
Outline Introduction Clustering Paradigms Algorithm Results

A Divisive clustering technique for maximizing the
modularity

Ümit V. Çatalyürek, Kamer Kaya,
Johannes Langguth, and Bora Uçar

February 13, 2012

Outline Introduction Clustering Paradigms Algorithm Results

1 Introduction

2 Clustering Paradigms

3 Algorithm

4 Results

Outline Introduction Clustering Paradigms Algorithm Results

Clustering and Partitioning

Outline Introduction Clustering Paradigms Algorithm Results

Clustering and Partitioning

Clustering = k-way Partitioning with variable k

Outline Introduction Clustering Paradigms Algorithm Results

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically

Outline Introduction Clustering Paradigms Algorithm Results

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically

Outline Introduction Clustering Paradigms Algorithm Results

Graph Clustering

Graph Clustering

Given an undirected weighted graph G = (V ,E ,w) find a “light“
set of cut edges S such that the components of G ′ = (V ,E \ S ,w)
are “heavy”.

Features

light and heavy are relative terms

Want to avoid trivial cuts

→ Not yet a computational problem

Need to capture compromise mathematically

Outline Introduction Clustering Paradigms Algorithm Results

Coverage

Clustering notation

Let C be a Clustering of Clusters C1, C2,Ck⋃
Ci∈C

= V
⋂
Ci∈C

= ∅

Light cut means maximize weight of edges {v , u}, v ∈ Ck , u ∈ Ck

Edge weight ω

Let
ω(E) =

∑
e∈E

w(e)

And
ω(Ci) = ω(EG ′[Ci])

Outline Introduction Clustering Paradigms Algorithm Results

Coverage

Coverage

cov(C) =

∑
Ci∈C

ω(Ci)

ω(E)

a b v w

c d x y

C1 C2

cov(C) = 12
14

Outline Introduction Clustering Paradigms Algorithm Results

Penalty term

Problem

Trivial clustering C = {C1} maximizes coverage.

We want heavy components (a.k.a. clusters)

→ Penalize large clusters

a b v w

c d x y

C1

cov(C) = 14
14

Outline Introduction Clustering Paradigms Algorithm Results

Penalty term

Problem

Trivial clustering C = {C1} maximizes coverage.

We want heavy components (a.k.a. clusters)

→ Penalize large clusters

Idea (Newman, 2003)

Introduce quadratic penalty term
Let

ψ(Ci) =
∑
v∈Ci

(
∑

{v ,u}∈E

w{v , u})2

Note
ψ(V) = 4× ω(E)2

Outline Introduction Clustering Paradigms Algorithm Results

Modularity

Modularity

p(C) = cov(C)−

∑
Ci∈C

ψ(Ci)2

4× ω(E)2

Features

−0.5 ≤ p(C) ≤ 1

Trivial clustering T has p(T) = 0

Isolated vertices have no effect

Optimum solution is NP-hard,
even for 2 clusters (Brandnes et al. 07)

Also, APX-hard (DasGupta and Desai, 2011)

Outline Introduction Clustering Paradigms Algorithm Results

Modularity

Modularity

p(C) = cov(C)−

∑
Ci∈C

ψ(Ci)2

4× ω(E)2

Features

−0.5 ≤ p(C) ≤ 1

Trivial clustering T has p(T) = 0

Isolated vertices have no effect

Optimum solution is NP-hard,
even for 2 clusters (Brandnes et al. 07)

Also, APX-hard (DasGupta and Desai, 2011)

Outline Introduction Clustering Paradigms Algorithm Results

Approximation Algorithms

Agglomerative

Start with n clusters.
Join clusters until penalty term increase outweights coverage gain.
(i.e. modularity cannot be further increased.)

Divisive

Start with a single cluster.
Split clusters until coverage loss outweighs penalty term decrease.
(i.e. further modularity increase cannot be found.)

Outline Introduction Clustering Paradigms Algorithm Results

Approximation Algorithms

Agglomerative

Start with n clusters.
Join clusters until penalty term increase outweights coverage gain.
(i.e. modularity cannot be further increased.)

Divisive

Start with a single cluster.
Split clusters until coverage loss outweighs penalty term decrease.
(i.e. further modularity increase cannot be found.)

Outline Introduction Clustering Paradigms Algorithm Results

Agglomerative vs. Divisive Clustering

Assumption: split/join pairs.

Agglomerative

possible moves starts high

reduces over time

Simple JOIN operation

Modularity update has a single peak (Clauset et al. 2004)

Divisive

possible moves starts low

increases over time

Difficult BISECT operation

Increase after a modularity-reducing bisection is possible.

Outline Introduction Clustering Paradigms Algorithm Results

Modularity Decrease

a

4

b

3

u2 v

3

w

3

x

3

y 2

C1

C2

p(C) =
5

10
− (3 + 4)2 + (2 + 3 + 3 + 3 + 2)2

4× 102
= − 18

400

Outline Introduction Clustering Paradigms Algorithm Results

Modularity Increase

a

4

b

3

u2 v

3

w

3

x

3

y 2

C′1

C′21 C′22

p(C′) =
4

10
− (3 + 4)2 + (2 + 3 + 3)2 + (3 + 2)2

4× 102
=

22

400
.

Outline Introduction Clustering Paradigms Algorithm Results

Agglomerative vs. Divisive Clustering

Agglomerative

possible moves starts high

reduces over time

Simple JOIN operation

Modularity update has a single peak (Clauset et al. 2004)

Divisive

possible moves starts low

increases over time

Difficult BISECT operation

Increase after a modularity-reducing bisection is possible.

We follow the divisive approach

Outline Introduction Clustering Paradigms Algorithm Results

Algorithm Outline

Divisive Modularity Clustering

1 Start with a single (active) cluster

2 BISECT an active cluster: Ck → C′k , C′′k
3 If modularity increases, keep C′k , C′′k and make them active.

4 Otherwise, keep Ck and make it inactive

5 Repeat until all clusters are inactive or singletons

6 REFINE CLUSTERING

Recursive bipartitioning strategy

Algorithmic challenge: good BISECT method

Outline Introduction Clustering Paradigms Algorithm Results

Algorithm Outline

Divisive Modularity Clustering

1 Start with a single (active) cluster

2 BISECT an active cluster: Ck → C′k , C′′k
3 If modularity increases, keep C′k , C′′k and make them active.

4 Otherwise, keep Ck and make it inactive

5 Repeat until all clusters are inactive or singletons

6 REFINE CLUSTERING

Recursive bipartitioning strategy
Algorithmic challenge: good BISECT method

Outline Introduction Clustering Paradigms Algorithm Results

BISECT

Subroutine BISECT

Input: a graph G [Ci] = (Ci ,EG [Ci])
Output: approx. (2, 1 + ε) BALANCED PARTITION of G [Ci]

(k, 1 + ε) BALANCED PARTITION

k - clustering C of G with max{|C1|, |C2|} ≤ (1 + ε) |V |
2 of

maximum coverage

Bipartition routine

Use partitioner, e.g. PaToH, SCOTCH, or (modified) MeTiS

Run multiple times and try different ε values

Outline Introduction Clustering Paradigms Algorithm Results

BISECT

Subroutine BISECT

Input: a graph G [Ci] = (Ci ,EG [Ci])
Output: approx. (2, 1 + ε) BALANCED PARTITION of G [Ci]

(k, 1 + ε) BALANCED PARTITION

k - clustering C of G with max{|C1|, |C2|} ≤ (1 + ε) |V |
2 of

maximum coverage

Bipartition routine

Use partitioner, e.g. PaToH, SCOTCH, or (modified) MeTiS

Run multiple times and try different ε values

Outline Introduction Clustering Paradigms Algorithm Results

Bipartition routine

Bipartition routine

Use PaToH, SCOTCH, MeTiS,...

REFINE BISECTION

Try different ε values

ε ratio in %

0.05 52 : 48
0.10 55 : 45
0.20 60 : 40
0.40 70 : 30
0.80 90 : 10

Outline Introduction Clustering Paradigms Algorithm Results

Bipartition routine

Bipartition routine

Use PaToH, SCOTCH, MeTiS,...

REFINE BISECTION

Try different ε values

ε ratio in %

0.05 52 : 48
0.10 55 : 45
0.20 60 : 40
0.40 70 : 30
0.80 90 : 10

Outline Introduction Clustering Paradigms Algorithm Results

REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Fiduccia-Mattheyses heuristic

Maximizes approx. coverage

Based on Kernighan-Lin heuristic

Idea: move single vertices between clusters if gain is positive

Order of moves matters

Keep vertices in priority queues according to gain

Update neighbours after move

Outline Introduction Clustering Paradigms Algorithm Results

REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Fiduccia-Mattheyses heuristic

Maximizes approx. coverage

Based on Kernighan-Lin heuristic

Idea: move single vertices between clusters if gain is positive

Order of moves matters

Keep vertices in priority queues according to gain

Update neighbours after move

Outline Introduction Clustering Paradigms Algorithm Results

Refinement Heuristics

a b

gain : 1

v

gain : −1

w

c d x y

C1 C2

Outline Introduction Clustering Paradigms Algorithm Results

Refinement Heuristics

a b v

gain = 1

w

c d x y

C1 C2

Outline Introduction Clustering Paradigms Algorithm Results

Refinement Heuristics

a b v w

c d x y

C1 C2

Outline Introduction Clustering Paradigms Algorithm Results

REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Nonlocal property

Coverage gains are local (affect only neighbours)
Changes in penalty term are global

Outline Introduction Clustering Paradigms Algorithm Results

Refinement Heuristics

a b v w

c d x y

C1 C2

p(C) =
9

12
− (3 + 3 + 2 + 2)2 + (1 + 2 + 2 + 3)2

4× 122
=

268

576

Outline Introduction Clustering Paradigms Algorithm Results

Refinement Heuristics

a b v w

c d x y

C′1 C′2

p(C′) =
10

12
− (3 + 3 + 3 + 3 + 2)2 + (2 + 2 + 2)2

4× 122
=

248

576

Outline Introduction Clustering Paradigms Algorithm Results

REFINE BISECTION

Heuristic refinement

For each ε value, improve result heuristically.
Based on the Fiduccia-Mattheyses heuristic

Heuristic refinement of modularity

Full update cost: O(|V |) per move

Use priority queues by coverage gain

Retrieve top elements from both queues

Compute actual gain for both vertices for each move

O(1) passes over all vertices

Outline Introduction Clustering Paradigms Algorithm Results

Algorithm Outline

Divisive Modularity Clustering

1 Start with a single (active) cluster

2 BISECT an active cluster: Ck → C′k , C′′k
3 If modularity increases, keep C′k , C′′k and make them active.

4 Otherwise, keep Ck and make it inactive

5 Repeat until all clusters are inactive or singletons

6 REFINE CLUSTERING

Outline Introduction Clustering Paradigms Algorithm Results

REFINE CLUSTERING

REFINE CLUSTERING

Run refinement heuristic after main algorithm terminates.

Similar to REFINE BIPARTITION

Includes all vertices in all clusters

Choose vertices in random order.

Outline Introduction Clustering Paradigms Algorithm Results

Complexity

BISSECT

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE BISSECTION

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE CLUSTERING

Complexity: O(K |V |+ |E |) Frequency: O(1)
K = number of clusters

Total complexity:

O(|E | log2 |V |)
Contains large constants!

Outline Introduction Clustering Paradigms Algorithm Results

Complexity

BISSECT

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE BISSECTION

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE CLUSTERING

Complexity: O(K |V |+ |E |) Frequency: O(1)
K = number of clusters

Total complexity:

O(|E | log2 |V |)
Contains large constants!

Outline Introduction Clustering Paradigms Algorithm Results

Complexity

BISSECT

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE BISSECTION

Complexity: O(|E | log |V |) Frequency: O(|V | log |V |)
Amortized: O(|E | log2 |V |)

REFINE CLUSTERING

Complexity: O(K |V |+ |E |) Frequency: O(1)
K = number of clusters

Total complexity:

O(|E | log2 |V |)
Contains large constants!

Outline Introduction Clustering Paradigms Algorithm Results

Results

Test set: coAuthorsCiteseer, coPapersCiteseer, citationCiteseer,
coAuthorsDBLP, cond-mat, hep-th, preferentialAttachment,
cond-mat-2005, netscience, email, football, karate, polbooks,
astro-ph, as-22july06, chesapeake, smallworld, G n pin pout,
celegansneural, caidaRouterLevel, jazz, lesmis, power, adjnoun,
dolphins, polblogs, cnr-2000, PGPgiantcompo, cond-mat-2003,
celegans metabolic, cond-mat-2003-component

Average modularity found

PaToH: 0.6507

SCOTCH: 0.6430

MeTiS: 0.6373

Outline Introduction Clustering Paradigms Algorithm Results

Improvement from REFINE CLUSTERING

Before After Improvement

PaToH: 0.6465 0.6507 0.0042
SCOTCH: 0.6329 0.6430 0.0101

Outline Introduction Clustering Paradigms Algorithm Results

Improvement from repeated BISECT runs

1 pass 5 passes Improvement

PaToH: 0.6507 0.6514 0.0008
SCOTCH: 0.6430 0.6455 0.0025

Outline Introduction Clustering Paradigms Algorithm Results

Improvement from repeated REFINE BISECTION

not used 5 passes Improvement

PaToH: 0.6507 0.6488 -0.0018
SCOTCH: 0.6430 0.6429 0.0001

Outline Introduction Clustering Paradigms Algorithm Results

Results .

Page 1

adjnoun
caidaRouterLevel

celegans_metabolic
celegansneural

citationCiteseer
cnr-2000

coAuthorsDBLP
email

jazz
netscience

PGPgiantcompo
polblogs

power

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Comparison with published results

Outline Introduction Clustering Paradigms Algorithm Results

Results

Page 1

dolphins football karate lesmis polbooks

-0.00500

-0.00250

0.00000

0.00250

0.00500

Comparison with optimum solutions

Outline Introduction Clustering Paradigms Algorithm Results

Conclusions

Divisive clustering technique

Yields high modularity

Straightforward implementation

Theoretically fast

To do: parallel implementation

	Introduction
	Clustering Paradigms
	Algorithm
	Results

