

High Quality Graph Partitioning

Peter Sanders, Christian Schulz

Overview

- Introduction
- Multilevel Algorithms
- Advanced Techniques
- Evolutionary Techniques
- Experiments
- Summary

c-Balanced Graph Partitioning

Partition graph $G = (V, E, c : V \rightarrow \mathbf{R}_{>0}, \omega : E \rightarrow \mathbf{R}_{>0})$ into *k* disjoint blocks s.t.

- total node weight of each block $\leq \frac{1+\epsilon}{k}$ total node weight
- total weight of cut edges as small as possible

Applications:

linear equation systems, VLSI design, route planning, ...

3 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Multi-Level Graph Partitioning

Successful in existing systems:

Metis, Scotch, Jostle, ..., KaPPa, KaSPar, KaFFPa, KaFFPaE

4 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Edge Ratings

Talk Today

- High Quality Matchings
- Flow Based Refinements
- More Localized Local Search
- F-cycles for Graph Partitioning

Advanced Techniques

6 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Graph Partitioning

Matching Selection

Goals:

- 1. large edge weights ~>> sparsify
- 2. large #edges ~> few levels
- 3. uniform node weights ~> "represent" input
- 4. small node degrees ~> "represent" input
- \rightsquigarrow unclear objective
- \rightsquigarrow gap to approx. weighted matching which only considers 1.,2.

Our Solution: Apply approx. weighted matching to general edge rating function

Graph Partitioning Edge Ratings

$$\omega(\{u, v\})$$
expansion($\{u, v\}$) := $\frac{\omega(\{u, v\})}{c(u) + c(v)}$
expansion*($\{u, v\}$) := $\frac{\omega(\{u, v\})}{c(u)c(v)}$
expansion*²($\{u, v\}$) := $\frac{\omega(\{u, v\})^2}{c(u)c(v)}$
innerOuter($\{u, v\}$) := $\frac{\omega(\{u, v\})}{Out(v) + Out(u) - 2\omega(u, v)}$

where c = node weight, $\omega =$ edge weight, Out $(u) := \sum_{\{u,v\} \in E} \omega(\{u, v\})$

7 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Flows as Local Improvement

Two Blocks

- area *B*, such that each (s, t)-min cut is ϵ -balanced cut in *G*
- e.g. 2 times BFS (left, right)
- stop the BFS, if size would exceed $(1 + \epsilon)\frac{c(V)}{2} c(V_2)$
- $\Rightarrow c(V_{2_{\text{new}}}) \le c(V_2) + (1 + \epsilon) \frac{c(V)}{2} c(V_2)$

8 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Flows as Local Improvement

Two Blocks

- obtain optimal cut in B
- since each cut in B yields a feasible partition
 - → improved two-partition
- advanced techniques possible and necessary

Karlsruher Institut für Technologie

Example 100x100 Grid

10 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Example Constructed Flow Problem (using BFS)

11 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Example Apply Max-Flow Min-Cut

12 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Karkruher Institut für Technologie

Example Output Improved Partition

13 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Local Improvement for *k*-partitions Using Flows?

on each pair of blocks

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

- Idea: KaPPa, KaSPar \Rightarrow more local searches are better
- Typical: *k*-way local search initialized with complete boundary

- 1. complete boundary \Rightarrow maintained todo list T
- 2. initialize search with single node $v \in_{rnd} T$
- 3. iterate until $T = \emptyset$
- each node moved at most once

Distributed Evolutionary Graph Partitioning

Evolutionary Algorithms:

- highly inspired by biology
- population of individuals
- selection, mutation, recombination, ...
- Goal: Integrate KaFFPa in an Evolutionary Strategy
- Evolutionary Graph Partitioning:
 - individuals \leftrightarrow partitions fitness \leftrightarrow edge cut
- Parallelization \rightarrow quality records in a few minutes for small graphs

Combine

- two individuals P₁, P₂: don't contract cut edges of P₁ or P₂
- until no matchable edge is left
- coarsest graph \leftrightarrow Q-graph of overlay
- ightarrow exchanging good parts is easy
- inital solution: use better of both parents

Example Two Individuals $\mathcal{P}_1, \mathcal{P}_2$

18 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Example Overlay of $\mathcal{P}_1, \mathcal{P}_2$

19 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

$$\label{eq:example} \begin{split} \textbf{Example} \\ \textbf{Multilevel Combine of } \mathcal{P}_1, \mathcal{P}_2 \end{split}$$

20 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Exchanging good parts is easy Coarsest Level

- > large weight, < small weight</p>
- start with the better partition (red, \mathcal{P}_2)
- move v_4 to the opposite block
- integrated into multilevel scheme (+local search on each level)

Example Result of $\mathcal{P}_1, \mathcal{P}_2$

Parallelization

- each PE has its own island (a local population)
- locally: perform combine and mutation operations
- communicate analog to randomized rumor spreading
 - 1. rumor \leftrightarrow currently best local partition
 - 2. local best partition *changed* \rightarrow send it to $\mathcal{O}(\log P)$ random PEs
 - 3. asynchronous communication (MPI Isend)

Experimental Results

Comparison with Other Systems

Geometric mean, imbalance $\epsilon = 0.03$: 11 graphs (78K–18M nodes) $\times k \in \{2, 4, 8, 16, 64\}$

Algorithm	large graphs		
	Best	Avg.	t[s]
KaFFPa strong	12 0 5 3	12182	121.22
KaSPar strong	12 450	+3%	87.12
KaFFPa eco	12763	+6%	3.82
Scotch	14218	+20%	3.55
KaFFa fast	15 124	+24%	0.98
kMetis	15167	+33%	0.83

- Repeating Scotch as long as KaSPar strong run and choosing the best result ~> 12.1% larger cuts
- Walshaw instances, road networks, Florida Sparse Matrix Collection, random Delaunay triangulations, random geometric graphs

Quality Evolutionary Graph Partitioning

blocks k	KaFFPaE	
	improvement over	
	reps. of KaFFPa	
2	0.2%	
4	1.0%	
8	1.5%	
16	2.7%	
32	3.4%	
64	3.3%	
128	3.9%	
256	3.7%	
overall	2.5%	

2h time, 32 cores per graph and k, geom. mean

25 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Walshaw Benchmark

- runtime is not an issue
- 614 instances ($\epsilon \in \{1\%, 3\%, 5\%\}$)
- focus on partition quality

Algorithm	<	\leq
KaPPa	131	189
KaSPar	155	238
KaFFPa	317	435
KaFFPaE	300	470

• overall quality records \leq :

e	\leq
1%	78%
3%	92%
5%	94%

27 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Summary

28 Peter Sanders, Christian Schulz: High Quality Graph Partitioning

Outlook

Further Material in the Paper(s)

- F-cycles, High Quality Matchings,
- Different combine and mutation operators
- Specialization to road networks (Buffoon)
- Many more details and experiments ...

Future Work

- other objective functions
 - currently via selection criterion
 - connectivity? $\tilde{f}(\mathcal{P}) := f(\mathcal{P}) + \chi_{\{\mathcal{P} \text{ not connected}\}} \cdot |\mathcal{E}|$
- integrate other partitioners
- graph clustering
- open source release

Thank you!

Contact: christian.schulz@kit.edu sanders@kit.edu