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Overview of our study

We assess the impact of graph partitioning for
computations on ‘low diameter’ graphs

Does minimizing edge cut lead to lower
execution time?

We choose parallel Breadth-First Search as a
representative distributed graph computation

Performance analysis on DIMACS Challenge
Instances



Key Observations for Parallel BFS

* Well-balanced vertex and edge partitions do not
guarantee load-balanced execution, particularly for
real-world graphs

— Range of relative speedups (8.8-50X, 256-way parallel
concurrency) for low-diameter DIMACS graph instances.
* Graph partitioning methods reduce overall edge cut
and communication volume, but lead to increased
computational load imbalance

* |Inter-node communication time is not the dominant
cost in our tuned bulk-synchronous parallel BFS
implementation



Talk Outline

* Level-synchronous parallel BFS on distributed-
memory systems

— Analysis of communication costs

 Machine-independent counts for inter-node
communication cost

* Parallel BFS performance results for several
large-scale DIMACS graph instances



Parallel BFS strategies

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)

—————————————————————————————————————————

* O(D) parallel steps

* Adjacencies of all vertices
' in current frontier are
visited in parallel

_________________________________________

source
vertex
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* path-limited searches from
| “super vertices”

. * APSP between “super

| vertices”
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source
vertex




“2D” graph distribution

* Consider a logical 2D processor grid (p, * p. = p) and
the dense matrix representation of the graph

* Assign each processor a sub-matrix (i.e, the edges

Within the sub-matrix) 9 vertices, 9 processors, 3x3 processor grid
X X X

> X X X

Sparse matrices

X X
X X

Per-processor local graph
representation




BFS with a 1D-partitioned graph

Consider an undirected graph with Each processor ‘owns’ n/p vertices and
n vertices and m edges stores their adjacencies (~ 2m/p per
processor, assuming balanced partitions).

[0,1] [0,3] [0,3] [1,0] [1,4] [1,6]

[2,3] [2,5] [2,5] [2,6] [3,0] [3,0] [3,2] [3,6]
[4,1] [4,5] [4,6] [5,2] [5,2] [5,4]

[6,1] [6,2] [6,3] [6,4]

Steps:

1. Local discovery: Explore adjacencies of vertices in current
frontier.

2. Fold: All-to-all exchange of adjacencies.

w

Local update: Update distances/parents for unvisited vertices.



BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

1. Local discovery:

PO [1,0] | | [1,4] || [1,6]

P1 No work
P2 No work

P3 [6,1] | | [6,2] |[6,3] | |[6,4]

Steps:
1. Local discovery: Explore adjacencies of vertices in current
frontier.



BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

PO [1,0] | | [1,4] || [1,6]

P1 No work
P2 No work

P3 [6,1] | | [6,2] |[6,3] | |[6,4]

Steps:

2. Fold: All-to-all exchange of adjacencies.



BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

[1,0] || [6,1]

[6,2] | [6, 3]

[6,4] || [1,4]

P3 |[1,6]

Steps:

2. Fold: All-to-all exchange of adjacencies.



BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

Frontier for

3. Local update: . .
next iteration

[1,0] || [6,1] 0

[6,2] |[6, 3] |:> 2,3

[6,4] || [1,4] 4
P3 [1,6]

Steps:

3. Local update: Update distances/parents for unvisited vertices.



Modeling parallel execution time

 Time dominated by local memory references and inter-node
communication

* Assuming perfectly balanced computation and
communication, we have

Local memory references: Inter-node communication:

m n+m edgecut
IBL_+aL,n/p ﬂN,aZa(p) gp tayPp

Inverse local Local latency on All-to-all remote bandwidth
RAM bandwidth working set |n/p| with p participating processors
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BFS with a 2D-partitioned graph

* Avoid expensive p-way All-to-all o ry
communication step o0
+ Each lectively ‘owns’ et 2i 22
ach process collectively ‘owns . o o
n/p, vertices o ‘e @
* Additional ‘Allgather’ R R
communication step for processes |
In @ row
Local memory references: Inter-node communication:
edgecut
IB m +a n _I_a m IBN,aZa(pr) +aN pr +
L D Ln/pe T PLn/p
P P P

1n
IBN,gather ( pc)(l_ jp +ay P 13



Temporal effects, communication-minimizing

tuning prevent us from obtaining tighter bounds

* The volume of communication can be further reduced by
maintaining state of non-local visited vertices

PO

[0,4] | [1,4]
[0,3] | [0,3] | [1,3]
[0,6] | [1,6] | [1,6]
@ Local pruning prior to
All-to-all step
[0,3] | ([0,4] | |[1,6]




Predictable BFS execution time
for synthetic small-world graphs

 Randomly permuting vertex IDs ensures load balance on
R-MAT graphs (used in the Graph 500 benchmark).

e Our tuned parallel implementation for the NERSC Hopper
system (Cray XE®6) is ranked #2 on the current Graph 500

I I St * 300000

250000

200000

in frin

150000

Number of vertices

100000 |

________________________________________________________

: Executlon time is dominated by work
' performed in a few parallel phases

________________________________________________________
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N . . S SSSEN—— .
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Buluc & Madduri, Parallel BFS onreaivsetrlbuted memory systems, Proc.SC’11, 2011.



Modeling BFS execution time
for real-world graphs

e Can we further reduce communication time
utilizing existing partitioning methods?

* Does the model predict execution time for
arbitrary low-diameter graphs?

* We try out various partitioning and graph
distribution schemes on the DIMACS
Challenge graph instances

— Natural ordering, Random, Metis, PaToH



Experimental Study

* The (weak) upper bound on aggregate data volume
communication can be statically computed (based on

partitioning of the graph)
* We determine runtime estimates of
— Total aggregate communication volume

— Sum of max. communication volume during each BFS iteration
— Intra-node computational work balance

— Communication volume reduction with 2D partitioning

* We obtain and analyze execution times (at several

different parallel concurrencies) on a Cray XE6 system
(Hopper, NERSC)



Orderings for the CoPapersCiteseer graph

Natural Random
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BFS All-to-all phase total communication
volume normalized to # of edges (m)

% compared
tom

Graph name Natural Random PaToH
eu-2005
coAuthorsDBLP —
coPapersCiteseer — n oo

kron-simple-logn18 —
delaunay _n20
rgg n_ 2 20 s0

50

4 064 4 64 4 64
# of partitions

19



Ratio of max. communication volume across
iterations to total communication volume

Ratio over
total volume

Graph name Natural Random PaToH [ 14

12

eu-2005
coAuthorsDBLP
coPapersCiteseer
Kron-simple-logn18
delaunay _n20

rgqg n_2 20 sO

— 10

4 64 4 64 4 64

# of partitions

20



Reduction in total All-to-all communication
volume with 2D partitioning

Ratio compared

Graph name Natural Random PaToH to 10 40
eu-2005 — [3.5
coAuthorsDBLP — 3.0
coPapersCiteseer — - 25
Kron-simple-logn18 - 20

delaunay _n20 15

rgg n_2 20 s0O

1.0

0.5

4 064 4 064 4 064
# of partitions
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Edge count balance with 2D partitioning

Max/Avg.

ratio
Graph name Natural Random PaToH 16
eu-2005 [ 14
coAuthorsDBLP — 12

— 10

coPapersCiteseer —
kKron-simple-logn18
delaunay _n20

rgqg. n_ 2 20 sO

4 64 4 64 4 64

# of partitions



Parallel speedup on Hopper with 16-way partitioning

Perf Rate {?.ela.t.we Rel. Speedup
Speedup over 1D
= W | pi= 16; % 1 pi=4 x4
G h :

o N N R M N R M
coPapersCiteseer 24.9 56X 9.7x 80x 04x 1.0x 0.4x
eu-2005 23.5 6.1 T9%x BOX 05X 1.IxX 0.5
kron-simple-lognl8  24.5 126x 126x 1.8x 1lx 1.1x 14%
er-fact1.5-scale20 14.1 112x% 11:2% 1lbx Lilx L3w 0.8
road_central T2 3hx 22% 3b6%x 06x% 09Ix 0.5x
hugebubbles-00020 | 38x 27x 39x 07x 09x 0.6x
rgg n_2_20_s0 14.1 2.9 34d4x 26 06X 1.2x '0:6%
delaunay nl8 15.0 19% 16X 1.9 09x 1.4x 0.7%
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Execution time breakdown
eu-2005

B Computation ™ Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy

M Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy
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BFS time (ms)
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kron-simple-logn18
B Computation ®Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy

B Fold ™ Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy 24



Processor #

Imbalance in parallel execution

eu-2005, 16 processes™

E Compute
W [de
O Communicate 4

B Compute
B [de
B Communicate

I
[£%]

0 50000 100000 150000 200000 0 50000 100000 150000
Execution Time (microseconds) Execuiion Time (microseconds)
PaToH Random

* Timeline of 4 processes shown in figures.

200000

PaToH-partitioned graph suffers from severe load imbalance in computational phases.
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Conclusions

 Randomly permuting vertex identifiers improves
computational and communication load balance,
particularly at higher process concurrencies

* Partitioning methods reduce overall communication
volume, but introduce significant load imbalance

e Substantially lower parallel speedup with real-world
graphs compared to synthetic graphs (8.8X vs 50X at 256-
way parallel concurrency)

— Points to the need for dynamic load balancing



Thank you!

e Questions?

 Kamesh Madduri, madduri@cse.psu.edu
e Aydin Bulug, ABuluc@Ibl.gov
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