Exact Combinatorial Algorithms for Graph Bisection

Daniel Delling Andrew V. Goldberg Ilya Razenshteyn <u>Renato Werneck</u>

Microsoft Research Silicon Valley

DIMACS Challenge

Minimum Bisection

- Input: undirected, unweighted graph G = (V, E)
- Output: partition V into sets A and B such that
 - $|A|, |B| \leq \lceil |V|/2 \rceil$
 - ② the number of edges between A and B is minimized
- Variants: ϵ -unbalanced, weights, more parts...

Example Instance

-----[3524 nodes, 5560, solution 30]

Example Instance

Motivation

Applications:

- load balancing for parallel computing
- preprocessing step for some road network algorithms
- divide-and-conquer (e.g. VLSI design)

Solutions:

- NP-hard, O(log n) best approximation [Räcke '08].
- Heuristics:
 - numerous fast and good partitioners
 - often tailored to specific graph classes (e.g. road networks)
 - no approximation/optimality guarantees

Motivation

Applications:

- load balancing for parallel computing
- preprocessing step for some road network algorithms
- divide-and-conquer (e.g. VLSI design)

Solutions:

- NP-hard, O(log n) best approximation [Räcke '08].
- Heuristics:
 - numerous fast and good partitioners
 - often tailored to specific graph classes (e.g. road networks)
 - no approximation/optimality guarantees

We want exact algorithms!

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B), with $A, B \subseteq V$
 - ▶ represents bisections (A^+, B^+) with $A \subseteq A^+$ and $B \subseteq B^+$

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B), with $A, B \subseteq V$
 - ▶ represents bisections (A^+, B^+) with $A \subseteq A^+$ and $B \subseteq B^+$
- Branch:
 - ▶ pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B), with $A, B \subseteq V$
 - ▶ represents bisections (A^+, B^+) with $A \subseteq A^+$ and $B \subseteq B^+$
- Branch:
 - ▶ pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.
- Bound:
 - L: lower bound on all bisections consistent with (A, B)
 - U: best known bisection (updated on-line)
 - if $L \ge U$, done with (A, B); otherwise **branch**

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B), with $A, B \subseteq V$
 - ▶ represents bisections (A^+, B^+) with $A \subseteq A^+$ and $B \subseteq B^+$
- Branch:
 - ▶ pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.
- Bound:
 - L: lower bound on all bisections consistent with (A, B)
 - U: best known bisection (updated on-line)
 - if $L \ge U$, done with (A, B); otherwise **branch**

Crucial ingredient: computing lower bounds.

Lower Bounds

Known bounds:

- linear programming [FMdSWW98, Sen01]
 - hundreds of nodes
- quadratic programming [HPZ11]
 - up to 3000 nodes
- semidefinite programming [AFHM08, Arm07]
 - up to 6000 nodes
- multicommodity flows [SST03]
 - hundreds of nodes
- degree-based combinatorial [Fel05]
 - tens of nodes (random)

Lower Bounds

Known bounds:

- linear programming [FMdSWW98, Sen01]
 - hundreds of nodes
- quadratic programming [HPZ11]
 - up to 3000 nodes
- semidefinite programming [AFHM08, Arm07]
 - up to 6000 nodes
- multicommodity flows [SST03]
 - hundreds of nodes
- degree-based combinatorial [Fel05]
 - tens of nodes (random)

We want to do better.

Summary

Our result:

- exact combinatorial algorithm for graph bisection
- works well for graphs with a small minimum bisection
 - ▶ road networks, VLSI instances, meshes...
- solves much larger instances than previous approaches

Main contributions:

- new lower bounds
- branching rules
- novel decomposition technique

• Goal: lower-bound all bisections consistent with (A, B).

Renato Werneck (Microsoft Research)

Exact Combinatorial Algorithms for Graph Bisection

- Goal: lower-bound all bisections consistent with (A, B).
- Known bound: min-cut (max-flow) between A and B.

- Goal: lower-bound all bisections consistent with (A, B).
- Known bound: min-cut (max-flow) between A and B.
 - pros: simple, upper bound when balanced;

- Goal: lower-bound all bisections consistent with (A, B).
- Known bound: min-cut (max-flow) between A and B.
 - pros: simple, upper bound when balanced;
 - cons: weak if $|A| \ll |B|$, typically very unbalanced.

• $A, B \subseteq V$: current partial assignment

- $A, B \subseteq V$: current partial assignment
- A^+ : an extension of A of size |V|/2

- $A, B \subseteq V$: current partial assignment
- A^+ : an extension of A of size |V|/2

- $A, B \subseteq V$: current partial assignment
- A^+ : an extension of A of size |V|/2
- Fact: $\min_{A^+} \operatorname{cut}(A^+, B)$ is a valid lower bound for (A, B)

• $cut(A^+, B)$: min-cut between A^+ and B.

- $A, B \subseteq V$: current partial assignment
- A^+ : an extension of A of size |V|/2
- Fact: $\min_{A^+} \operatorname{cut}(A^+, B)$ is a valid lower bound for (A, B)

• $cut(A^+, B)$: min-cut between A^+ and B.

We must reason about the worst possible extension A^+ .

Basic algorithm:

Basic algorithm:

• partition free nodes into connected cells adjacent to B

Basic algorithm:

- partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size |V|/2 hits k cells...

Basic algorithm:

- partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size |V|/2 hits k cells...
- ...there is a flow of at least k units between A^+ and B.

Basic algorithm:

- partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size |V|/2 hits k cells...
- ...there is a flow of at least k units between A^+ and B.

• Lower bound for (A, B) = worst-case A^+ :

hits the fewest possible cells

Basic algorithm:

- partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size |V|/2 hits k cells...
- ...there is a flow of at least k units between A^+ and B.

• Lower bound for (A, B) = worst-case A^+ :

- hits the fewest possible cells
- "adversary" picks entire cells, from biggest to smallest

Basic algorithm:

- partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size |V|/2 hits k cells...
- ...there is a flow of at least k units between A^+ and B.

• Lower bound for (A, B) = worst-case A^+ :

- hits the fewest possible cells
- "adversary" picks entire cells, from biggest to smallest
- \Rightarrow partition should have balanced cells (greedy + local search)

To combine flow and packing, remove flow edges before computing cells.

To combine flow and packing, remove flow edges before computing cells.

Performance

- Proving 30 is a lower bound:
 - search tree: 1.3M nodes
 - time: 50 minutes

Branching Rule and Forced Assignments

- Branch on vertices likely to increase L the most:
 - If ar from A and B (to produce better cells)
 - e well connected to other vertices (to increase flow)
 - Ontained in large packing cells
- Forced assignments:
 - ▶ use logical implications to fix some vertices to A or B
 - works if upper and lower bounds are close
 - discards many potential branching nodes

Branching Rule and Forced Assignments

- Proving 30 is a lower bound:
 - search tree: 1.3M nodes
 - time: 50 minutes

Branching Rule and Forced Assignments

- Proving 30 is a lower bound:
 - search tree: 1.3M nodes \rightarrow 90K nodes
 - ▶ time: 50 minutes → 3.5 minutes

• Algorithm is very sensitive to the degrees of assigned nodes.

- Algorithm is very sensitive to the degrees of assigned nodes.
- Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- Idea: branch on entire regions.
- Problem: a region can cross the minimum bisection.

- Algorithm is very sensitive to the degrees of assigned nodes.
- Idea: branch on entire regions.
- Problem: a region can cross the minimum bisection.
- Solution: decomposition!

• Given an upper bound U:

9 split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

Renato Werneck (Microsoft Research)

Exact Combinatorial Algorithms for Graph Bisection

• Given an upper bound U:

• split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

• Given an upper bound U:

• split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

• Given an upper bound U:

• split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

• Given an upper bound U:

• split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

DIMACS Challenge 16 / 26

• Given an upper bound U:

• split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$

• Given an upper bound U:

- split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- **2** for every *i*, contract E_i and run branch-and-bound

• Given an upper bound U:

- split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- **2** for every *i*, contract E_i and run branch-and-bound

In the second second

• Given an upper bound U:

- split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- 2 for every i, contract E_i and run branch-and-bound
- In the second second

• Some *E_i* will cross the optimum bisection; at least one will not!

- Given an upper bound U:
 - split edges into U + 1 disjoint sets $E_1, E_2, \ldots, E_{U+1}$
 - **2** for every *i*, contract E_i and run branch-and-bound
 - return best solution found
- Some E_i will cross the optimum bisection; at least one will not!
- *E_i* should be a set of clumps (high degree, well spread).

1

- Proving 30 is a lower bound:
 - search tree: 90K nodes
 - time: 3.5 minutes

1

• Proving 30 is a lower bound:

- \blacktriangleright search tree: 90K nodes \rightarrow 1369 nodes
- time: 3.5 minutes \rightarrow 2 seconds

Experiments

- VLSI instance:
 - search tree: 20K nodes
 - time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

- VLSI instance:
 - search tree: 20K nodes
 - time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

Walshaw Instances

Standard benchmark for graph partitioning ($\epsilon = 0$).

instance	n	т	opt	BB nodes	time [s]
add32	4 960	9 462	11	225	3
uk	4824	6837	19	1 624	4
3elt	4720	13722	90	12707	82
whitaker3	9 800	28 989	127	7 044	133
fe_4elt2	11143	32 818	130	10 391	224
4elt	15606	45 878	139	25 912	769
$data^*$	2851	15 093	189	495 569 759	5 750 388

[*: distributed execution using DryadOpt]

Walshaw Instances

instance	n	т	opt	BB nodes	time [s]
add32	4 960	9 462	11	225	3
uk	4824	6837	19	1 624	4
3elt	4720	13722	90	12707	82
whitaker3	9800	28 989	127	7 044	133
fe_4elt2	11143	32 818	130	10 391	224
4elt	15606	45 878	139	25 912	769
$data^*$	2851	15 093	189	495 569 759	5 750 388

[*: distributed execution using DryadOpt]

Optimum bisections were known before, but without proofs.

Other Challenge Instances

series	instance	n	т	opt	BB nodes	time [s]
clustering	karate	34	78	10	4	0.00
	chesapeake	39	170	46	110 138	3.08
	dolphins	62	159	15	110	0.01
	lesmis	77	820	61	3 905 756	230.30
	polbooks	105	441	19	8	0.00
	football	115	613	61	7 301	1.08
	power	4941	6 594	12	94	0.21
delaunay	delaunay_n10	1024	3 0 5 6	63	14 361	18.25
	delaunay_n11	2 0 4 8	6 1 2 7	86	65 080	175.73
	delaunay_n12	4 0 9 6	12264	118	474 844	2711.73
	delaunay_n13	8 1 9 2	24 547	156	3 122 845	37 615.97
streets	luxembourg	114599	119 666	17	786	91.17

Other Challenge Instances

series	instance	п	т	opt	BB nodes	time [s]
clustering	karate	34	78	10	4	0.00
	chesapeake	39	170	46	110 138	3.08
	dolphins	62	159	15	110	0.01
	lesmis	77	820	61	3 905 756	230.30
	polbooks	105	441	19	8	0.00
	football	115	613	61	7 301	1.08
	power	4 941	6 594	12	94	0.21
delaunay	delaunay_n10	1024	3 0 5 6	63	14 361	18.25
	delaunay_n11	2048	6 1 2 7	86	65 080	175.73
	delaunay_n12	4 0 9 6	12264	118	474 844	2711.73
	delaunay_n13	8 1 9 2	24 547	156	3 122 845	37 615.97
streets	luxembourg	114599	119 666	17	786	91.17

We can solve very large instances with small bisections.

• NW (9th Challenge): 264 branch-and-bound nodes, 25 minutes

Instances from "exact" literature

- State-of-the-art approaches:
 - [Arm07]: semidefinite programming
 - [HPZ11]: quadratic programming

instance	п	т	opt	time [s]	[Arm07]	[HPZ11]
KKT_putt01_m2	115	433	28	0.81	1.67	1.51
mesh.274.469	274	469	37	0.03	8.52	24.62
gap2669.24859	2669	29037	55	0.15	348.95	—
taq170.424	170	4317	55	3.00	28.68	—
gap2669.6182	2669	12280	74	34.90	651.03	—
taq1021.2253	1021	4510	118	134.61	169.65	_

Instances from "exact" literature

- State-of-the-art approaches:
 - [Arm07]: semidefinite programming
 - [HPZ11]: quadratic programming

instance	п	т	opt	time [s]	[Arm07]	[HPZ11]
KKT_putt01_m2	115	433	28	0.81	1.67	1.51
mesh.274.469	274	469	37	0.03	8.52	24.62
gap2669.24859	2669	29037	55	0.15	348.95	
taq170.424	170	4317	55	3.00	28.68	
gap2669.6182	2669	12280	74	34.90	651.03	
taq1021.2253	1021	4510	118	134.61	169.65	—

Excellent performance for small bisections.

• Gargoyle: 2.6M branch-and-bound nodes, 13 hours

• Gargoyle: 2.6M branch-and-bound nodes, 13 hours

[10002 vertices, 30000 edges, answer 175]

• Feline (mesh): 150K branch-and-bound nodes, 75 minutes

• Feline (mesh): 150K branch-and-bound nodes, 75 minutes

Conclusion

- New algorithm for minimum graph bisection
 - packing bound
 - decomposition
- Cut size matters
- Potential applications: evaluate/improve heuristics

Conclusion

- New algorithm for minimum graph bisection
 - packing bound
 - decomposition
- Cut size matters
- Potential applications: evaluate/improve heuristics

Thank you!