A Generic Instrumentation Framework
for Collecting Dynamic Information

Anil Chawla and Alessandro Orso
College of Computing
Georgia Institute of Technology

{anillorso}@cc.gatech.edu

ABSTRACT

Performing empirical research in software testing involves
executing a set of subjects against one or more test suites
and measuring some characteristics of these executions. Such
measures are often collected using ad-hoc instrumentation,
by inserting probes in the code that collect and report dy-
namic information at run-time. Another possible approach
is to collect the needed information by leveraging capabili-
ties of the runtime system. Both these approaches usually
result in measurement tools that are not flexible and are,
thus, hard to reuse and modify. To address this problem,
we present a generic framework for collecting information on
the runtime behavior of a Java program. The framework al-
lows for easily collecting different kinds of dynamic informa-
tion for a set of executions of the program, such as coverage
and profiling of various code entities and program traces at
different levels. The framework also lets users easily define
how to process the collected information. In the paper, we
also present a case study that we performed to evaluate the
framework, and that shows its effectiveness and efficiency.

1. INTRODUCTION

Empirical research in dynamic analysis in general, and
testing in particular, requires the gathering of different kinds
of information on the runtime behavior of a program when
run against a set of inputs (or test cases). Examples of
such information are coverage data for various code entities,
such as statement and branches, traces at different levels of
abstraction, and program profiles.

For Java programs, two common approaches for collect-
ing such information are to add to the code ad-hoc instru-
mentation using a bytecode rewriting library or to leverage
capabilities of the runtime systems (e.g., the Java Virtual
Machine profiling or debugging interface [7, 8]). Unfortu-
nately, these approaches are usually expensive and result in
experimental infrastructure that is not flexible and, thus,
hard to reuse and modify. Another approach for alleviat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

ing the problem of collecting runtime information is to use
an aspect-oriented language. Although aspect-oriented lan-
guages provide a convenient mechanism for inserting probes
at specific points in a program, they are often inadequate:
first, existing aspect-oriented languages are not able to pro-
vide certain kinds of information, such as information at
the basic-block level; second, aspects can incur a large time
overhead.

To solve these problems, we present an efficient, generic
framework for gathering dynamic information for Java pro-
grams. The framework lets users collect runtime information
with limited effort because it allows for easily specifying (1)
which types of entities should be monitored at runtime, (2)
in which parts of the code such entities should be monitored,
(3) what kind of information should be collected for each en-
tity, and (4) how to process the information collected.

The paper also describes a prototype implementation of
the framework and an empirical study that we performed
to evaluate our approach. In the study, we use the imple-
mentation of our framework to perform method tracing and
compare our approach with an approach based on the use
of an aspect-oriented language in terms of efficiency.

2. APPROACH

Our goal is to provide an extensible, configurable, and in-
tuitive framework for gathering information from an execut-
ing program. Examples of this type of information include
coverage, profiling, and data values from specific points in a
program’s execution. Furthermore, we would like our frame-
work to provide the information that it gathers in a generic
manner. Such a capability lets users easily build tools and
experimental infrastructure using the framework.

Our framework has two main characteristics:

e [t provides a large library of probes to collect dif-
ferent kinds of information for different code entities.

e It lets the user define instrumentation tasks, which
provide a simple way to instrument different entities in
different parts of the code, collect different information
from the different entities, and process the information
in a customized way.

2.1 Library of probes

Each type of instrumentation corresponds to a specific
code construct. The set of code constructs that we instru-
ment includes, among others, method calls, field accesses,
acyclic paths, and catch blocks. We refer to the code con-
structs that we can instrument as instrumentable entities.

Information
available
enclosing object
argument objects
return object or exception object
target object
parameter objects
return object or exception object
field object
containing object
old field object
new field object
containing object

Instrumentable
entity
Method entry

Method exit
Before method call

After method return
Field read

Field write

Start of basic block none
End of basic block none
Before a branch none
After a branch none
Throw exception object

Catch exception object
Predicate evaluated predicate result
Acyclic path none
Table 1: Instrumentable entities and information

available for each entity.

For each instrumentable entity, our framework can provide
a variety of information associated with that entity. For ex-
ample, in the case of a method call, we can report the target
object and all of the parameters passed to the called method.
Table 1 shows a complete list of the instrumentable entities
in our framework, along with the information available at
each point. (We identified the set of instrumentable entities
and the information to collect for each of them based on a
survey conducted among researchers in the area of dynamic
analysis.)

Our concept of instrumentable entities is similar to the
idea of joinpoints in AspectJ [1]. However, our instrumentable
entities, unlike AspectJ’s joinpoints, are specialized for col-
lecting dynamic information, rather than for extending a
program’s functionality. In particular, there are no AspectJ
joinpoint counterparts for certain instrumentable entities,
such as basic blocks, predicates, and acyclic paths. There-
fore, collecting information for these entities using AspectJ
is complex or not possible at all. Moreover, as we shall
show in Section 4, our framework collects dynamic infor-
mation very efficiently, whereas AspectJ imposes a consid-
erable overhead on the program execution. The reason for
these differences is that aspect-oriented languages, such as
AspectJ, are designed to add to the code crosscutting con-
cerns, such as error handling, and are optimized for that
goal. Conversely, our framework is designed and optimized
to collect and report runtime information useful for dynamic
analysis. Whereas AspectJ collects a considerable amount
of information at joinpoints even if only part of the informa-
tion is needed, our framework collects only the information
specified by the user, so limiting the overhead associated
with the collection of the dynamic information.

2.2 Instrumentation Tasks

In general, when collecting dynamic information about a
set of executions, we are interested in collecting information
for some specific entities in the code (e.g., method calls and

paths) and in a subset of the program (e.g., in a specific
module or set of modules). Our framework lets the user
specify, using instrumentation tasks, (1) the types of enti-
ties to instrument, (2) the parts of the code in which those
entities must be instrumented, and (3) the kind of informa-
tion to collect from the different entity types, and (4) how
to process the information collected.

An instrumentation task for a given system is divided into
two main parts. The first part specifies the part of the sys-
tem being instrumented, in terms of classes or methods. The
second part specifies which types of entities must be instru-
mented, what kind of information should be collected from
each entity type, and how such information should be pro-
cessed. An instrumentation task can also, in turn, consist of
a set of instrumentation tasks. Composite instrumentation
tasks give users the possibility to collect different kinds of
information from different parts of the system (e.g., branch
coverage for some modules and exception coverage for other
modules). Composite instrumentation tasks also allow for
processing differently the information collected for different
parts of a system.

Because users can precisely specify the kind of information
to collect for a given entity type, our framework can reduce
the amount of instrumentation, thus optimizing it and re-
ducing its overhead. The kinds of information available for
a given type are listed in the second column of Table 1. As
the table shows, different types provide different kinds of in-
formation. For a method entry, for example, the framework
can collect the list of parameters of the call, whereas for a
method exit it can collect the return object.

Users can specify how the collected information is pro-
cessed by declaring which monitor should process which type
of information. Monitors are classes that consume the infor-
mation reported by the probes inserted in the code. Each
monitor class is responsible for collecting information re-
ported from a single type of instrumentable entity. For ex-
ample, a monitor for method-entries will collect information
reported from all entry points of methods, whereas a mon-
itor for method-exits will collect information reported from
all exit points of methods. Monitors serve as the foundation
for measuring tools built on top of our framework. Users can
either use the standard monitors provided with the frame-
work, or create their own specialized monitors, by simply
implementing an interface provided by the framework.

3. TOOL

INSECT (Instrumentation, Execution, and Coverage Tool)
is our implementation of the dynamic analysis framework de-
scribed in the previous section. INSECT is written in Java
and instruments programs at the byte-code level using the
Byte-Code Engineering Library [2]. Instrumentation tasks
are specified using XML files. The tool leverages a Java
analysis tool developed within our group to perform various
data-flow, control-flow, and type-inference analysis. The re-
sults of these analysis are used to optimize the instrumen-
tation (e.g, by performing virtual-call resolution and lever-
aging dominance information).

All components in INSECT relate either to instrumenta-
tion, monitoring, or analysis. The instrumentation compo-
nents are responsible for inserting probes and maintaining a
centralized ID system. The monitoring components consist
of specific monitors for each type of instrumentable entity, as

InsECT Run-time

A]
| Custom
Program / Classloader JVM
A
Class Instrumented
Instrumentation Class
Task
\‘ / Dynamic
\ Information
Instrumenter
Processed
Monitors Dynamic
Information

Figure 1: High-level view of InsECT in dynamic
mode.

well as a generic monitor capable of collecting and recording
the information provided by any probe. Finally, INSECT
includes a set of classes that can be used as a foundation
for building dynamic analysis and measuring tools. These
classes provide methods to retrieve the dynamic information
stored by the generic INSECT monitor. These classes also
provides methods to access various information about the
instrumented program, such as mappings from entities’ IDs
to the location of the entities in the code.

INSECT can operate in two modes: static and dynamic.
In static mode, INSECT inputs the program to be instru-
mented and an instrumentation task, and generates a suit-
ably instrumented program. In dynamic mode, INSECT
instruments the code dynamically, when it is loaded at run-
time, using a specialized classloader. The dynamic mode
allows for more flexibility when the instrumentation must
change frequently, possibly dynamically, and users do not
want to store a number of different versions of the instru-
mented program.

Figure 3 shows a high-level view of INSECT when it oper-
ates in dynamic mode. As the figure shows, the tool uses a
custom class-loader that invokes INSECT’s instrumenter on
classes that must be instrumented, according to the spec-
ified instrumentation task. (Classes that must not be in-
strumented are loaded normally.) As the JVM executes the
instrumented parts of the program, dynamic information is
reported to the monitors in the framework or to the custom
monitors provided by the user. These monitors process and
store the dynamic information.

4. EMPIRICAL EVALUATION

To perform a preliminary validation of our framework, we
performed a case study using our prototype implementa-
tion. The overall goal of the study is (1) to assess whether
INSECT can easily be used for the task of building a mea-
suring tool, and (2) to compare the performance of INSECT
to the performance of AspectJ for the same task. More pre-
cisely, in the case study, we investigated the following re-
search questions:

1. How difficult is it to build a measurement tool using
our framework, compared to building the same tool
using AspectJ?

2. How efficient are measurement tools built using our
framework, compared to the same tools built using
AspectJ?

To address these questions, we used INSECT and AspectJ
to build two tools that compute two different kinds of dy-
namic information:

e Program traces at the method level: This tool, that we
call PTrace, collects traces that consist of one item for
each method entry (the method’s ID) plus a special
symbol for each method exit.

e Program traces at the method level with parameter in-
formation: This tool, that we call PTraceParam, col-
lects the same information as PT'race plus information
on the target and parameters of each call.

4.1 Setup

The independent variable in this case study is the ap-
proach we used to build tools PTrace and PTraceParam:
INSECT or AspectJ. Our dependent variables of interest
are (1) the time required to build the tools, and (2) the
time overhead imposed by the two tools for collecting the
dynamic information.

To address the first research question, we selected a stu-
dent familiar with both INSECT and AspectJ, asked the
student to develop the two tools using the two approaches,
and measured the time required to build each tool with each
approach.

To address the second research question, we used the four
tools developed by the student to collect dynamic informa-
tion for a subject and a set of test cases. As a subject
for our study we utilized JABA (Java Architecture for Byte-
code Analysis [3]), a Java analysis tool developed within
our research group at Georgia Tech. JABA consists of about
60KLOC and 530 classes. As test cases, we used the ac-
tual JABA regression test suite, which consists of 707 test
cases. We ran the set of test cases on the original Jaba, and
on Jaba instrumented by each of the four tools. For each
test case, we measured the time to run the test case on the
uninstrumented version of the program and on each of the
four instrumented programs. Then we used such measures
to compute the percentage of overhead for each test case and
for each of the four instrumented versions with respect to
the uninstrumented version. Finally, we averaged the over-
head over all of the test cases, to get a unique value for each
of the four tools.

4.2 Results

It took the student about 10 minutes to build both PTrace
and PTraceParam using our framework. The time required
to build the same tools using AspectJ was about 40 minutes.
The case study was performed for two tools and involving
only one developer. Therefore, we obviously have no guaran-
tee that these results would generalize to the construction of
other tools or to other developers. Nevertheless, the results
are encouraging.

The results for the second part of the study also show con-
siderable differences between the two approaches. These re-
sults are shown in Table 2. In the table, we refer to the tools
built using INSECT as PTrace; and PTraceParam;, and to

the tools built using AspectJ as PTrace, and PTraceParam,.
Each row in the table corresponds to a tool and reports the
time overhead imposed by that tool (i.e., by the instrumen-
tation added by that tool) on the execution of the subject
program. The overhead is computed with respect to the
execution of the uninstrumented version of the program, as
explained in the previous section.

Time Overhead

PTrace;/Uninst 8%
PTrace,/Uninst 26%
PTraceParam;/Uninst 48%
PTraceParamq/Uninst 86%

Table 2: Time overhead for the tools built using
InsECT and Aspectd.

As the table shows, the instrumentation tools built us-
ing INSECT impose a considerably lower overhead than the
tools built using AspectJ. Also in this case, this is just a
case study, and the results may not generalize. However, we
have reasons to expect INSECT to be more efficient than
AspectJ in general. As explained in Section 2.1, we expect
our framework to be more efficient because our approach,
unlike AspectJ, optimizes the instrumentation based on the
information required by the user and minimizes the instru-
mentation accordingly.

S. RELATED WORK

AspectJ is an implementation of an aspect-oriented lan-
guage extension for Java [1]. Central to AspectJ are the con-
cepts of joinpoint, pointcut, and advice. A joinpoint refers
to a specific point in the code at which a user can implement
functionality. A user of AspectJ can create a pointcut by se-
lecting a set of joinpoints and implementing a piece of code,
called advice, to be run at each of those joinpoints. Hence,
given the pointcut (set of joinpoints) referring to all method
calls, the user can implement an advice that reports all of
the information about that method call. AspectJ, although
powerful for adding crosscutting functionality to the code, is
limited in its library of joinpoints and is incapable of gath-
ering certain types of information needed by some dynamic
analyses.

The Java Instrumentation Engine (JIE) is a generic sys-
tem for source-code instrumentation [5]. The JIE operates
based on an instrumentation configuration. This configura-
tion describes points in the source-code to instrument, and
the action to perform at each of these points. Although the
tool is fairly generic, operating at the source level makes
instrumentation of certain code constructs difficult. Most
notably, the JIE is incapable of basic block or method invo-
cation instrumentation. The limitations stem from the lack
of global type information.

The Java Runtime Anaysis Toolkit (JRAT) is a static
bytecode instrumenter intended for gathering runtime data
and metrics for a program [6]. JRAT instrumentation con-
sists of a wrapper method for each method in the program.
Each wrapper method gathers information regarding the in-
vocation of its encapsulated method and fires events. JRAT
provides a Service Provider Interface for event-handling. The
main limitation of JRAT is that it can only collect very lim-

ited dynamic information.

The Java Instrumentation API (JIAPI) is a framework
for bytecode instrumentation [4]. JIAPI is capable of both
static and dynamic instrumentation, and provides abstrac-
tions for bytecode manipulation. Instrumentation with JI-
API consists of chaining several instrumenters together. Each
instrumenter manipulates the instruction list of a method
and then forwards the instruction list to the next instru-
menter in the chain. In this manner, JIAPI enables arbri-
tary instrumentation of the bytecode. Data is collected from
the instrumentation through the use of events. Currently,
the event handling interfaces are limited to methods, fields,
and exception events.

6. CONCLUSION

In this paper, we presented our generic framework for col-
lecting dynamic information for Java programs. The frame-
work can be used to build infrastructure to support exper-
iments for various dynamic analyses, including testing. We
also presented some preliminary results that show that using
our framework (1) can be simpler than using alternative ap-
proaches, and (2) can produce measurement tools that are
more efficient than tools built using alternative approaches.

Acknowledgments

This work was supported in part by NSF awards CCR-
0096321, CCR-0205422, CCR-0306372, and SBE-0123532.

7. REFERENCES

[1] Aspectj project. http://eclipse.org/aspect]j/.

[2] Byte-Code Engineering Library (BCEL).
http://jakarta.apache.org/bcel/.

[3] Java Architecture for Bytecode Analysis (JABA).
http:
//www.cc.gatech.edu/aristotle/Tools/jaba.html.

[4] Java Instrumentation API (JIAPI).
http://jiapi.sourceforge.net/.

[5] Java Instrumentation Engine (JIE).
http://wuw.forum2.org/eran/jie/.

[6] Java Runtime Analysis Toolkit (JRAT).
http://jrat.sourceforge.net/index.html.

[7] Java Virtual Machine Debugging Interface (JVMDI).
http://java.sun.com/j2se/1.3/docs/guide/jpda/
jvmdi-spec.html.

[8] Java Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.4.2/docs/guide/
jvmpi/jvmpi.html.

