

A Divisive clustering technique for maximizing the modularity

Umit V. Çatalyürek, Kamer Kaya, Johannes Langguth, and Bora Uçar

February 13, 2012

KORK STRAIN A BAR SHOP

[Introduction](#page-2-0)

[Clustering Paradigms](#page-13-0)

イロト イ部 トイ君 トイ君 トッ 君の

 290

Clustering and Partitioning

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 9 Q Q ·

Clustering and Partitioning

Clustering = k -way **Partitioning** with variable k

KORK ERKER ADE YOUR

Graph Clustering

Graph Clustering

Given an undirected weighted graph $G = (V, E, w)$ find a "light" set of cut edges S such that the components of $\overline{G}^{\prime}=(\overline{V},\overline{E}\setminus S,w)$ are "heavy".

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Graph Clustering

Graph Clustering

Given an undirected weighted graph $G = (V, E, w)$ find a "light" set of cut edges S such that the components of $\overline{G}^{\prime}=(\overline{V},\overline{E}\setminus S,w)$ are "heavy".

Features

- light and heavy are relative terms
- Want to avoid trivial cuts

KORK ERKER ADE YOUR

Graph Clustering

Graph Clustering

Given an undirected weighted graph $G = (V, E, w)$ find a "light" set of cut edges S such that the components of $\overline{G}^{\prime}=(\overline{V},\overline{E}\setminus S,w)$ are "heavy".

Features

- light and heavy are relative terms
- Want to avoid trivial cuts
- $\bullet \rightarrow$ Not yet a computational problem
- Need to capture compromise mathematically

Clustering notation

Let C be a **Clustering** of **Clusters** C_1, C_2,C_k

$$
\bigcup_{C_i \in \mathcal{C}} = V \qquad \bigcap_{C_i \in \mathcal{C}} = \emptyset
$$

Light cut means maximize weight of edges $\{v, u\}$, $v \in C_k$, $u \in C_k$

Edge weight ω

Let

$$
\omega(E)=\sum_{e\in E}w(e)
$$

And

$$
\omega(\mathcal{C}_i)=\omega(E_{G'[C_i]})
$$

Coverage

Problem

- Trivial clustering $C = \{C_1\}$ maximizes coverage.
- We want heavy components (a.k.a. clusters)
- $\bullet \rightarrow$ Penalize large clusters

Problem

- Trivial clustering $C = \{C_1\}$ maximizes coverage.
- We want heavy components (a.k.a. clusters)
- $\bullet \rightarrow$ Penalize large clusters

Idea (Newman, 2003)

Introduce quadratic penalty term Let

$$
\psi(C_i) = \sum_{v \in C_i} (\sum_{\{v, u\} \in E} w\{v, u\})^2
$$

Note

$$
\psi(V)=4\times \omega(E)^2
$$

Modularity

$$
p(C) = cov(C) - \frac{\sum_{C_i \in C} \psi(C_i)^2}{4 \times \omega(E)^2}
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

Modularity

iviuuidi itv

$$
p(C) = cov(C) - \frac{\sum_{C_i \in C} \psi(C_i)^2}{4 \times \omega(E)^2}
$$

イロト イ団 トイ 差 トイ 差 トー

 \Rightarrow

 2990

Features

- $-0.5 \leq p(\mathcal{C}) \leq 1$
- Trivial clustering T has $p(T) = 0$
- Isolated vertices have no effect
- **•** Optimum solution is NP-hard, even for 2 clusters (Brandnes et al. 07)
- Also, APX-hard (DasGupta and Desai, 2011)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Approximation Algorithms

Agglomerative

Start with n clusters.

Join clusters until penalty term increase outweights coverage gain.

(i.e. modularity cannot be further increased.)

KORK ERKER ADE YOUR

Approximation Algorithms

Agglomerative

Start with *n* clusters.

Join clusters until penalty term increase outweights coverage gain.

(i.e. modularity cannot be further increased.)

Divisive

Start with a single cluster.

Split clusters until *coverage* loss outweighs *penalty term* decrease.

(i.e. further modularity increase cannot be found.)

イロト イ押 トイヨト イヨト

 \Rightarrow

 299

Agglomerative vs. Divisive Clustering

Assumption: split/join pairs.

Agglomerative

- \bullet # possible moves starts high
- **•** reduces over time
- **•** Simple JOIN operation
- Modularity update has a single peak (Clauset et al. 2004)

Divisive

- \bullet # possible moves starts low
- **o** increases over time
- **•** Difficult BISECT operation
- Increase after a modularity-reducing bisection is possible.

Modularity Decrease

$$
p(C) = \frac{5}{10} - \frac{(3+4)^2 + (2+3+3+3+2)^2}{4 \times 10^2} = -\frac{18}{400}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

$$
p(C')=\frac{4}{10}-\frac{(3+4)^2+(2+3+3)^2+(3+2)^2}{4\times 10^2}=\frac{22}{400}.
$$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Agglomerative vs. Divisive Clustering

Agglomerative

- \bullet # possible moves starts high
- **o** reduces over time
- **•** Simple JOIN operation
- Modularity update has a single peak (Clauset et al. 2004)

Divisive

- \bullet # possible moves starts low
- increases over time
- **•** Difficult BISECT operation
- Increase after a modularity-reducing bisection is possible.

We follow the divisive approach

KORK ERKER ADE YOUR

Algorithm Outline

Divisive Modularity Clustering

- Start with a single (active) cluster
- \bullet BISECT an active cluster: $\mathcal{C}_k \rightarrow \mathcal{C}'_k, \mathcal{C}''_k$
- **3** If modularity increases, keep \mathcal{C}'_k , \mathcal{C}''_k and make them active.
- **4** Otherwise, keep \mathcal{C}_k and make it inactive
- **•** Repeat until all clusters are inactive or singletons
- **6** REFINE CLUSTERING

Recursive bipartitioning strategy

KORK ERKER ADE YOUR

Algorithm Outline

Divisive Modularity Clustering

- Start with a single (active) cluster
- \bullet BISECT an active cluster: $\mathcal{C}_k \rightarrow \mathcal{C}'_k, \mathcal{C}''_k$
- **3** If modularity increases, keep \mathcal{C}'_k , \mathcal{C}''_k and make them active.
- **4** Otherwise, keep \mathcal{C}_k and make it inactive
- **•** Repeat until all clusters are inactive or singletons
- **6** REFINE CLUSTERING

Recursive bipartitioning strategy

Algorithmic challenge: good BISECT method

Subroutine BISECT

Input: a graph $G[C_i] = (C_i, E_G[C_i])$ Output: approx. $(2,1+\epsilon)$ BALANCED PARTITION of $G[C_i]$

$(k, 1 + \epsilon)$ BALANCED PARTITION

 k - clustering $\mathcal C$ of G with max $\{|\mathcal C_1|,|\mathcal C_2|\}\leq (1+\epsilon)\frac{|\mathcal V|}{2}$ $\frac{v}{2}$ of maximum coverage

KORK ERKER ADE YOUR

Subroutine BISECT

BISECT

Input: a graph $G[C_i] = (C_i, E_G[C_i])$ Output: approx. $(2,1+\epsilon)$ BALANCED PARTITION of $G[C_i]$

$(k, 1 + \epsilon)$ BALANCED PARTITION

 k - clustering $\mathcal C$ of G with max $\{|\mathcal C_1|,|\mathcal C_2|\}\leq (1+\epsilon)\frac{|\mathcal V|}{2}$ $\frac{v}{2}$ of maximum coverage

Bipartition routine

- Use partitioner, e.g. PaToH, SCOTCH, or (modified) MeTiS
- Run multiple times and try different ϵ values

Bipartition routine

Bipartition routine

Use PaToH, SCOTCH, MeTiS,...

• Try different ϵ values

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Bipartition routine

Bipartition routine

- Use PaToH, SCOTCH, MeTiS,...
- **REFINE BISECTION**
- Try different ϵ values

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the Fiduccia-Mattheyses heuristic

Fiduccia-Mattheyses heuristic

- Maximizes approx. coverage
- Based on Kernighan-Lin heuristic
- Idea: move single vertices between clusters if gain is positive

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the Fiduccia-Mattheyses heuristic

Fiduccia-Mattheyses heuristic

- Maximizes approx. coverage
- **Based on Kernighan-Lin heuristic**
- Idea: move single vertices between clusters if gain is positive
- **Order of moves matters**
- Keep vertices in priority queues according to gain
- Update neighbours after move

[Introduction](#page-2-0) [Clustering Paradigms](#page-13-0) [Algorithm](#page-19-0) [Results](#page-39-0)

Refinement Heuristics

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

[Introduction](#page-2-0) [Clustering Paradigms](#page-13-0) [Algorithm](#page-19-0) [Results](#page-39-0)

Refinement Heuristics

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

[Introduction](#page-2-0) [Clustering Paradigms](#page-13-0) [Algorithm](#page-19-0) [Results](#page-39-0)

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

Refinement Heuristics

KORK ERKER ADE YOUR

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the Fiduccia-Mattheyses heuristic

Nonlocal property

Coverage gains are local (affect only neighbours) Changes in penalty term are global

Refinement Heuristics

$$
p(C) = \frac{9}{12} - \frac{(3+3+2+2)^2 + (1+2+2+3)^2}{4 \times 12^2} = \frac{268}{576}
$$

Refinement Heuristics

$$
p(C') = \frac{10}{12} - \frac{(3+3+3+3+2)^2 + (2+2+2)^2}{4 \times 12^2} = \frac{248}{576}
$$

 299

KORK ERKER ADE YOUR

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the Fiduccia-Mattheyses heuristic

Heuristic refinement of modularity

- Full update cost: $O(|V|)$ per move
- Use priority queues by coverage gain
- Retrieve top elements from both queues
- Compute actual gain for both vertices for each move
- \bullet $O(1)$ passes over all vertices

KORK ERKER ADE YOUR

Algorithm Outline

Divisive Modularity Clustering

- **1** Start with a single (active) cluster
- \bullet BISECT an active cluster: $\mathcal{C}_k \rightarrow \mathcal{C}'_k, \mathcal{C}''_k$
- \bullet If modularity increases, keep $\mathcal{C}'_k, \mathcal{C}''_k$ and make them active.
- **4** Otherwise, keep \mathcal{C}_k and make it inactive
- **•** Repeat until all clusters are inactive or singletons
- **6** REFINE CLUSTERING

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

REFINE CLUSTERING

REFINE CLUSTERING

- Run refinement heuristic after main algorithm terminates.
- **•** Similar to REFINE BIPARTITION
- **o** Includes all vertices in all clusters
- Choose vertices in random order.

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

BISSECT

Complexity:
$$
O(|E|\log|V|)
$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

Complexity

BISSECT

Complexity:
$$
O(|E|\log|V|)
$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

REFINE BISSECTION

Complexity:
$$
O(|E|\log|V|)
$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

Complexity

BISSECT

Complexity:
$$
O(|E|\log|V|)
$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

REFINE BISSECTION

Complexity: $O(|E| \log |V|)$ Frequency: $O(|V| \log |V|)$ Amortized: $O(|E|\log^2 |V|)$

REFINE CLUSTERING

Complexity: $O(K|V| + |E|)$ Frequency: $O(1)$

 $K =$ number of clusters

Total complexity:

$$
O(|E|\log^2 |V|)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Contains large constants!

Test set: coAuthorsCiteseer, coPapersCiteseer, citationCiteseer, coAuthorsDBLP, cond-mat, hep-th, preferentialAttachment, cond-mat-2005, netscience, email, football, karate, polbooks, astro-ph, as-22july06, chesapeake, smallworld, G_{-n-pin-pout,} celegansneural, caidaRouterLevel, jazz, lesmis, power, adjnoun, dolphins, polblogs, cnr-2000, PGPgiantcompo, cond-mat-2003, celegans metabolic, cond-mat-2003-component

KORK ERKER ADE YOUR

Average modularity found

- \bullet PaToH: 0.6507
- \bullet SCOTCH: 0.6430
- **MeTiS: 0.6373**

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Improvement from REFINE CLUSTERING

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Improvement from repeated BISECT runs

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Improvement from repeated REFINE BISECTION

Comparison with published results

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Comparison with optimum solutions

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Conclusions

Divisive clustering technique

- Yields high modularity
- **•** Straightforward implementation
- Theoretically fast
- To do: parallel implementation