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Minimum Bisection

Input: undirected, unweighted graph G = (V ,E )

Output: partition V into sets A and B such that
1 |A|, |B| ≤ d|V |/2e
2 the number of edges between A and B is minimized

Variants: ε-unbalanced, weights, more parts...
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[3524 nodes, 5560, solution 30]
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Applications:

load balancing for parallel computing

preprocessing step for some road network algorithms

divide-and-conquer (e.g. VLSI design)

Solutions:

NP-hard, O(log n) best approximation [Räcke ’08].

Heuristics:
I numerous fast and good partitioners
I often tailored to specific graph classes (e.g. road networks)
I no approximation/optimality guarantees

We want exact algorithms!
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Branch-and-Bound
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Branch-and-bound: implicit enumeration.

Subproblem = partial assignment (A,B), with A,B ⊆ V
I represents bisections (A+, B+) with A ⊆ A+ and B ⊆ B+

Branch:
I pick v 6∈ A ∪ B, create subproblems (A ∪ {v}, B) and (A, B ∪ {v}).

Bound:
I L: lower bound on all bisections consistent with (A, B)
I U: best known bisection (updated on-line)
I if L ≥ U, done with (A, B); otherwise branch

Crucial ingredient: computing lower bounds.
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Lower Bounds
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Known bounds:

linear programming [FMdSWW98, Sen01]
I hundreds of nodes

quadratic programming [HPZ11]
I up to 3000 nodes

semidefinite programming [AFHM08, Arm07]
I up to 6000 nodes

multicommodity flows [SST03]
I hundreds of nodes

degree-based combinatorial [Fel05]
I tens of nodes (random)

We want to do better.
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Summary
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Our result:

exact combinatorial algorithm for graph bisection

works well for graphs with a small minimum bisection
I road networks, VLSI instances, meshes...

solves much larger instances than previous approaches

Main contributions:

new lower bounds

branching rules

novel decomposition technique



Flow Lower Bound
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Goal: lower-bound all bisections consistent with (A,B).

Known bound: min-cut (max-flow) between A and B.

I pros: simple, upper bound when balanced;
I cons: weak if |A| � |B|, typically very unbalanced.
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Packing Lower Bound
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A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)

I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.
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Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:

I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)
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Flow + Packing

To combine flow and packing, remove flow edges before computing cells.

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 11 / 26



Flow + Packing

To combine flow and packing, remove flow edges before computing cells.

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 11 / 26



Performance

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 12 / 26

Proving 30 is a lower bound:
I search tree: 1.3M nodes
I time: 50 minutes

1

[3524 vertices, 5560 edges, answer 30]



Branching Rule and Forced Assignments
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Branch on vertices likely to increase L the most:
1 far from A and B (to produce better cells)
2 well connected to other vertices (to increase flow)
3 contained in large packing cells

Forced assignments:
I use logical implications to fix some vertices to A or B
I works if upper and lower bounds are close
I discards many potential branching nodes
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Proving 30 is a lower bound:
I search tree: 1.3M nodes

→ 90K nodes

I time: 50 minutes

→ 3.5 minutes

1

[3524 vertices, 5560 edges, answer 30]
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Increasing Degrees
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Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!
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Decomposition
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Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).
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[3524 vertices, 5560 edges, answer 30]

Proving 30 is a lower bound:
I search tree: 90K nodes

→ 1369 nodes

I time: 3.5 minutes

→ 2 seconds
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Experiments
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VLSI instance:
I search tree: 20K nodes
I time: 9 minutes

[34046 vertices, 54841 edges, answer 80]
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Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 20 / 26

Standard benchmark for graph partitioning (ε = 0).

instance n m opt BB nodes time [s]

add32 4 960 9 462 11 225 3
uk 4 824 6 837 19 1 624 4
3elt 4 720 13 722 90 12 707 82
whitaker3 9 800 28 989 127 7 044 133
fe 4elt2 11 143 32 818 130 10 391 224
4elt 15 606 45 878 139 25 912 769
data∗ 2 851 15 093 189 495 569 759 5 750 388

[∗: distributed execution using DryadOpt]

Optimum bisections were known before, but without proofs.
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series instance n m opt BB nodes time [s]
clustering karate 34 78 10 4 0.00

chesapeake 39 170 46 110 138 3.08
dolphins 62 159 15 110 0.01
lesmis 77 820 61 3 905 756 230.30
polbooks 105 441 19 8 0.00
football 115 613 61 7 301 1.08
power 4 941 6 594 12 94 0.21

delaunay delaunay n10 1 024 3 056 63 14 361 18.25
delaunay n11 2 048 6 127 86 65 080 175.73
delaunay n12 4 096 12 264 118 474 844 2 711.73
delaunay n13 8 192 24 547 156 3 122 845 37 615.97

streets luxembourg 114 599 119 666 17 786 91.17

We can solve very large instances with small bisections.
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NW (9th Challenge): 264 branch-and-bound nodes, 25 minutes

[1.2M vertices, 1.4M edges, answer 18]



Instances from “exact” literature
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State-of-the-art approaches:
I [Arm07]: semidefinite programming
I [HPZ11]: quadratic programming

instance n m opt time [s] [Arm07] [HPZ11]

KKT putt01 m2 115 433 28 0.81 1.67 1.51
mesh.274.469 274 469 37 0.03 8.52 24.62
gap2669.24859 2669 29037 55 0.15 348.95 —
taq170.424 170 4317 55 3.00 28.68 —
gap2669.6182 2669 12280 74 34.90 651.03 —
taq1021.2253 1021 4510 118 134.61 169.65 —

Excellent performance for small bisections.
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Gargoyle: 2.6M branch-and-bound nodes, 13 hours

[10002 vertices, 30000 edges, answer 175]
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Feline (mesh): 150K branch-and-bound nodes, 75 minutes

[20629 vertices, 61893 edges, answer 148]
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Thank you!

New algorithm for minimum graph bisection
I packing bound
I decomposition

Cut size matters

Potential applications: evaluate/improve heuristics
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