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Overview of our study 

• We assess the impact of graph partitioning for 
computations on ‘low diameter’ graphs 

• Does minimizing edge cut lead to lower 
execution time? 

• We choose parallel Breadth-First Search as a 
representative distributed graph computation 

• Performance analysis on DIMACS Challenge 
instances 
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Key Observations for Parallel BFS 

• Well-balanced vertex and edge partitions do not 
guarantee load-balanced execution, particularly for 
real-world graphs  

– Range of relative speedups (8.8-50X, 256-way parallel 
concurrency) for low-diameter DIMACS graph instances. 

• Graph partitioning methods reduce overall edge cut 
and communication volume, but lead to increased 
computational load imbalance 

• Inter-node  communication time is not the dominant 
cost in our tuned bulk-synchronous parallel BFS 
implementation 
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Talk Outline 

• Level-synchronous parallel BFS on distributed-
memory systems 

– Analysis of communication costs 

• Machine-independent counts for inter-node 
communication cost 

• Parallel BFS performance results for several 
large-scale DIMACS graph instances 
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Parallel BFS strategies 
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1. Expand current frontier (level-synchronous approach, suited for low diameter graphs) 
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2. Stitch multiple concurrent traversals (Ullman-Yannakakis, for high-diameter graphs) 

• O(D) parallel steps 
• Adjacencies of all vertices  
in current frontier are  
visited in parallel 
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• path-limited searches from 
“super vertices” 
• APSP between “super 
vertices” 



• Consider a logical 2D processor grid (pr * pc = p) and 
the dense matrix representation of the graph 

• Assign each processor a sub-matrix (i.e, the edges 
within the sub-matrix) 

 

“2D” graph distribution 
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BFS with a 1D-partitioned graph 

Steps: 
1. Local discovery: Explore adjacencies of vertices in current 

frontier. 
2. Fold: All-to-all exchange of adjacencies. 
3. Local update: Update distances/parents for unvisited vertices. 

0 1 

2 

3 6 

5 

4 

[0,1] [0,3] [0,3] [1,0] [1,4] [1,6] 

[2,3] [2,5] [2,5] [2,6] [3,0] [3,0] [3,2] [3,6] 

[4,1] [4,5] [4,6] [5,2] [5,2] [5,4] 

[6,1] [6,2] [6,3] [6,4] 

Consider an undirected graph with  
n vertices and m edges 

Each processor ‘owns’ n/p vertices and  
stores their adjacencies (~ 2m/p per  
processor, assuming balanced partitions). 
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Modeling parallel execution time 

• Time dominated by local memory references and inter-node 
communication 

• Assuming perfectly balanced computation and 
communication, we have 
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BFS with a 2D-partitioned graph 

• Avoid expensive p-way All-to-all 
communication step 

• Each process collectively ‘owns’ 
n/pr vertices 

• Additional ‘Allgather’ 
communication step for processes 
in a row 
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Temporal effects, communication-minimizing 
tuning prevent us from obtaining tighter bounds 

• The volume of communication can be further reduced by 
maintaining state of non-local visited vertices 
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Predictable BFS execution time  
for synthetic small-world graphs 

• Randomly permuting vertex IDs ensures load balance on 
R-MAT graphs (used in the Graph 500 benchmark). 

• Our tuned parallel implementation for the NERSC Hopper 
system (Cray XE6) is ranked #2 on the current Graph 500 
list. 

 

15 Buluc & Madduri, Parallel BFS on distributed memory systems,  Proc. SC’11, 2011. 

Execution time is dominated by work  
performed in a few parallel phases 



Modeling BFS execution time  
for real-world graphs 

• Can we further reduce communication time 
utilizing existing partitioning methods? 

• Does the model predict execution time for 
arbitrary low-diameter graphs? 

 

• We try out various partitioning and graph 
distribution schemes on the DIMACS 
Challenge graph instances 

– Natural ordering, Random, Metis, PaToH  
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Experimental Study 

• The (weak) upper bound on aggregate data volume 
communication can be statically computed (based on 
partitioning of the graph) 

• We determine runtime estimates of  
– Total aggregate communication volume 

– Sum of max. communication volume during each BFS iteration 

– Intra-node computational work balance 

– Communication volume reduction with 2D partitioning 

• We obtain and analyze execution times (at several 
different parallel concurrencies) on a Cray XE6 system 
(Hopper, NERSC) 
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Orderings for the CoPapersCiteseer graph 
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Natural Random 

PaToH checkerboard PaToH Metis 



BFS All-to-all phase total communication 
 volume normalized to # of edges (m)  

# of partitions 

Graph name 

% compared 
to m 

Natural Random PaToH 
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Ratio of max. communication volume across 
iterations to total communication volume 

# of partitions 

Graph name 

Ratio over  
total volume 

Natural Random PaToH 
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Reduction in total All-to-all communication 
volume with 2D partitioning 
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Graph name 
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# of partitions 



Edge count balance with 2D partitioning 

Graph name 

Max/Avg.  
ratio 

Natural Random PaToH 

# of partitions 



Parallel speedup on Hopper with 16-way partitioning 
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Execution time breakdown 
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Imbalance in parallel execution 
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eu-2005, 16 processes* 

PaToH Random 

* Timeline of 4 processes shown in figures.  
PaToH-partitioned graph suffers from severe load imbalance in computational phases. 



Conclusions 

• Randomly permuting vertex identifiers improves 
computational and communication load balance, 
particularly at higher process concurrencies 

 

• Partitioning methods reduce overall communication 
volume, but introduce significant load imbalance 

 

• Substantially lower parallel speedup with real-world 
graphs compared to synthetic graphs (8.8X vs 50X at 256-
way parallel concurrency) 
– Points to the need for dynamic load balancing 
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Thank you! 

• Questions? 

 

• Kamesh Madduri, madduri@cse.psu.edu 

• Aydın Buluç, ABuluc@lbl.gov 
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