application, and these models are used to guide test
input generation and estimate coverage of the web application.
Jia and Liu [11] propose a similar technique that rely on a formal
specification instead of a UML model. These techniques tend to
be limited in their ability to capture the dynamic and state-based
behavior of modern web applications. Later work addresses this
issue by modeling web applications as finite-state machines [1].
The primary drawback of these techniques, as compared to our
approach, is that developers must accurately and manually define
the web application model, whereas our approach is completely
automated. Moreover, our approach is also useful for discovering
interfaces that the developer may have inadvertently built into
the application.

Subsequent work based on modeling investigates automated
ways of extracting interfaces. The approach by Elbaum and col-
leagues [4] builds a model of a web-application interface by sub-
mitting a large number of requests to the application, observing
the results of the requests, and dynamically inferring constraints
on the domain of the input parameters. Their approach is similar
to ours in terms of the type of information it tries to extract,
but the underlying technique is significantly different because it
is based on purely-dynamic analysis. Therefore, a drawback of
their technique is that it is inherently incomplete and relies on
the often unsafe assumption that web applications are stateless

and deterministic. However, an advantage of their technique is
that, unlike ours, it can be used when the source code of a web
application is unavailable.

Deng, Frankl, and Wang [3] propose a technique based on static
analysis for modeling web applications. Their analysis builds a
model of the web application by scanning its code to identify links
and names of input parameters. Our technique makes several im-
provements over their approach. In particular, the static analysis
that we use in Phase 2 is context- and flow-sensitive, which al-
lows us to be more precise and to capture distinct interfaces that
correspond to different paths of execution. Also, in addition to
identifying distinct interfaces, our analysis can associate domain
information with the elements of the discovered interfaces. As we
noted in Section 5.3, the ability to identify domain information,
in terms of both type and relevant values of state parameters, can
result in a much more thorough testing of a web application.

Another family of approaches is based on capturing user-session
data and using this information to guide test case generation. An
early approach by Kallepalli and Tian [12] mines server usage
logs to build a statistical model of a web application usage that
can be used to guide testing and measure the reliability of a web
application. A subsequent approach by Sant, Souter, and Green-
wald [15] focuses on how these statistical models could be used to
generate better test cases. Another approach by Elbaum and col-
leagues [5,6] captures user-session data and uses the captured data
directly as test inputs. Their empirical evaluation of the approach
shows that the technique can be as effective as model-based tech-
niques in terms of exposing faults, while being able to generate
test cases at a lower cost. Sprenkle and colleagues [17, 18] pro-
pose an automated tool that can support the approach proposed
in [5,6] and generate additional test cases based on the captured
user-session data. Compared to our approach, these techniques
are limited by the quality of the user-session data collected. A
nice feature of these approaches, however, is that the values used
as test inputs already correspond to legal values. A combination
of the two approaches may lead to interesting results.

7. CONCLUSION

In this paper we presented a novel, fully automated static anal-
ysis technique for discovering web application interfaces and sup-
porting web application testing. Most existing techniques either
require developers to manually specify the interfaces to an ap-
plication or, if automated, are often inadequate when applied to
modern, complex web applications. We evaluated our approach
by comparing it to a traditional approach based on web crawling.
Our technique was able to discover a higher number of interfaces
for all seven web applications considered. The evaluation also
showed that using the discovered interfaces and domain informa-
tion to guide test input generation led to a significantly higher
coverage than test input generation based on the results of con-
ventional web-crawling techniques.

In future work, we plan to combine our approach with symbolic
execution, which could allow us to associate path conditions and
more precise domain information to specific interfaces. We also
plan to improve test input generation for web applications by
combining our interface discovery method with user-session cap-
ture techniques.

Acknowledgments

This work was supported by NSF award CCF-0541080 to Geor-
gia Tech and by the Department of Homeland Security and US
Air Force under Contract No. FA8750-05-2-0214. Any opinions
expressed in this paper are those of the authors and do not nec-
essarily reflect the views of the US Air Force.

8. REFERENCES

[1] A. A. Andrews, J. Offutt, and R. T. Alexander. Testing
Web Applications by Modeling with FSMs. In Software
Systems and Modeling, pages 326345, Jul. 2005.

[2] A. S. Christensen, A. Mgller, and M. I. Schwartzbach.
Precise Analysis of String Expressions. In Proceedings 10th
International Static Analysis Symposium, pages 1-18, Jun.
2003.

[3] Y. Deng, P. Frankl, and J. Wang. Testing Web Database
Applications. SIGSOFT Software Engineering Notes,
29(5):1-10, 2004.

[4] S. Elbaum, K.-R. Chilakamarri, M. F. II, and
G. Rothermel. Web application characterization through
directed requests. In International Workshop on Dynamic
Analysis, pages 49-56, May 2006.

(5] S. Elbaum, S. Karre, and G. Rothermel. Improving Web
Application Testing with User Session Data. In
International Conference on Software Engineering, pages
49-59, Nov. 2003.

[6] S. Elbaum, G. Rothermel, S. Karre, and M. F. II.
Leveraging user-session data to support web application
testing. IEFE Trans. on Software Engineering,
31(3):187-202, Mar. 2005.

[7] C. Gould, Z. Su, and P. Devanbu. Static Checking of
Dynamically Generated Queries in Database Applications.
In Proceedings of the 26th International Conference on
Software Engineering, pages 645—654, May 2004.

[8] W. G. Halfond and A. Orso. AMNESIA: Analysis and
Monitoring for NEutralizing SQL-Injection Attacks. In
Proceedings of the IEEE and ACM International
Conference on Automated Software Engineering, pages
174-183, Nov. 2005.

[9] W. G. Halfond and A. Orso. Command-form Coverage for
Testing Database Applications. In Proceedings of the IEEE
and ACM International Conference on Automated
Software Engineering, pages 69-78, Sep. 2006.

[10] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior
Monitoring. In Proceedings of the 12th International World
Wide Web Conference , pages 148—159, May 2003.

[11] X. Jia and H. Liu. Rigorous and Automatic Testing of Web
Applications. In 6th IASTED International Conference on
Software Engineering and Applications, pages 280-285,
Nov. 2002.

[12] C. Kallepalli and J. Tian. Measuring and Modeling Usage
and Reliability for Statistical Web Testing. IEEE
Transactions on Software Engineering, 27(11):1023-1036,
2001.

[13] Open Web Application Security Project (OWASP).
OWASP WebScarab Project.
http://www.owasp.org/index.php/Category:
OWASP_WebScarab_Project, Mar. 2007.

[14] F. Ricca and P. Tonella. Analysis and Testing of Web
Applications. In International Conference on Software
Engineering, pages 25—-34, May 2001.

[15] J. Sant, A. Souter, and L. Greenwald. An Exploration of
Statistical Models for Automated Test Case Generation. In
Proceedings of the Third International Workshop on
Dynamic Analysis, pages 1-7, May 2005.

[16] A. Seesing and A. Orso. InsECTJ: A Generic
Instrumentation Framework for Collecting Dynamic
Information within Eclipse. In Proceedings of the eclipse
Technology eXchange (eTX) Workshop at OOPSLA 2005,
pages 49-53, Oct. 2005.

[17] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock.
Automated Replay and Failure Detection for Web
Applications. In 20th IEEE/ACM International Conference
on Automated Software Engineering, pages 253 — 262, Nov.
2005.

[18] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. A Case
Study of Automatically Creating Test Suites from Web
Application Field Data. In Workshop on Testing, Analysis,
and Verification of Web Services and Applications, pages
1-9, Jul. 2006.

