

Umit V. Çatalyürek, Kamer Kaya, Johannes Langguth, and Bora Uçar

modularity

February 13, 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Introduction	Clustering Paradigms	Algorithm	Results

1 Introduction

2 Clustering Paradigms

(ロ) (四) (主) (主) (三)

Results

Clustering and Partitioning

・ロト・日本・モート モー うへぐ

Results

Clustering and Partitioning

Clustering = k-way **Partitioning** with variable k

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V, E, w) find a "*light*" set of cut edges S such that the components of $G' = (V, E \setminus S, w)$ are "*heavy*".

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V, E, w) find a "*light*" set of cut edges S such that the components of $G' = (V, E \setminus S, w)$ are "*heavy*".

Features

- light and heavy are relative terms
- Want to avoid trivial cuts

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V, E, w) find a "*light*" set of cut edges S such that the components of $G' = (V, E \setminus S, w)$ are "*heavy*".

Features

- light and heavy are relative terms
- Want to avoid trivial cuts
- ullet ightarrow Not yet a computational problem
- Need to capture compromise mathematically

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Coverage				

Clustering notation

Let C be a **Clustering** of **Clusters** $C_1, C_2, ..., C_k$

$$\bigcup_{\mathcal{C}_i \in \mathcal{C}} = V \qquad \bigcap_{\mathcal{C}_i \in \mathcal{C}} = \emptyset$$

Light cut means maximize weight of edges $\{v, u\}$, $v \in C_k$, $u \in C_k$

Edge weight ω

Let

$$\omega(E) = \sum_{e \in E} w(e)$$

And

$$\omega(\mathcal{C}_i) = \omega(E_{G'[\mathcal{C}_i]})$$

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Coverage				

Coverage

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Penalty	v term			

Problem

- Trivial clustering $\mathcal{C} = \{\mathcal{C}_1\}$ maximizes coverage.
- We want *heavy* components (a.k.a. clusters)
- $\bullet \ \rightarrow \ \mathsf{Penalize} \ \mathsf{large} \ \mathsf{clusters}$

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Penalty	v term			

Problem

- Trivial clustering $\mathcal{C} = \{\mathcal{C}_1\}$ maximizes coverage.
- We want *heavy* components (a.k.a. clusters)
- $\bullet \ \rightarrow \ {\sf Penalize \ large \ clusters}$

Idea (Newman, 2003)

Introduce quadratic penalty term Let

$$\psi(\mathcal{C}_i) = \sum_{v \in \mathcal{C}_i} (\sum_{\{v,u\} \in E} w\{v,u\})^2$$

Note

$$\psi(V) = 4 \times \omega(E)^2$$

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Modula	ritv			

Modularity

$$p(\mathcal{C}) = cov(\mathcal{C}) - rac{\sum\limits_{\mathcal{C}_i \in \mathcal{C}} \psi(\mathcal{C}_i)^2}{4 imes \omega(E)^2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Modular	it.			

Modularity

$$p(\mathcal{C}) = cov(\mathcal{C}) - rac{\sum\limits_{\mathcal{C}_i \in \mathcal{C}} \psi(\mathcal{C}_i)^2}{4 imes \omega(E)^2}$$

(日)、

3

Features

- $-0.5 \le p(\mathcal{C}) \le 1$
- Trivial clustering $\mathcal T$ has $p(\mathcal T)=0$
- Isolated vertices have no effect
- Optimum solution is NP-hard, even for 2 clusters (Brandnes et al. 07)
- Also, APX-hard (DasGupta and Desai, 2011)

Approximation Algorithms

Agglomerative

Start with n clusters.

Join clusters until *penalty term* increase outweights *coverage* gain.

(i.e. modularity cannot be further increased.)

Approximation Algorithms

Agglomerative

Start with n clusters.

Join clusters until *penalty term* increase outweights *coverage* gain.

(i.e. modularity cannot be further increased.)

Divisive

Start with a single cluster.

Split clusters until coverage loss outweighs penalty term decrease.

(i.e. further modularity increase cannot be found.)

イロト 不得 トイヨト イヨト

э

Agglomerative vs. Divisive Clustering

Assumption: split/join pairs.

Agglomerative

- # possible moves starts high
- reduces over time
- Simple JOIN operation
- Modularity update has a single peak (Clauset et al. 2004)

Divisive

- # possible moves starts low
- increases over time
- Difficult BISECT operation
- Increase after a modularity-reducing bisection is possible.

Outline	Introduction	Clustering Paradigms	Algorithm	Results

Modularity Decrease

$$p(\mathcal{C}) = \frac{5}{10} - \frac{(3+4)^2 + (2+3+3+3+2)^2}{4 \times 10^2} = -\frac{18}{400}$$

★□> ★□> ★□> ★□> ★□> □ - のへで

$$p(\mathcal{C}') = \frac{4}{10} - \frac{(3+4)^2 + (2+3+3)^2 + (3+2)^2}{4 \times 10^2} = \frac{22}{400}$$

- イロト (四) (三) (三) (三) (三) (つ)

٠

Agglomerative vs. Divisive Clustering

Agglomerative

- # possible moves starts high
- reduces over time
- Simple JOIN operation
- Modularity update has a single peak (Clauset et al. 2004)

Divisive

- # possible moves starts low
- increases over time
- Difficult BISECT operation
- Increase after a modularity-reducing bisection is possible.

We follow the divisive approach

Algorithm Outline

Divisive Modularity Clustering

- Start with a single (active) cluster
- **2** BISECT an active cluster: $C_k \to C'_k, C''_k$
- If modularity increases, keep C'_k, C''_k and make them active.
- Otherwise, keep C_k and make it inactive
- Sepeat until all clusters are inactive or singletons
- REFINE CLUSTERING

Recursive bipartitioning strategy

Algorithm Outline

Divisive Modularity Clustering

- Start with a single (active) cluster
- **2** BISECT an active cluster: $C_k \to C'_k, C''_k$
- **③** If modularity increases, keep C'_k, C''_k and make them active.
- Otherwise, keep C_k and make it inactive
- Sepeat until all clusters are inactive or singletons
- REFINE CLUSTERING

Recursive bipartitioning strategy Algorithmic challenge: good BISECT method

Outline	Introduction	Clustering Paradigms	Algorithm	Results
RISECT				

Subroutine BISECT

Input: a graph $G[C_i] = (C_i, E_G[C_i])$ Output: approx. $(2, 1 + \epsilon)$ BALANCED PARTITION of $G[C_i]$

$(k, 1 + \epsilon)$ BALANCED PARTITION

k - clustering ${\cal C}$ of G with max $\{|{\cal C}_1|, |{\cal C}_2|\} \leq (1+\epsilon) \frac{|V|}{2}$ of maximum coverage

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline	Introduction	Clustering Paradigms	Algorithm	Results
RISECT				

Subroutine BISECT

Input: a graph $G[C_i] = (C_i, E_G[C_i])$ Output: approx. $(2, 1 + \epsilon)$ BALANCED PARTITION of $G[C_i]$

$(k, 1 + \epsilon)$ BALANCED PARTITION

k - clustering ${\cal C}$ of G with max $\{|{\cal C}_1|, |{\cal C}_2|\} \leq (1+\epsilon) \frac{|V|}{2}$ of maximum coverage

Bipartition routine

- Use partitioner, e.g. PaToH, SCOTCH, or (modified) MeTiS
- Run multiple times and try different ϵ values

Bipartition routine

Bipartition routine

• Use PaToH, SCOTCH, MeTiS,...

• Try different ϵ values

ϵ	ratio in %
0.05	52 : 48
0.10	55 : 45
0.20	60 : 40
0.40	70 : 30
0.80	90:10

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Bipartition routine

Bipartition routine

- Use PaToH, SCOTCH, MeTiS,...
- REFINE BISECTION
- Try different ϵ values

ϵ	ratio in %
0.05	52 : 48
0.10	55 : 45
0.20	60 : 40
0.40	70 : 30
0.80	90:10

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the *Fiduccia-Mattheyses* heuristic

Fiduccia-Mattheyses heuristic

- Maximizes approx. coverage
- Based on Kernighan-Lin heuristic
- Idea: move single vertices between clusters if gain is positive

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the *Fiduccia-Mattheyses* heuristic

Fiduccia-Mattheyses heuristic

- Maximizes approx. coverage
- Based on Kernighan-Lin heuristic
- Idea: move single vertices between clusters if gain is positive
- Order of moves matters
- Keep vertices in priority queues according to gain
- Update neighbours after move

Refinement Heuristics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Refinement Heuristics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Results

Refinement Heuristics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the *Fiduccia-Mattheyses* heuristic

Nonlocal property

Coverage gains are local (affect only neighbours) Changes in penalty term are global

Outline	Introduction	Clustering Paradigms	Algorithm	Results

Refinement Heuristics

$$p(\mathcal{C}) = \frac{9}{12} - \frac{(3+3+2+2)^2 + (1+2+2+3)^2}{4 \times 12^2} = \frac{268}{576}$$

500

æ

Outline	Introduction	Clustering Paradigms	Algorithm	Results

Refinement Heuristics

$$p(\mathcal{C}') = \frac{10}{12} - \frac{(3+3+3+3+2)^2 + (2+2+2)^2}{4 \times 12^2} = \frac{248}{576}$$

REFINE BISECTION

Heuristic refinement

For each ϵ value, improve result heuristically. Based on the *Fiduccia-Mattheyses* heuristic

Heuristic refinement of modularity

- Full update cost: O(|V|) per move
- Use priority queues by coverage gain
- Retrieve top elements from both queues
- Compute actual gain for both vertices for each move
- O(1) passes over all vertices

Algorithm Outline

Divisive Modularity Clustering

- Start with a single (active) cluster
- **2** BISECT an active cluster: $\mathcal{C}_k \to \mathcal{C}'_k, \mathcal{C}''_k$
- If modularity increases, keep C'_k, C''_k and make them active.
- Otherwise, keep C_k and make it inactive
- Seperat until all clusters are inactive or singletons
- REFINE CLUSTERING

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

REFINE CLUSTERING

REFINE CLUSTERING

- Run refinement heuristic after main algorithm terminates.
- Similar to REFINE BIPARTITION
- Includes all vertices in all clusters
- Choose vertices in random order.

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Complexity	/			

BISSECT

Complexity:
$$O(|E| \log |V|)$$
 Frequency: $O(|V| \log |V|)$
Amortized: $O(|E| \log^2 |V|)$

Outline	Introduction	Clustering Paradigms	Algorithm	Results

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Complexity

BISSECT

Complexity:
$$O(|E|\log|V|)$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

REFINE BISSECTION

Complexity: $O(|E| \log |V|)$ Frequency: $O(|V| \log |V|)$ Amortized: $O(|E| \log^2 |V|)$

Complexity

BISSECT

Complexity:
$$O(|E|\log|V|)$$
 Frequency: $O(|V|\log|V|)$
Amortized: $O(|E|\log^2|V|)$

REFINE BISSECTION

Complexity: $O(|E| \log |V|)$ Frequency: $O(|V| \log |V|)$ Amortized: $O(|E| \log^2 |V|)$

REFINE CLUSTERING

Complexity: O(K|V| + |E|) Frequency: O(1)

K = number of clusters

Total complexity:

$$O(|E|\log^2|V|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contains large constants!

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Results				

Test set: coAuthorsCiteseer, coPapersCiteseer, citationCiteseer, coAuthorsDBLP, cond-mat, hep-th, preferentialAttachment, cond-mat-2005, netscience, email, football, karate, polbooks, astro-ph, as-22july06, chesapeake, smallworld, G_n_pin_pout, celegansneural, caidaRouterLevel, jazz, lesmis, power, adjnoun, dolphins, polblogs, cnr-2000, PGPgiantcompo, cond-mat-2003, celegans_metabolic, cond-mat-2003-component

Average modularity found

- PaToH: 0.6507
- SCOTCH: 0.6430
- MeTiS: 0.6373

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Improvement from REFINE CLUSTERING

	Before	After	Improvement
PaToH:	0.6465	0.6507	0.0042
SCOTCH:	0.6329	0.6430	0.0101

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Results

Improvement from repeated BISECT runs

	1 pass	5 passes	Improvement
PaToH:	0.6507	0.6514	0.0008
SCOTCH:	0.6430	0.6455	0.0025

Results

Improvement from repeated REFINE BISECTION

	not used	5 passes	Improvement
PaToH:	0.6507	0.6488	-0.0018
SCOTCH:	0.6430	0.6429	0.0001

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Results				

Comparison with published results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Introduction	Clustering Paradigms	Algorithm	Results
Results				

Comparison with optimum solutions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline	Introduction	Clustering Paradigms	Algorithm	Results

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Conclusions

Divisive clustering technique

- Yields high modularity
- Straightforward implementation
- Theoretically fast
- To do: parallel implementation