
Exact Combinatorial Algorithms for Graph Bisection

Daniel Delling Andrew V. Goldberg
Ilya Razenshteyn Renato Werneck

Microsoft Research Silicon Valley

DIMACS Challenge

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 1 / 26

Minimum Bisection

Input: undirected, unweighted graph G = (V ,E)

Output: partition V into sets A and B such that
1 |A|, |B| ≤ d|V |/2e
2 the number of edges between A and B is minimized

Variants: ε-unbalanced, weights, more parts...

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 2 / 26

Example Instance

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 3 / 26

[3524 nodes, 5560, solution 30]

Example Instance

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 3 / 26

[3524 nodes, 5560, solution 30]

Motivation

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 4 / 26

Applications:

load balancing for parallel computing

preprocessing step for some road network algorithms

divide-and-conquer (e.g. VLSI design)

Solutions:

NP-hard, O(log n) best approximation [Räcke ’08].

Heuristics:
I numerous fast and good partitioners
I often tailored to specific graph classes (e.g. road networks)
I no approximation/optimality guarantees

We want exact algorithms!

Motivation

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 4 / 26

Applications:

load balancing for parallel computing

preprocessing step for some road network algorithms

divide-and-conquer (e.g. VLSI design)

Solutions:

NP-hard, O(log n) best approximation [Räcke ’08].

Heuristics:
I numerous fast and good partitioners
I often tailored to specific graph classes (e.g. road networks)
I no approximation/optimality guarantees

We want exact algorithms!

Branch-and-Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 5 / 26

Branch-and-bound: implicit enumeration.

Subproblem = partial assignment (A,B), with A,B ⊆ V
I represents bisections (A+, B+) with A ⊆ A+ and B ⊆ B+

Branch:
I pick v 6∈ A ∪ B, create subproblems (A ∪ {v}, B) and (A, B ∪ {v}).

Bound:
I L: lower bound on all bisections consistent with (A, B)
I U: best known bisection (updated on-line)
I if L ≥ U, done with (A, B); otherwise branch

Crucial ingredient: computing lower bounds.

Branch-and-Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 5 / 26

Branch-and-bound: implicit enumeration.

Subproblem = partial assignment (A,B), with A,B ⊆ V
I represents bisections (A+, B+) with A ⊆ A+ and B ⊆ B+

Branch:
I pick v 6∈ A ∪ B, create subproblems (A ∪ {v}, B) and (A, B ∪ {v}).

Bound:
I L: lower bound on all bisections consistent with (A, B)
I U: best known bisection (updated on-line)
I if L ≥ U, done with (A, B); otherwise branch

Crucial ingredient: computing lower bounds.

Branch-and-Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 5 / 26

Branch-and-bound: implicit enumeration.

Subproblem = partial assignment (A,B), with A,B ⊆ V
I represents bisections (A+, B+) with A ⊆ A+ and B ⊆ B+

Branch:
I pick v 6∈ A ∪ B, create subproblems (A ∪ {v}, B) and (A, B ∪ {v}).

Bound:
I L: lower bound on all bisections consistent with (A, B)
I U: best known bisection (updated on-line)
I if L ≥ U, done with (A, B); otherwise branch

Crucial ingredient: computing lower bounds.

Branch-and-Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 5 / 26

Branch-and-bound: implicit enumeration.

Subproblem = partial assignment (A,B), with A,B ⊆ V
I represents bisections (A+, B+) with A ⊆ A+ and B ⊆ B+

Branch:
I pick v 6∈ A ∪ B, create subproblems (A ∪ {v}, B) and (A, B ∪ {v}).

Bound:
I L: lower bound on all bisections consistent with (A, B)
I U: best known bisection (updated on-line)
I if L ≥ U, done with (A, B); otherwise branch

Crucial ingredient: computing lower bounds.

Lower Bounds

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 6 / 26

Known bounds:

linear programming [FMdSWW98, Sen01]
I hundreds of nodes

quadratic programming [HPZ11]
I up to 3000 nodes

semidefinite programming [AFHM08, Arm07]
I up to 6000 nodes

multicommodity flows [SST03]
I hundreds of nodes

degree-based combinatorial [Fel05]
I tens of nodes (random)

We want to do better.

Lower Bounds

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 6 / 26

Known bounds:

linear programming [FMdSWW98, Sen01]
I hundreds of nodes

quadratic programming [HPZ11]
I up to 3000 nodes

semidefinite programming [AFHM08, Arm07]
I up to 6000 nodes

multicommodity flows [SST03]
I hundreds of nodes

degree-based combinatorial [Fel05]
I tens of nodes (random)

We want to do better.

Summary

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 7 / 26

Our result:

exact combinatorial algorithm for graph bisection

works well for graphs with a small minimum bisection
I road networks, VLSI instances, meshes...

solves much larger instances than previous approaches

Main contributions:

new lower bounds

branching rules

novel decomposition technique

Flow Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 8 / 26

Goal: lower-bound all bisections consistent with (A,B).

Known bound: min-cut (max-flow) between A and B.

I pros: simple, upper bound when balanced;
I cons: weak if |A| � |B|, typically very unbalanced.

Flow Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 8 / 26

Goal: lower-bound all bisections consistent with (A,B).

Known bound: min-cut (max-flow) between A and B.

I pros: simple, upper bound when balanced;
I cons: weak if |A| � |B|, typically very unbalanced.

Flow Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 8 / 26

Goal: lower-bound all bisections consistent with (A,B).

Known bound: min-cut (max-flow) between A and B.
I pros: simple, upper bound when balanced;

I cons: weak if |A| � |B|, typically very unbalanced.

Flow Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 8 / 26

Goal: lower-bound all bisections consistent with (A,B).

Known bound: min-cut (max-flow) between A and B.
I pros: simple, upper bound when balanced;
I cons: weak if |A| � |B|, typically very unbalanced.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 9 / 26

A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)

I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 9 / 26

A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)

I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 9 / 26

A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)

I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 9 / 26

A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)
I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 9 / 26

A,B ⊆ V : current partial assignment

A+: an extension of A of size |V |/2

Fact: minA+ cut(A+,B) is a valid lower bound for (A,B)
I cut(A+, B): min-cut between A+ and B.

We must reason about the worst possible extension A+.

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:

I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:

I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:

I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:

I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:
I hits the fewest possible cells

I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:
I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest

⇒ partition should have balanced cells (greedy + local search)

Packing Lower Bound

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 10 / 26

Basic algorithm:

partition free nodes into connected cells adjacent to B

if a subset A+ of V of size |V |/2 hits k cells...

...there is a flow of at least k units between A+ and B.

Lower bound for (A,B) = worst-case A+:
I hits the fewest possible cells
I “adversary” picks entire cells, from biggest to smallest
⇒ partition should have balanced cells (greedy + local search)

Flow + Packing

To combine flow and packing, remove flow edges before computing cells.

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 11 / 26

Flow + Packing

To combine flow and packing, remove flow edges before computing cells.

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 11 / 26

Performance

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 12 / 26

Proving 30 is a lower bound:
I search tree: 1.3M nodes
I time: 50 minutes

1

[3524 vertices, 5560 edges, answer 30]

Branching Rule and Forced Assignments

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 13 / 26

Branch on vertices likely to increase L the most:
1 far from A and B (to produce better cells)
2 well connected to other vertices (to increase flow)
3 contained in large packing cells

Forced assignments:
I use logical implications to fix some vertices to A or B
I works if upper and lower bounds are close
I discards many potential branching nodes

Branching Rule and Forced Assignments

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 14 / 26

Proving 30 is a lower bound:
I search tree: 1.3M nodes

→ 90K nodes

I time: 50 minutes

→ 3.5 minutes

1

[3524 vertices, 5560 edges, answer 30]

Branching Rule and Forced Assignments

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 14 / 26

Proving 30 is a lower bound:
I search tree: 1.3M nodes → 90K nodes
I time: 50 minutes → 3.5 minutes

1

[3524 vertices, 5560 edges, answer 30]

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Increasing Degrees

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 15 / 26

Algorithm is very sensitive to the degrees of assigned nodes.

Idea: branch on entire regions.

Problem: a region can cross the minimum bisection.

Solution: decomposition!

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound

3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 16 / 26

Given an upper bound U:
1 split edges into U + 1 disjoint sets E1, E2, . . . , EU+1

2 for every i , contract Ei and run branch-and-bound
3 return best solution found

Some Ei will cross the optimum bisection; at least one will not!

Ei should be a set of clumps (high degree, well spread).

Decomposition

1

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 17 / 26

[3524 vertices, 5560 edges, answer 30]

Proving 30 is a lower bound:
I search tree: 90K nodes

→ 1369 nodes

I time: 3.5 minutes

→ 2 seconds

Decomposition

1

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 17 / 26

[3524 vertices, 5560 edges, answer 30]

Proving 30 is a lower bound:
I search tree: 90K nodes → 1369 nodes
I time: 3.5 minutes → 2 seconds

Experiments

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 18 / 26

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 19 / 26

VLSI instance:
I search tree: 20K nodes
I time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 19 / 26

VLSI instance:
I search tree: 20K nodes
I time: 9 minutes

[34046 vertices, 54841 edges, answer 80]

Walshaw Instances

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 20 / 26

Standard benchmark for graph partitioning (ε = 0).

instance n m opt BB nodes time [s]

add32 4 960 9 462 11 225 3
uk 4 824 6 837 19 1 624 4
3elt 4 720 13 722 90 12 707 82
whitaker3 9 800 28 989 127 7 044 133
fe 4elt2 11 143 32 818 130 10 391 224
4elt 15 606 45 878 139 25 912 769
data∗ 2 851 15 093 189 495 569 759 5 750 388

[∗: distributed execution using DryadOpt]

Optimum bisections were known before, but without proofs.

Walshaw Instances

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 20 / 26

Standard benchmark for graph partitioning (ε = 0).

instance n m opt BB nodes time [s]

add32 4 960 9 462 11 225 3
uk 4 824 6 837 19 1 624 4
3elt 4 720 13 722 90 12 707 82
whitaker3 9 800 28 989 127 7 044 133
fe 4elt2 11 143 32 818 130 10 391 224
4elt 15 606 45 878 139 25 912 769
data∗ 2 851 15 093 189 495 569 759 5 750 388

[∗: distributed execution using DryadOpt]

Optimum bisections were known before, but without proofs.

Other Challenge Instances

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 21 / 26

series instance n m opt BB nodes time [s]
clustering karate 34 78 10 4 0.00

chesapeake 39 170 46 110 138 3.08
dolphins 62 159 15 110 0.01
lesmis 77 820 61 3 905 756 230.30
polbooks 105 441 19 8 0.00
football 115 613 61 7 301 1.08
power 4 941 6 594 12 94 0.21

delaunay delaunay n10 1 024 3 056 63 14 361 18.25
delaunay n11 2 048 6 127 86 65 080 175.73
delaunay n12 4 096 12 264 118 474 844 2 711.73
delaunay n13 8 192 24 547 156 3 122 845 37 615.97

streets luxembourg 114 599 119 666 17 786 91.17

We can solve very large instances with small bisections.

Other Challenge Instances

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 21 / 26

series instance n m opt BB nodes time [s]
clustering karate 34 78 10 4 0.00

chesapeake 39 170 46 110 138 3.08
dolphins 62 159 15 110 0.01
lesmis 77 820 61 3 905 756 230.30
polbooks 105 441 19 8 0.00
football 115 613 61 7 301 1.08
power 4 941 6 594 12 94 0.21

delaunay delaunay n10 1 024 3 056 63 14 361 18.25
delaunay n11 2 048 6 127 86 65 080 175.73
delaunay n12 4 096 12 264 118 474 844 2 711.73
delaunay n13 8 192 24 547 156 3 122 845 37 615.97

streets luxembourg 114 599 119 666 17 786 91.17

We can solve very large instances with small bisections.

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 22 / 26

NW (9th Challenge): 264 branch-and-bound nodes, 25 minutes

[1.2M vertices, 1.4M edges, answer 18]

Instances from “exact” literature

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 23 / 26

State-of-the-art approaches:
I [Arm07]: semidefinite programming
I [HPZ11]: quadratic programming

instance n m opt time [s] [Arm07] [HPZ11]

KKT putt01 m2 115 433 28 0.81 1.67 1.51
mesh.274.469 274 469 37 0.03 8.52 24.62
gap2669.24859 2669 29037 55 0.15 348.95 —
taq170.424 170 4317 55 3.00 28.68 —
gap2669.6182 2669 12280 74 34.90 651.03 —
taq1021.2253 1021 4510 118 134.61 169.65 —

Excellent performance for small bisections.

Instances from “exact” literature

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 23 / 26

State-of-the-art approaches:
I [Arm07]: semidefinite programming
I [HPZ11]: quadratic programming

instance n m opt time [s] [Arm07] [HPZ11]

KKT putt01 m2 115 433 28 0.81 1.67 1.51
mesh.274.469 274 469 37 0.03 8.52 24.62
gap2669.24859 2669 29037 55 0.15 348.95 —
taq170.424 170 4317 55 3.00 28.68 —
gap2669.6182 2669 12280 74 34.90 651.03 —
taq1021.2253 1021 4510 118 134.61 169.65 —

Excellent performance for small bisections.

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 24 / 26

Gargoyle: 2.6M branch-and-bound nodes, 13 hours

[10002 vertices, 30000 edges, answer 175]

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 24 / 26

Gargoyle: 2.6M branch-and-bound nodes, 13 hours

[10002 vertices, 30000 edges, answer 175]

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 25 / 26

Feline (mesh): 150K branch-and-bound nodes, 75 minutes

[20629 vertices, 61893 edges, answer 148]

Examples

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 25 / 26

Feline (mesh): 150K branch-and-bound nodes, 75 minutes

[20629 vertices, 61893 edges, answer 148]

Conclusion

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 26 / 26

Thank you!

New algorithm for minimum graph bisection
I packing bound
I decomposition

Cut size matters

Potential applications: evaluate/improve heuristics

Conclusion

Renato Werneck (Microsoft Research) Exact Combinatorial Algorithms for Graph Bisection DIMACS Challenge 26 / 26

Thank you!

New algorithm for minimum graph bisection
I packing bound
I decomposition

Cut size matters

Potential applications: evaluate/improve heuristics

