Graph Coarsening and Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

February 14, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

@ We will discuss coarsening and greedy clustering of graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Introduction

@ We will discuss coarsening and greedy clustering of graphs.

o Clustering ~ isolating ‘related’ groups of vertices in a graph.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

@ We will discuss coarsening and greedy clustering of graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

@ We will discuss coarsening and greedy clustering of graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

@ Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.
e A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.
@ A clustering of G is a partitioning C of V:

V = U C as a disjoint union.
ceC

@ Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

o Clustering modularity is defined as

o e g (me)
MOTTR T ()

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

o Clustering modularity is defined as

o e g (me)
MOTTR T ()

@ Here, vertex weights (: V' — R>q are defined as

C(v):= 3 w{uv})

{u,v}€E

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)
cec CC’/;iCC

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)
cec CC’/;iCC

® Here, Q:=)" _rw(e) and

cut(C,C"):={{u,v} € E|ue CandveC(C}

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)

ceC c'ec
C'#£C

® Here, Q:=)" _rw(e) and
cut(C,C"):={{u,v} € E|ue CandveC(C}

@ To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.
@ Then,

(Cul)={(0)+¢(C)

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((Cuc)=¢(C)+¢(C)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

1

o (29w(cut(C, ') = <(C) C(Cl)>'

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((Cuc)=¢(C)+¢(C)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

2_£122 (29w(cut(c, ') = <(C) C(Cl)>'

@ This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sop (2 Qu(cut(C, ")) = ¢(C) C(C,)>'

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sop (2 Qu(cut(C, ")) = ¢(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

2_;22 (2 Qu(cut(C, ")) = ¢(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).

@ Go to step 2 until only a single cluster remains.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sz (22u(cut(C, €)) - () ¢(C)).

© Merge all matched clusters, summing ¢ and w (graph coarsening).
@ Go to step 2 until only a single cluster remains.

© Return encountered clustering with highest modularity.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

T <2§2w(cut(C, ') = <(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).
@ Go to step 2 until only a single cluster remains.

© Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

0 iterations.

February 14, 2012

Agglomerative clustering (netherlands)

11 iterations.

gginger Auer, Bisseling (UU February 14, 2012

Agglomerative clustering (netherlands)

21 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

26 iterations.

February 14, 2012

Agglomerative clustering (netherlands)

33 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Agglomerative clustering (netherlands)

Final clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

February 14, 2012

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Star graphs

So we merge multiple satellites to the same centre.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

@ To identify star centres and satellites, we propose a centre potential.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Centre potential

@ To identify star centres and satellites, we propose a centre potential.

@ This potential is defined for vertices v as
deg(v)?
cp(v) = ———"——"——.
V)= deaw)

{u,v}€E

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

@ To identify star centres and satellites, we propose a centre potential.
@ This potential is defined for vertices v as
deg(v)?
cp(v) i = ——=——"—"——.
> deg(u)

{u,v}€E

@ We use cp(-) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

and cp(satellite) — 0 as k — oo,

N

cp(satellite) <

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
cp(satellite) < and cp(satellite) — 0 as k — oo,

cp(centre) > and cp(centre) — oo as k — oc.

1
2
4
3

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/
such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),

| 4

W'(e') = Z w(e) (sum edge weights),

T(e)=e’

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’

» 7(u) = 7w(v) if and only if pu(u) = u(v) (compress i to 7).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

@ View G as a collection of adjacency lists for each vertex.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create m and 7! from p.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.
o First, we create m and 7! from p.

@ Then, we create the new adjacency lists and weights for G'.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.
View G as a collection of adjacency lists for each vertex.
First, we create and 7! from p.

Then, we create the new adjacency lists and weights for G'.

Use i, m, %, and a bookkeeping array p in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

2219 |9 (22|2 |3 |3 |2 |4

SHIEEE NS
N
w

Initialise p sequentially and store u.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

2219 |9 (22|2 |3 |3 |2 |4

SHIERE NS
N
w

Sort by increasing p-value (sort_by_key).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

22 | 22

SHIERE NS
N
N
N
w
w
w
N
O
O
O

Sort by increasing p-value (sort_by_key).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

22 | 22

SHIERE NS
N
N
N
w
w
w
N
O
O
O

Determine different matched groups (adjacent not_equal).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Determine different matched groups (adjacent not_equal).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Extract boundaries for 7=1 (copy_index_if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

p 8 |11 9 |[10][12]1 |5 |6 [4 |7
w |1]o o |1 oo |1]1 o [0 |1 |O
1 |4 |7 11 | 13

T

Extract boundaries for 7=1 (copy_index_if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Perform scan to find 7 indices (inclusive_scan).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

P) 113 |9 |10|12]1 [5 |6 |4 |7
w |1 |1 1]2]2]2 [3][4 |4 |4 |5 |5
a1 8 |11 13

T

Perform scan to find 7 indices (inclusive_scan).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

P) 113 |9 |10|12]1 [5 |6 |4 |7
w |1 |1 1]2]2]2 [3][4 |4 |4 |5 |5
111 8 |11 13

T

Extract m as w(p(i)) = u(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

p |2 |8 [11[3 |9 |10]12[1 [5 |6 |4 |7
po |11 |1]2 2 |3 |4 |4 |4 |5 |5
|1 |4 |7 |8 [11]13

~ |4 |1]2 [5 |4 |4 |5 [1 [2]2 |1 |3 |

Extract 7 as w(p(i)) = u(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).
o Gather weighted neighbours of p(7=1(i")) to p(m~%(i’ + 1) — 1):

(i, w1, 2, w2, .. ., ke, Wk)-

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).
o Gather weighted neighbours of p(7=1(i")) to p(m~%(i’ + 1) — 1):

(71'(/'1),{.01,7['(/2),&)2, e ,W(ik),wk).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
() = o 1IN + -+ C(p(r (i + 1) = 1))
o Gather weighted neighbours of p(7~1(i")) to p(71(i" + 1) — 1):
(m(ir), w1, 7(i2), w2, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
(1) = Clp(r (")) + -+ C(p(r (i + 1) = 1)).
o Gather weighted neighbours of p(7~1(i")) to p(71(i" + 1) — 1):
(m(ir), w1, 7(i2), w2, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

@ Compress the neighbour list by replacing subsequences
(j/awlvj,7w27 s 7././"")/) with (jlawl Fwr+... .+ UJ/).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain p.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain p.

o Calculate centre potentials and match satellites in parallel.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain .

o Calculate centre potentials and match satellites in parallel.

@ Coarsen in parallel as described previously.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

February 14, 2012

GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain .
o Calculate centre potentials and match satellites in parallel.

@ Coarsen in parallel as described previously.

@ This gives us a fine-grained shared-memory parallel clustering
algorithm.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain .
Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan—Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

e Time: matching and CPU < GPU data transfer, not disk I/O.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

February 14, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (scaling)

Clustering time scaling

100
90 P
80 [
70 oo
B0 [

BO |
40

SIBVEL § Y :>,§f>,<,~><,><

30 -

20 -

Relative clustering time (%)

10

Number of CPU threads

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Clustering time

10° ¢ -
3119 I]
102 [CUDA v+]
b TBB :--x--- x %
- ' X X
101 [e
@ I
0
-Gé 107 F
20T oy E
= +
8102 f oy,]
) x 3%
T —— =
10* | .
10—5'...|...| NI Ll Al

10" 102 10° 10* 10° 10 107 10® 10°
Number of graph edges |E|

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 196 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

February 14, 2012

Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 196 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

@ Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

February 14, 2012

Results (time)

@ Our algorithm is very fast for large graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

e TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Our algorithm is very fast for large graphs.
o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.

e Comparison to state of the art: DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

@ We propose the centre potential to deal with star-like graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.
@ We propose the centre potential to deal with star-like graphs.

@ The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Questions

3 any questions?

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU matching problems

@ Performing matching in parallel is problematic.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU matching problems

@ Performing matching in parallel is problematic.

@ Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

Suppose we match vertices simultaneously.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

2

5

Vertices find an unmatched neighbour. ..

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

February 14, 2012

GPU matching problems

... but generate an invalid matching.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

@ To solve this we create two groups of vertices: blue and red.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.

@ Red vertices respond.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

@ Both 7 and ¢ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

1 2 8
4
Colour
Propose 9
Respond 5
Match 6

GPU Graph Coarsening & Clustering February 14, 2012

Fagginger Auer, Bisseling (UU)

GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m|b r r b b r b b r
o - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
m|b r r b b r b b r
cl3 - - 3 6 - 3 2 -

GPU Graph Coarsening & Clustering

Fagginger Auer, Bisseling (UU)

February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

= |©O

O =[N
~N =W
w T
o T o
ol = |
w TN
N T |

GPU Graph Coarsening & Clustering

Fagginger Auer, Bisseling (UU)

February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond

Match

o NN
~N W w
w T
S O o1
o1 o1 O
w W~
N N oo

=|©O

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond

Match

1 2
9
6
1 2 3 4 5 6 7 8 9
=|lr 2 3 r 5 5 3 2 b
cl!3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

February 14, 2012

GPU matching (algorithm)

8
L 2
4
Colour
Propose
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d

GPU Graph Coarsening & Clustering

Fagginger Auer, Bisseling (UU)

February 14, 2012

GPU matching (algorithm)

8
! 2
4
Colour
Propose
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 b
cl- - - - - - - - d

GPU Graph Coarsening & Clustering

Fagginger Auer, Bisseling (UU)

February 14, 2012

GPU matching (algorithm)

8
! 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
m=|r 2 3 r 5 5 3 2 d
cl- - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
cl- - - - - - - - d

GPU Graph Coarsening & Clustering

Fagginger Auer, Bisseling (UU)

February 14, 2012

GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
~|b 2 3 r 5 5 3 2 d
cl4 - - - - - - - -

February 14, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU matching (algorithm)

8
v 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
/b 2 3 r 5 5 3 2 d
c|l4 - - 1 - - - - -

February 14, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
|1 2 3 1 5 5 3 2 d
cld4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

	Introduction
	Modularity
	Agglomerative clustering
	Star graphs
	GPU coarsening
	Results
	Conclusion
	GPU matching

