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February 13, 2012



Outline Introduction Clustering Paradigms Algorithm Results

1 Introduction

2 Clustering Paradigms

3 Algorithm

4 Results



Outline Introduction Clustering Paradigms Algorithm Results

Clustering and Partitioning
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Clustering and Partitioning

Clustering = k-way Partitioning with variable k
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Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically



Outline Introduction Clustering Paradigms Algorithm Results

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically



Outline Introduction Clustering Paradigms Algorithm Results

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically



Outline Introduction Clustering Paradigms Algorithm Results

Coverage

Clustering notation

Let C be a Clustering of Clusters C1, C2, ....Ck⋃
Ci∈C

= V
⋂
Ci∈C

= ∅

Light cut means maximize weight of edges {v , u}, v ∈ Ck , u ∈ Ck

Edge weight ω

Let
ω(E ) =

∑
e∈E

w(e)

And
ω(Ci ) = ω(EG ′[Ci ])
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Coverage

Coverage

cov(C) =

∑
Ci∈C

ω(Ci )

ω(E )

a b v w

c d x y

C1 C2

cov(C) = 12
14
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Penalty term

Problem

Trivial clustering C = {C1} maximizes coverage.

We want heavy components (a.k.a. clusters)

→ Penalize large clusters

a b v w

c d x y

C1

cov(C) = 14
14
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Penalty term

Problem

Trivial clustering C = {C1} maximizes coverage.

We want heavy components (a.k.a. clusters)

→ Penalize large clusters

Idea (Newman, 2003)

Introduce quadratic penalty term
Let

ψ(Ci ) =
∑
v∈Ci

(
∑

{v ,u}∈E

w{v , u})2

Note
ψ(V ) = 4× ω(E )2
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Modularity

Modularity

p(C) = cov(C)−

∑
Ci∈C

ψ(Ci )2

4× ω(E )2

Features

−0.5 ≤ p(C) ≤ 1

Trivial clustering T has p(T ) = 0

Isolated vertices have no effect

Optimum solution is NP-hard,
even for 2 clusters (Brandnes et al. 07)

Also, APX-hard (DasGupta and Desai, 2011)
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Approximation Algorithms

Agglomerative

Start with n clusters.
Join clusters until penalty term increase outweights coverage gain.
(i.e. modularity cannot be further increased.)

Divisive

Start with a single cluster.
Split clusters until coverage loss outweighs penalty term decrease.
(i.e. further modularity increase cannot be found.)
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Agglomerative vs. Divisive Clustering

Assumption: split/join pairs.

Agglomerative

# possible moves starts high

reduces over time

Simple JOIN operation

Modularity update has a single peak (Clauset et al. 2004)

Divisive

# possible moves starts low

increases over time

Difficult BISECT operation

Increase after a modularity-reducing bisection is possible.
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Modularity Decrease

a

4

b

3

u2 v

3

w

3

x

3

y 2

C1

C2

p(C) =
5

10
− (3 + 4)2 + (2 + 3 + 3 + 3 + 2)2

4× 102
= − 18

400



Outline Introduction Clustering Paradigms Algorithm Results

Modularity Increase

a

4

b

3

u2 v

3

w

3

x

3

y 2

C′1

C′21 C′22

p(C′) =
4

10
− (3 + 4)2 + (2 + 3 + 3)2 + (3 + 2)2

4× 102
=

22

400
.
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Agglomerative vs. Divisive Clustering

Agglomerative

# possible moves starts high

reduces over time

Simple JOIN operation

Modularity update has a single peak (Clauset et al. 2004)

Divisive

# possible moves starts low

increases over time

Difficult BISECT operation

Increase after a modularity-reducing bisection is possible.

We follow the divisive approach



Outline Introduction Clustering Paradigms Algorithm Results

Algorithm Outline

Divisive Modularity Clustering

1 Start with a single (active) cluster

2 BISECT an active cluster: Ck → C′k , C′′k
3 If modularity increases, keep C′k , C′′k and make them active.

4 Otherwise, keep Ck and make it inactive

5 Repeat until all clusters are inactive or singletons

6 REFINE CLUSTERING

Recursive bipartitioning strategy

Algorithmic challenge: good BISECT method
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BISECT

Subroutine BISECT

Input: a graph G [Ci ] = (Ci ,EG [Ci ])
Output: approx. (2, 1 + ε) BALANCED PARTITION of G [Ci ]

(k, 1 + ε) BALANCED PARTITION

k - clustering C of G with max{|C1|, |C2|} ≤ (1 + ε) |V |
2 of

maximum coverage

Bipartition routine

Use partitioner, e.g. PaToH, SCOTCH, or (modified) MeTiS

Run multiple times and try different ε values
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Bipartition routine

Bipartition routine

Use PaToH, SCOTCH, MeTiS,...

REFINE BISECTION

Try different ε values

ε ratio in %

0.05 52 : 48
0.10 55 : 45
0.20 60 : 40
0.40 70 : 30
0.80 90 : 10
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REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Fiduccia-Mattheyses heuristic

Maximizes approx. coverage

Based on Kernighan-Lin heuristic

Idea: move single vertices between clusters if gain is positive

Order of moves matters

Keep vertices in priority queues according to gain

Update neighbours after move
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Refinement Heuristics

a b

gain : 1

v

gain : −1

w

c d x y

C1 C2
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Refinement Heuristics

a b v w

c d x y

C1 C2
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REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Nonlocal property

Coverage gains are local (affect only neighbours)
Changes in penalty term are global
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Refinement Heuristics

a b v w

c d x y

C1 C2

p(C) =
9

12
− (3 + 3 + 2 + 2)2 + (1 + 2 + 2 + 3)2

4× 122
=

268

576
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Refinement Heuristics

a b v w

c d x y

C′1 C′2

p(C′) =
10

12
− (3 + 3 + 3 + 3 + 2)2 + (2 + 2 + 2)2

4× 122
=

248

576
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REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Heuristic refinement of modularity

Full update cost: O(|V |) per move

Use priority queues by coverage gain

Retrieve top elements from both queues

Compute actual gain for both vertices for each move

O(1) passes over all vertices
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Algorithm Outline

Divisive Modularity Clustering

1 Start with a single (active) cluster

2 BISECT an active cluster: Ck → C′k , C′′k
3 If modularity increases, keep C′k , C′′k and make them active.

4 Otherwise, keep Ck and make it inactive

5 Repeat until all clusters are inactive or singletons

6 REFINE CLUSTERING
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REFINE CLUSTERING

REFINE CLUSTERING

Run refinement heuristic after main algorithm terminates.

Similar to REFINE BIPARTITION

Includes all vertices in all clusters

Choose vertices in random order.
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Complexity

BISSECT

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE BISSECTION

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE CLUSTERING

Complexity: O(K |V |+ |E |) Frequency: O(1)
K = number of clusters

Total complexity:

O(|E | log2 |V |)
Contains large constants!
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Results

Test set: coAuthorsCiteseer, coPapersCiteseer, citationCiteseer,
coAuthorsDBLP, cond-mat, hep-th, preferentialAttachment,
cond-mat-2005, netscience, email, football, karate, polbooks,
astro-ph, as-22july06, chesapeake, smallworld, G n pin pout,
celegansneural, caidaRouterLevel, jazz, lesmis, power, adjnoun,
dolphins, polblogs, cnr-2000, PGPgiantcompo, cond-mat-2003,
celegans metabolic, cond-mat-2003-component

Average modularity found

PaToH: 0.6507

SCOTCH: 0.6430

MeTiS: 0.6373
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Improvement from REFINE CLUSTERING

Before After Improvement

PaToH: 0.6465 0.6507 0.0042
SCOTCH: 0.6329 0.6430 0.0101



Outline Introduction Clustering Paradigms Algorithm Results

Improvement from repeated BISECT runs

1 pass 5 passes Improvement

PaToH: 0.6507 0.6514 0.0008
SCOTCH: 0.6430 0.6455 0.0025
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Improvement from repeated REFINE BISECTION

not used 5 passes Improvement

PaToH: 0.6507 0.6488 -0.0018
SCOTCH: 0.6430 0.6429 0.0001
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Results .

Page 1
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celegans_metabolic
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Comparison with published results
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Results

Page 1
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Conclusions

Divisive clustering technique

Yields high modularity

Straightforward implementation

Theoretically fast

To do: parallel implementation
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