Graph Partitioning for Scalable
Distributed Graph Computations

Aydin Bulucg Kamesh Madduri
ABuluc@Ibl.gov madduri@cse.psu.edu

-

] \
(Frseses

A PENNSTATE

w

10th DIMACS Implementation Challenge, Graph Partitioning and Graph Clustering
February 13-14, 2012
Atlanta, GA

mailto:abuluc@lbl.gov
mailto:madduri@cse.psu.edu

Overview of our study

We assess the impact of graph partitioning for
computations on ‘low diameter’ graphs

Does minimizing edge cut lead to lower
execution time?

We choose parallel Breadth-First Search as a
representative distributed graph computation

Performance analysis on DIMACS Challenge
Instances

Key Observations for Parallel BFS

* Well-balanced vertex and edge partitions do not
guarantee load-balanced execution, particularly for
real-world graphs

— Range of relative speedups (8.8-50X, 256-way parallel
concurrency) for low-diameter DIMACS graph instances.
* Graph partitioning methods reduce overall edge cut
and communication volume, but lead to increased
computational load imbalance

* |Inter-node communication time is not the dominant
cost in our tuned bulk-synchronous parallel BFS
implementation

Talk Outline

* Level-synchronous parallel BFS on distributed-
memory systems

— Analysis of communication costs

 Machine-independent counts for inter-node
communication cost

* Parallel BFS performance results for several
large-scale DIMACS graph instances

Parallel BFS strategies

1. Expand current frontier (level-synchronous approach, suited for low diameter graphs)

———

* O(D) parallel steps

* Adjacencies of all vertices
' in current frontier are
visited in parallel

source
vertex

———

* path-limited searches from
| “super vertices”

. * APSP between “super

| vertices”

source
vertex

“2D” graph distribution

* Consider a logical 2D processor grid (p, * p. = p) and
the dense matrix representation of the graph

* Assign each processor a sub-matrix (i.e, the edges

Within the sub-matrix) 9 vertices, 9 processors, 3x3 processor grid
X X X

> X X X

Sparse matrices

X X
X X

Per-processor local graph
representation

BFS with a 1D-partitioned graph

Consider an undirected graph with Each processor ‘owns’ n/p vertices and
n vertices and m edges stores their adjacencies (~ 2m/p per
processor, assuming balanced partitions).

[0,1] [0,3] [0,3] [1,0] [1,4] [1,6]

[2,3] [2,5] [2,5] [2,6] [3,0] [3,0] [3,2] [3,6]
[4,1] [4,5] [4,6] [5,2] [5,2] [5,4]

[6,1] [6,2] [6,3] [6,4]

Steps:

1. Local discovery: Explore adjacencies of vertices in current
frontier.

2. Fold: All-to-all exchange of adjacencies.

w

Local update: Update distances/parents for unvisited vertices.

BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

1. Local discovery:

PO [1,0] | | [1,4] || [1,6]

P1 No work
P2 No work

P3 [6,1] | | [6,2] |[6,3] | |[6,4]

Steps:
1. Local discovery: Explore adjacencies of vertices in current
frontier.

BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

PO [1,0] | | [1,4] || [1,6]

P1 No work
P2 No work

P3 [6,1] | | [6,2] |[6,3] | |[6,4]

Steps:

2. Fold: All-to-all exchange of adjacencies.

BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

2. All-to-all exchange:

[1,0] || [6,1]

[6,2] | [6, 3]

[6,4] || [1,4]

P3 |[1,6]

Steps:

2. Fold: All-to-all exchange of adjacencies.

BFS with a 1D-partitioned graph

Current frontier: vertices 1 (partition Blue) and
6 (partition Green)

Frontier for

3. Local update: . .
next iteration

[1,0] || [6,1] 0

[6,2] |[6, 3] |:> 2,3

[6,4] || [1,4] 4
P3 [1,6]

Steps:

3. Local update: Update distances/parents for unvisited vertices.

Modeling parallel execution time

 Time dominated by local memory references and inter-node
communication

* Assuming perfectly balanced computation and
communication, we have

Local memory references: Inter-node communication:

m n+m edgecut
IBL_+aL,n/p ﬂN,aZa(p) gp tayPp

Inverse local Local latency on All-to-all remote bandwidth
RAM bandwidth working set |n/p| with p participating processors

12

BFS with a 2D-partitioned graph

* Avoid expensive p-way All-to-all o ry
communication step o0
+ Each lectively ‘owns’ et 2i 22
ach process collectively ‘owns . o o
n/p, vertices o ‘e @
* Additional ‘Allgather’ R R
communication step for processes |
In @ row
Local memory references: Inter-node communication:
edgecut
IB m +a n _I_a m IBN,aZa(pr) +aN pr +
L D Ln/pe T PLn/p
P P P

1n
IBN,gather (pc)(l_ jp +ay P 13

Temporal effects, communication-minimizing

tuning prevent us from obtaining tighter bounds

* The volume of communication can be further reduced by
maintaining state of non-local visited vertices

PO

[0,4] | [1,4]
[0,3] | [0,3] | [1,3]
[0,6] | [1,6] | [1,6]
@ Local pruning prior to
All-to-all step
[0,3] | ([0,4] | |[1,6]

Predictable BFS execution time
for synthetic small-world graphs

 Randomly permuting vertex IDs ensures load balance on
R-MAT graphs (used in the Graph 500 benchmark).

e Our tuned parallel implementation for the NERSC Hopper
system (Cray XE®6) is ranked #2 on the current Graph 500

I I St * 300000

250000

200000

in frin

150000

Number of vertices

100000 |

__

: Executlon time is dominated by work
' performed in a few parallel phases

__

50000

N . . S SSSEN—— .
1 2 3 4 7 8 9 10

Buluc & Madduri, Parallel BFS onreaivsetrlbuted memory systems, Proc.SC’11, 2011.

Modeling BFS execution time
for real-world graphs

e Can we further reduce communication time
utilizing existing partitioning methods?

* Does the model predict execution time for
arbitrary low-diameter graphs?

* We try out various partitioning and graph
distribution schemes on the DIMACS
Challenge graph instances

— Natural ordering, Random, Metis, PaToH

Experimental Study

* The (weak) upper bound on aggregate data volume
communication can be statically computed (based on

partitioning of the graph)
* We determine runtime estimates of
— Total aggregate communication volume

— Sum of max. communication volume during each BFS iteration
— Intra-node computational work balance

— Communication volume reduction with 2D partitioning

* We obtain and analyze execution times (at several

different parallel concurrencies) on a Cray XE6 system
(Hopper, NERSC)

Orderings for the CoPapersCiteseer graph

Natural Random

w g.‘ a lg - EeE B
.' 71 . ﬁ‘ 1946 = ..- -. 1}1 . m -.
&% &r'dh.l ll'l B

PaToH PaToH checkerboard

s

' w - 3207344 -
T) ‘ ' ' 1 ' os ! ~ oeyy X10
Mk oy - 4HTER. 32 » 41A2, v+ TISTIND ol = 413203 imbal « [-29%, 29%)
Buchet e man » 4TVINE rwy o WESE vy « WOTIO0 b« TRITHED yweeeg « LT 18

BFS All-to-all phase total communication
volume normalized to # of edges (m)

% compared
tom

Graph name Natural Random PaToH
eu-2005
coAuthorsDBLP —
coPapersCiteseer — n oo

kron-simple-logn18 —
delaunay _n20
rgg n_ 2 20 s0

50

4 064 4 64 4 64
of partitions

19

Ratio of max. communication volume across
iterations to total communication volume

Ratio over
total volume

Graph name Natural Random PaToH [14

12

eu-2005
coAuthorsDBLP
coPapersCiteseer
Kron-simple-logn18
delaunay _n20

rgqg n_2 20 sO

— 10

4 64 4 64 4 64

of partitions

20

Reduction in total All-to-all communication
volume with 2D partitioning

Ratio compared

Graph name Natural Random PaToH to 10 40
eu-2005 — [3.5
coAuthorsDBLP — 3.0
coPapersCiteseer — - 25
Kron-simple-logn18 - 20

delaunay _n20 15

rgg n_2 20 s0O

1.0

0.5

4 064 4 064 4 064
of partitions

21

Edge count balance with 2D partitioning

Max/Avg.

ratio
Graph name Natural Random PaToH 16
eu-2005 [14
coAuthorsDBLP — 12

— 10

coPapersCiteseer —
kKron-simple-logn18
delaunay _n20

rgqg. n_ 2 20 sO

4 64 4 64 4 64

of partitions

Parallel speedup on Hopper with 16-way partitioning

Perf Rate {?.ela.t.we Rel. Speedup
Speedup over 1D
= W | pi= 16; % 1 pi=4 x4
G h :

o N N R M N R M
coPapersCiteseer 24.9 56X 9.7x 80x 04x 1.0x 0.4x
eu-2005 23.5 6.1 T9%x BOX 05X 1.IxX 0.5
kron-simple-lognl8 24.5 126x 126x 1.8x 1lx 1.1x 14%
er-fact1.5-scale20 14.1 112x% 11:2% 1lbx Lilx L3w 0.8
road_central T2 3hx 22% 3b6%x 06x% 09Ix 0.5x
hugebubbles-00020 | 38x 27x 39x 07x 09x 0.6x
rgg n_2_20_s0 14.1 2.9 34d4x 26 06X 1.2x '0:6%
delaunay nl8 15.0 19% 16X 1.9 09x 1.4x 0.7%

23

200

[EY
Ul
o

BFS time (ms)
=
o o

Comm. time (ms)

Execution time breakdown
eu-2005

B Computation ™ Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy

M Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy

300
250

N
o
o

150
100

BFS time (ms)

v
o

kron-simple-logn18
B Computation ®Fold ® Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy

B Fold ™ Expand

Random-1D Random-2D Metis-1D PaToH-1D
Partitioning Strategy 24

Processor #

Imbalance in parallel execution

eu-2005, 16 processes™

E Compute
W [de
O Communicate 4

B Compute
B [de
B Communicate

I
[£%]

0 50000 100000 150000 200000 0 50000 100000 150000
Execution Time (microseconds) Execuiion Time (microseconds)
PaToH Random

* Timeline of 4 processes shown in figures.

200000

PaToH-partitioned graph suffers from severe load imbalance in computational phases.

25

Conclusions

 Randomly permuting vertex identifiers improves
computational and communication load balance,
particularly at higher process concurrencies

* Partitioning methods reduce overall communication
volume, but introduce significant load imbalance

e Substantially lower parallel speedup with real-world
graphs compared to synthetic graphs (8.8X vs 50X at 256-
way parallel concurrency)

— Points to the need for dynamic load balancing

Thank you!

e Questions?

 Kamesh Madduri, madduri@cse.psu.edu
e Aydin Bulug, ABuluc@Ibl.gov

* Acknowledgment of support: _/ﬂ

EEEEEEEEEEE

mailto:madduri@cse.psu.edu
mailto:Abuluc@lbl.gov

