
Graph Partitioning for Scalable
Distributed Graph Computations

Aydın Buluç Kamesh Madduri
ABuluc@lbl.gov madduri@cse.psu.edu

10th DIMACS Implementation Challenge, Graph Partitioning and Graph Clustering
February 13-14, 2012

Atlanta, GA

mailto:abuluc@lbl.gov
mailto:madduri@cse.psu.edu

Overview of our study

• We assess the impact of graph partitioning for
computations on ‘low diameter’ graphs

• Does minimizing edge cut lead to lower
execution time?

• We choose parallel Breadth-First Search as a
representative distributed graph computation

• Performance analysis on DIMACS Challenge
instances

2

Key Observations for Parallel BFS

• Well-balanced vertex and edge partitions do not
guarantee load-balanced execution, particularly for
real-world graphs

– Range of relative speedups (8.8-50X, 256-way parallel
concurrency) for low-diameter DIMACS graph instances.

• Graph partitioning methods reduce overall edge cut
and communication volume, but lead to increased
computational load imbalance

• Inter-node communication time is not the dominant
cost in our tuned bulk-synchronous parallel BFS
implementation

3

Talk Outline

• Level-synchronous parallel BFS on distributed-
memory systems

– Analysis of communication costs

• Machine-independent counts for inter-node
communication cost

• Parallel BFS performance results for several
large-scale DIMACS graph instances

4

Parallel BFS strategies

5

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)

0 7

5

3

8

2

4 6

1

9

source
vertex

2. Stitch multiple concurrent traversals (Ullman-Yannakakis, for high-diameter graphs)

• O(D) parallel steps
• Adjacencies of all vertices
in current frontier are
visited in parallel

0 7

5

3

8

2

4 6

1

9 source
vertex

• path-limited searches from
“super vertices”
• APSP between “super
vertices”

• Consider a logical 2D processor grid (pr * pc = p) and
the dense matrix representation of the graph

• Assign each processor a sub-matrix (i.e, the edges
within the sub-matrix)

“2D” graph distribution

0 7

5

3

8

2

4 6

1
x x x

x

x x

x x x

x x x

x x

x x x

x x x

x x x x

9 vertices, 9 processors, 3x3 processor grid

Flatten
Sparse matrices

Per-processor local graph
representation

BFS with a 1D-partitioned graph

Steps:
1. Local discovery: Explore adjacencies of vertices in current

frontier.
2. Fold: All-to-all exchange of adjacencies.
3. Local update: Update distances/parents for unvisited vertices.

0 1

2

3 6

5

4

[0,1] [0,3] [0,3] [1,0] [1,4] [1,6]

[2,3] [2,5] [2,5] [2,6] [3,0] [3,0] [3,2] [3,6]

[4,1] [4,5] [4,6] [5,2] [5,2] [5,4]

[6,1] [6,2] [6,3] [6,4]

Consider an undirected graph with
n vertices and m edges

Each processor ‘owns’ n/p vertices and
stores their adjacencies (~ 2m/p per
processor, assuming balanced partitions).

BFS with a 1D-partitioned graph

Steps:
1. Local discovery: Explore adjacencies of vertices in current

frontier.
2. Fold: All-to-all exchange of adjacencies.
3. Local update: Update distances/parents for unvisited vertices.

0 1

2

3 6

5

4

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

1. Local discovery:

[1,0]

[6,2] [6, 3]

[1,4] [1,6]

[6,1] [6,4]

P0

P3

P1

P2

No work

No work

BFS with a 1D-partitioned graph

Steps:
1. Local discovery: Explore adjacencies of vertices in current

frontier.
2. Fold: All-to-all exchange of adjacencies.
3. Local update: Update distances/parents for unvisited vertices.

0 1

2

3 6

5

4

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

[1,0]

[6,2] [6, 3]

[1,4] [1,6]

[6,1] [6,4]

P0

P3

P1

P2

No work

No work

BFS with a 1D-partitioned graph

Steps:
1. Local discovery: Explore adjacencies of vertices in current

frontier.
2. Fold: All-to-all exchange of adjacencies.
3. Local update: Update distances/parents for unvisited vertices.

0 1

2

3 6

5

4

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

[1,0]

[6,2] [6, 3]

[1,4]

[1,6]

[6,1]

[6,4]

P0

P3

P1

P2

BFS with a 1D-partitioned graph

Steps:
1. Local discovery: Explore adjacencies of vertices in current

frontier.
2. Fold: All-to-all exchange of adjacencies.
3. Local update: Update distances/parents for unvisited vertices.

0 1

2

3 6

5

4

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

3. Local update:

[1,0]

[6,2] [6, 3]

[1,4]

[1,6]

[6,1]

[6,4]

P0

P3

P1

P2

0

2, 3

4

Frontier for
next iteration

Modeling parallel execution time

• Time dominated by local memory references and inter-node
communication

• Assuming perfectly balanced computation and
communication, we have

12

p

mn

p

m
pnLL


 /,

Local latency on
working set |n/p|

Inverse local
RAM bandwidth

Local memory references:

p
p

edgecut
p NaaN  )(2,

Inter-node communication:

All-to-all remote bandwidth
with p participating processors

BFS with a 2D-partitioned graph

• Avoid expensive p-way All-to-all
communication step

• Each process collectively ‘owns’
n/pr vertices

• Additional ‘Allgather’
communication step for processes
in a row

13

Local memory references:

p

m

p

n

p

m
rc pnLpnLL ,,  

Inter-node communication:

cN

cr

cgatherN

rNraaN

p
p

n

p
p

p
p

edgecut
p

















1
1)(

)(

,

2,

Temporal effects, communication-minimizing
tuning prevent us from obtaining tighter bounds

• The volume of communication can be further reduced by
maintaining state of non-local visited vertices

14

0 1

2

3
6

5

4

[0,3] [0,3] [1,3]
[0,4] [1,4]

P0

Local pruning prior to
All-to-all step

[0,6] [1,6] [1,6]

[0,3] [0,4] [1,6]

Predictable BFS execution time
for synthetic small-world graphs

• Randomly permuting vertex IDs ensures load balance on
R-MAT graphs (used in the Graph 500 benchmark).

• Our tuned parallel implementation for the NERSC Hopper
system (Cray XE6) is ranked #2 on the current Graph 500
list.

15 Buluc & Madduri, Parallel BFS on distributed memory systems, Proc. SC’11, 2011.

Execution time is dominated by work
performed in a few parallel phases

Modeling BFS execution time
for real-world graphs

• Can we further reduce communication time
utilizing existing partitioning methods?

• Does the model predict execution time for
arbitrary low-diameter graphs?

• We try out various partitioning and graph
distribution schemes on the DIMACS
Challenge graph instances

– Natural ordering, Random, Metis, PaToH

16

Experimental Study

• The (weak) upper bound on aggregate data volume
communication can be statically computed (based on
partitioning of the graph)

• We determine runtime estimates of
– Total aggregate communication volume

– Sum of max. communication volume during each BFS iteration

– Intra-node computational work balance

– Communication volume reduction with 2D partitioning

• We obtain and analyze execution times (at several
different parallel concurrencies) on a Cray XE6 system
(Hopper, NERSC)

17

Orderings for the CoPapersCiteseer graph

18

Natural Random

PaToH checkerboard PaToH Metis

BFS All-to-all phase total communication
 volume normalized to # of edges (m)

of partitions

Graph name

% compared
to m

Natural Random PaToH

19

Ratio of max. communication volume across
iterations to total communication volume

of partitions

Graph name

Ratio over
total volume

Natural Random PaToH

20

Reduction in total All-to-all communication
volume with 2D partitioning

21

Graph name

Ratio compared
to 1D

Natural Random PaToH

of partitions

Edge count balance with 2D partitioning

Graph name

Max/Avg.
ratio

Natural Random PaToH

of partitions

Parallel speedup on Hopper with 16-way partitioning

23

Execution time breakdown

24

0

50

100

150

200

Random-1D Random-2D Metis-1D PaToH-1D

B
FS

 t
im

e
 (

m
s)

Partitioning Strategy

Computation Fold Expand

0

2

4

6

8

10

Random-1D Random-2D Metis-1D PaToH-1D

C
o

m
m

. t
im

e
 (

m
s)

Partitioning Strategy

Fold Expand

0

50

100

150

200

250

300

Random-1D Random-2D Metis-1D PaToH-1D

B
FS

 t
im

e
 (

m
s)

Partitioning Strategy

Computation Fold Expand

0

0.5

1

1.5

2

2.5

3

Random-1D Random-2D Metis-1D PaToH-1D

C
o

m
m

. t
im

e
 (

m
s)

Partitioning Strategy

Fold Expand

eu-2005 kron-simple-logn18

Imbalance in parallel execution

25

eu-2005, 16 processes*

PaToH Random

* Timeline of 4 processes shown in figures.
PaToH-partitioned graph suffers from severe load imbalance in computational phases.

Conclusions

• Randomly permuting vertex identifiers improves
computational and communication load balance,
particularly at higher process concurrencies

• Partitioning methods reduce overall communication
volume, but introduce significant load imbalance

• Substantially lower parallel speedup with real-world
graphs compared to synthetic graphs (8.8X vs 50X at 256-
way parallel concurrency)
– Points to the need for dynamic load balancing

26

Thank you!

• Questions?

• Kamesh Madduri, madduri@cse.psu.edu

• Aydın Buluç, ABuluc@lbl.gov

• Acknowledgment of support:

27

mailto:madduri@cse.psu.edu
mailto:Abuluc@lbl.gov

