
Graph Coarsening and Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

February 14, 2012

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

We will discuss coarsening and greedy clustering of graphs.

Clustering ' isolating ‘related’ groups of vertices in a graph.

Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

We will discuss coarsening and greedy clustering of graphs.

Clustering ' isolating ‘related’ groups of vertices in a graph.

Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

We will discuss coarsening and greedy clustering of graphs.

Clustering ' isolating ‘related’ groups of vertices in a graph.

Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Introduction

We will discuss coarsening and greedy clustering of graphs.

Clustering ' isolating ‘related’ groups of vertices in a graph.

Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Our primary interests are speed and parallelisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

Let G = (V ,E) be a graph with edge weights ω : E → R>0.

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

Let G = (V ,E) be a graph with edge weights ω : E → R>0.

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

Let G = (V ,E) be a graph with edge weights ω : E → R>0.

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

(∑
v∈C

ζ(v)

)2

4

(∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

 ∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))


 .

Here, Ω :=
∑

e∈E ω(e) and

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

 ∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))


 .

Here, Ω :=
∑

e∈E ω(e) and

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C) (2 Ω− ζ(C))− 2 Ω

 ∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))


 .

Here, Ω :=
∑

e∈E ω(e) and

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ωω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ωω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.

2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ωω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.
2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ω ω(cut(C ,C ′))− ζ(C) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

0 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

11 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

21 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

26 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

33 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Agglomerative clustering (netherlands)

Final clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Star graphs

So we merge multiple satellites to the same centre.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:

I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:

I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),

I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:
I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Initialise ρ sequentially and store µ.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Sort by increasing µ-value (sort by key).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 2 2 2 3 3 3 4 9 9 9 22 22

π−1

π

Sort by increasing µ-value (sort by key).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 2 2 2 3 3 3 4 9 9 9 22 22

π−1

π

Determine different matched groups (adjacent not equal).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1

π

Determine different matched groups (adjacent not equal).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1

π

Extract boundaries for π−1 (copy index if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1 1 4 7 8 11 13

π

Extract boundaries for π−1 (copy index if nonzero).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1 1 4 7 8 11 13

π

Perform scan to find π indices (inclusive scan).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π

Perform scan to find π indices (inclusive scan).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π

Extract π as π(ρ(i)) = µ(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π 4 1 2 5 4 4 5 1 2 2 1 3

Extract π as π(ρ(i)) = µ(i) (scatter).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(i1, ω1, i2, ω2, . . . , ik , ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

(π(i1), ω1, π(i2), ω2, . . . , π(ik), ωk).

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (scaling)

 10

 20

 30

 40

 50

 60

 70
 80
 90

 100

 1 2 4 8 16

R
e

la
ti
v
e

 c
lu

s
te

ri
n
g

 t
im

e
 (

%
)

Number of CPU threads

Clustering time scaling

linear
2

15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

C
lu

s
te

ri
n

g
 t

im
e

 (
s
)

Number of graph edges |E|

Clustering time

3*10
-7

 |E|
CUDA

TBB

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (quality)

|V | |E | CUDA TBB Ovelgönne et al. (2010)

karate 34 78 0.363 0.383 0.412
jazz 198 2,742 0.314 0.369 0.444
email 1,133 5,451 0.440 0.473 0.572
PGP 10,680 24,316 0.809 0.841 0.880

Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (quality)

|V | |E | CUDA TBB Ovelgönne et al. (2010)

karate 34 78 0.363 0.383 0.412
jazz 198 2,742 0.314 0.369 0.444
email 1,133 5,451 0.440 0.473 0.572
PGP 10,680 24,316 0.809 0.841 0.880

Lower quality, because we do not use local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Comparison to state of the art: DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Comparison to state of the art: DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Comparison to state of the art: DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Comparison to state of the art: DIMACS challenge.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

We propose the centre potential to deal with star-like graphs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

We propose the centre potential to deal with star-like graphs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

We propose the centre potential to deal with star-like graphs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

We propose the centre potential to deal with star-like graphs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

Questions

∃ any questions?

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

Suppose we match vertices simultaneously.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

Vertices find an unmatched neighbour. . .

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching problems

9

8

6
5

7
3

1

4

2

. . . but generate an invalid matching.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates
I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates
I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π - - - - - - - - -
σ - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ - - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 - - 3 6 - 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b r r b b r b b r
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 b 5 5 3 2 r
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ 3 8 7 3 6 5 3 2 -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 b
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π r 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ - - - - - - - - d

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - - - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π b 2 3 r 5 5 3 2 d
σ 4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

GPU matching (algorithm)

Colour
Propose
Respond
Match

9

8

6
5

7
3

1

4

2

1 2 3 4 5 6 7 8 9

π 1 2 3 1 5 5 3 2 d
σ 4 - - 1 - - - - -

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012

	Introduction
	Modularity
	Agglomerative clustering
	Star graphs
	GPU coarsening
	Results
	Conclusion
	GPU matching

