Exact Combinatorial Algorithms for Graph Bisection

Daniel Delling Andrew V. Goldberg Ilya Razenshteyn Renato Werneck

Microsoft Research Silicon Valley

DIMACS Challenge

Minimum Bisection

- Input: undirected, unweighted graph $G = (V, E)$
- \bullet Output: partition V into sets A and B such that
	- $|A|, |B| \leq |V|/2|$
	- \bullet the number of edges between A and B is minimized
- \bullet Variants: ϵ -unbalanced, weights, more parts...

Example Instance

Example Instance

Motivation

Applications:

- load balancing for parallel computing
- **•** preprocessing step for some road network algorithms
- **o** divide-and-conquer (e.g. VLSI design)

Solutions:

- NP-hard, $O(\log n)$ best approximation [Räcke '08].
- **•** Heuristics:
	- \blacktriangleright numerous fast and good partitioners
	- \triangleright often tailored to specific graph classes (e.g. road networks)
	- \triangleright no approximation/optimality guarantees

Motivation

Applications:

- load balancing for parallel computing
- **•** preprocessing step for some road network algorithms
- **o** divide-and-conquer (e.g. VLSI design)

Solutions:

- NP-hard, $O(\log n)$ best approximation [Räcke '08].
- **•** Heuristics:
	- \blacktriangleright numerous fast and good partitioners
	- \triangleright often tailored to specific graph classes (e.g. road networks)
	- \triangleright no approximation/optimality guarantees

We want **exact** algorithms!

Branch-and-bound: implicit enumeration.

- Subproblem = partial assignment (A, B) , with $A, B \subseteq V$
	- ► represents bisections (A^+,B^+) with $A\subseteq A^+$ and $B\subseteq B^+$

- **•** Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B) , with $A, B \subseteq V$
	- ► represents bisections (A^+,B^+) with $A\subseteq A^+$ and $B\subseteq B^+$
- Branch:
	- \triangleright pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B) , with $A, B \subseteq V$
	- ► represents bisections (A^+,B^+) with $A\subseteq A^+$ and $B\subseteq B^+$
- Branch:
	- \triangleright pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.
- Bound:
	- In L: lower bound on all bisections consistent with (A, B)
	- \triangleright U: best known bisection (updated on-line)
	- ► if $L > U$, done with (A, B) ; otherwise **branch**

- Branch-and-bound: implicit enumeration.
- Subproblem = partial assignment (A, B) , with $A, B \subseteq V$
	- ► represents bisections (A^+,B^+) with $A\subseteq A^+$ and $B\subseteq B^+$
- Branch:
	- \triangleright pick $v \notin A \cup B$, create subproblems $(A \cup \{v\}, B)$ and $(A, B \cup \{v\})$.
- Bound:
	- In L: lower bound on all bisections consistent with (A, B)
	- \triangleright U: best known bisection (updated on-line)
	- ► if $L > U$, done with (A, B) ; otherwise **branch**

Crucial ingredient: computing lower bounds.

Lower Bounds

Known bounds:

- linear programming [FMdSWW98, Sen01]
	- \blacktriangleright hundreds of nodes
- quadratic programming [HPZ11]
	- \blacktriangleright up to 3000 nodes
- semidefinite programming [AFHM08, Arm07]
	- \blacktriangleright up to 6000 nodes
- multicommodity flows [SST03]
	- \blacktriangleright hundreds of nodes
- o degree-based combinatorial [Fel05]
	- \blacktriangleright tens of nodes (random)

Lower Bounds

Known bounds:

- linear programming [FMdSWW98, Sen01]
	- \blacktriangleright hundreds of nodes
- quadratic programming [HPZ11]
	- \blacktriangleright up to 3000 nodes
- semidefinite programming [AFHM08, Arm07]
	- \blacktriangleright up to 6000 nodes
- multicommodity flows [SST03]
	- \blacktriangleright hundreds of nodes
- o degree-based combinatorial [Fel05]
	- \blacktriangleright tens of nodes (random)

We want to do better.

Summary

Our result:

- exact combinatorial algorithm for graph bisection
- works well for graphs with a small minimum bisection
	- \triangleright road networks, VLSI instances, meshes...
- solves much larger instances than previous approaches

Main contributions:

- **e** new lower bounds
- **•** branching rules
- **•** novel decomposition technique

• Goal: lower-bound all bisections consistent with (A, B) .

Renato Werneck (Microsoft Research) [Exact Combinatorial Algorithms for Graph Bisection](#page-0-0) DIMACS Challenge 8 / 26

- Goal: lower-bound all bisections consistent with (A, B) .
- \bullet Known bound: min-cut (max-flow) between A and B.

- Goal: lower-bound all bisections consistent with (A, B) .
- \bullet Known bound: min-cut (max-flow) between A and B.
	- \triangleright pros: simple, upper bound when balanced;

- Goal: lower-bound all bisections consistent with (A, B) .
- Known bound: min-cut (max-flow) between A and B .
	- \triangleright pros: simple, upper bound when balanced;
	- \triangleright cons: weak if $|A| \ll |B|$, typically very unbalanced.

 \bullet A, $B \subseteq V$: current partial assignment

- \bullet A, $B \subseteq V$: current partial assignment
- \mathcal{A}^+ : an extension of $\mathcal A$ of size $|\mathcal V|/2$

- \bullet A, $B \subseteq V$: current partial assignment
- \mathcal{A}^+ : an extension of $\mathcal A$ of size $|\mathcal V|/2$

- \bullet A, $B \subseteq V$: current partial assignment
- \mathcal{A}^+ : an extension of $\mathcal A$ of size $|\mathcal V|/2$
- **Fact:** $min_{A^+} \text{cut}(A^+, B)$ is a valid lower bound for (A, B)

 \blacktriangleright cut(A^+ , B): min-cut between A^+ and B .

- \bullet A, $B \subseteq V$: current partial assignment
- \mathcal{A}^+ : an extension of $\mathcal A$ of size $|\mathcal V|/2$
- **Fact:** $min_{A^+} \text{cut}(A^+, B)$ is a valid lower bound for (A, B)

 \blacktriangleright cut(A^+ , B): min-cut between A^+ and B .

We must reason about the **worst possible extension** A^+ .

Basic algorithm:

Basic algorithm:

 \bullet partition free nodes into connected cells adjacent to B

Basic algorithm:

- \bullet partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size $\lvert V \rvert/2$ hits k cells...

Basic algorithm:

- \bullet partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size $\lvert V \rvert/2$ hits k cells...
- ...there is a flow of at least k units between A^+ and B .

Basic algorithm:

- \bullet partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size $\lvert V \rvert/2$ hits k cells...
- ...there is a flow of at least k units between A^+ and B .

Lower bound for $(A, B) =$ worst-case A^+ :

 \blacktriangleright hits the fewest possible cells

Basic algorithm:

- \bullet partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size $\lvert V \rvert/2$ hits k cells...
- ...there is a flow of at least k units between A^+ and B .

Lower bound for $(A, B) =$ worst-case A^+ :

- \blacktriangleright hits the fewest possible cells
- \blacktriangleright "adversary" picks entire cells, from biggest to smallest

Basic algorithm:

- \bullet partition free nodes into connected cells adjacent to B
- if a subset A^+ of V of size $\lvert V \rvert/2$ hits k cells...
- ...there is a flow of at least k units between A^+ and B .

Lower bound for $(A, B) =$ worst-case A^+ :

- \blacktriangleright hits the fewest possible cells
- \blacktriangleright "adversary" picks entire cells, from biggest to smallest
- \Rightarrow partition should have balanced cells (greedy $+$ local search)

$Flow + Packing$

To combine flow and packing, remove flow edges before computing cells.

$Flow + Packing$

To combine flow and packing, remove flow edges before computing cells.

Performance

1

- Proving 30 is a lower bound:
	- \blacktriangleright search tree: 1.3M nodes
	- \blacktriangleright time: 50 minutes

Branching Rule and Forced Assignments

- \bullet Branch on vertices likely to increase L the most:
	- \bullet far from A and B (to produce better cells)
	- ² well connected to other vertices (to increase flow)
	- ³ contained in large packing cells
- Forced assignments:
	- ightharpoonup use logical implications to fix some vertices to A or B
	- \triangleright works if upper and lower bounds are close
	- \blacktriangleright discards many potential branching nodes

Branching Rule and Forced Assignments

- Proving 30 is a lower bound:
	- \blacktriangleright search tree: 1.3M nodes
	- \blacktriangleright time: 50 minutes

1

Branching Rule and Forced Assignments

• Proving 30 is a lower bound:

- ► search tree: 1.3M nodes \rightarrow 90K nodes
- \triangleright time: 50 minutes \rightarrow 3.5 minutes

1

• Algorithm is very sensitive to the degrees of assigned nodes.

- Algorithm is very sensitive to the degrees of assigned nodes.
- · Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- · Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- · Idea: branch on entire regions.

- Algorithm is very sensitive to the degrees of assigned nodes.
- · Idea: branch on entire regions.
- Problem: a region can cross the minimum bisection.

- Algorithm is very sensitive to the degrees of assigned nodes.
- · Idea: branch on entire regions.
- Problem: a region can cross the minimum bisection.
- Solution: decomposition!

 \bullet Given an upper bound U :

 \bullet Given an upper bound U :

- **1** split edges into $U + 1$ disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- \bullet for every *i*, contract E_i and run branch-and-bound

 \bullet Given an upper bound U :

- **1** split edges into $U + 1$ disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- \bullet for every *i*, contract E_i and run branch-and-bound

³ return best solution found

 \bullet Given an upper bound U :

- **1** split edges into $U + 1$ disjoint sets $E_1, E_2, \ldots, E_{U+1}$
- \bullet for every *i*, contract E_i and run branch-and-bound
- ³ return best solution found

• Some E_i will cross the optimum bisection; at least one will not!

- \bullet Given an upper bound U :
	- **1** split edges into $U + 1$ disjoint sets $E_1, E_2, \ldots, E_{U+1}$
	- \bullet for every *i*, contract E_i and run branch-and-bound
	- ³ return best solution found
- Some E_i will cross the optimum bisection; at least one will not!
- \bullet E_i should be a set of clumps (high degree, well spread).

1

- Proving 30 is a lower bound:
	- \blacktriangleright search tree: 90K nodes
	- \blacktriangleright time: 3.5 minutes

1

• Proving 30 is a lower bound:

- \blacktriangleright search tree: 90K nodes \rightarrow 1369 nodes
- \triangleright time: 3.5 minutes \rightarrow 2 seconds

Experiments

- VLSI instance:
	- \blacktriangleright search tree: 20K nodes
	- \blacktriangleright time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

- VLSI instance:
	- \blacktriangleright search tree: 20K nodes
	- \blacktriangleright time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

Walshaw Instances

[[∗]: distributed execution using DryadOpt]

Walshaw Instances

[[∗]: distributed execution using DryadOpt]

Optimum bisections were known before, but without proofs.

Other Challenge Instances

Other Challenge Instances

We can solve very large instances with small bisections.

NW (9th Challenge): 264 branch-and-bound nodes, 25 minutes

Instances from "exact" literature

- State-of-the-art approaches:
	- \blacktriangleright [Arm07]: semidefinite programming
	- \blacktriangleright [HPZ11]: quadratic programming

Instances from "exact" literature

- State-of-the-art approaches:
	- \blacktriangleright [Arm07]: semidefinite programming
	- \blacktriangleright [HPZ11]: quadratic programming

Excellent performance for small bisections.

Gargoyle: 2.6M branch-and-bound nodes, 13 hours

Gargoyle: 2.6M branch-and-bound nodes, 13 hours

[10002 vertices, 30000 edges, answer 175]

Feline (mesh): 150K branch-and-bound nodes, 75 minutes

Feline (mesh): 150K branch-and-bound nodes, 75 minutes

Conclusion

- New algorithm for minimum graph bisection
	- \blacktriangleright packing bound
	- \blacktriangleright decomposition
- **o** Cut size matters
- Potential applications: evaluate/improve heuristics

Conclusion

- New algorithm for minimum graph bisection
	- \blacktriangleright packing bound
	- \blacktriangleright decomposition
- **o** Cut size matters
- Potential applications: evaluate/improve heuristics

Thank you!