Graph Coarsening and Clustering on the GPU

B. O. Fagginger Auer R. H. Bisseling

Utrecht University

February 14, 2012

• We will discuss coarsening and greedy clustering of graphs.

- We will discuss coarsening and greedy clustering of graphs.
- \bullet Clustering \simeq isolating 'related' groups of vertices in a graph.

- We will discuss coarsening and greedy clustering of graphs.
- Clustering \simeq isolating 'related' groups of vertices in a graph.
- Relevant in: social networks, epidemiology, papers, metabolism, and ecosystems (Newman & Girvan, 2004).

- We will discuss coarsening and greedy clustering of graphs.
- Clustering \simeq isolating 'related' groups of vertices in a graph.
- Relevant in: social networks, epidemiology, papers, metabolism, and ecosystems (Newman & Girvan, 2004).
- Our primary interests are speed and parallelisation.

• Let G = (V, E) be a graph with edge weights $\omega : E \to \mathbb{R}_{>0}$.

- Let G = (V, E) be a graph with edge weights $\omega : E \to \mathbb{R}_{>0}$.
- A clustering of G is a partitioning C of V:

$$V = \bigcup_{C \in \mathcal{C}} C$$
 as a disjoint union.

- Let G = (V, E) be a graph with edge weights $\omega : E \to \mathbb{R}_{>0}$.
- A clustering of G is a partitioning C of V:

$$V = \bigcup_{C \in \mathcal{C}} C$$
 as a disjoint union.

• Quality of a clustering is measured by its modularity mod(C), introduced in 2004 by Newman and Girvan.

• Clustering modularity is defined as

$$\mathsf{mod}(\mathcal{C}) := \frac{\sum\limits_{C \in \mathcal{C}} \sum\limits_{\{u,v\} \in E} \omega(\{u,v\})}{\sum\limits_{e \in E} \omega(e)} - \frac{\sum\limits_{C \in \mathcal{C}} \left(\sum\limits_{v \in C} \zeta(v)\right)^2}{4\left(\sum\limits_{e \in E} \omega(e)\right)^2}.$$

• Clustering modularity is defined as

$$\mathsf{mod}(\mathcal{C}) := \frac{\sum\limits_{C \in \mathcal{C}} \sum\limits_{\{u,v\} \in E} \omega(\{u,v\})}{\sum\limits_{e \in E} \omega(e)} - \frac{\sum\limits_{C \in \mathcal{C}} \left(\sum\limits_{v \in C} \zeta(v)\right)^2}{4\left(\sum\limits_{e \in E} \omega(e)\right)^2}.$$

• Here, vertex weights $\zeta: V \to \mathbb{R}_{\geq 0}$ are defined as

$$\zeta(\mathbf{v}) := \sum_{\{u,v\}\in E} \omega(\{u,v\}).$$

• $mod(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in \mathcal{C} \\ C' \neq C}} \omega(\mathsf{cut}(C, C')) \right) \right]$$

•

 $\bullet \mbox{ mod}(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in \mathcal{C} \\ C' \neq C}} \omega(\mathsf{cut}(C, C')) \right) \right]$$

• Here, $\Omega := \sum_{e \in E} \omega(e)$ and

 $\mathsf{cut}(\mathcal{C},\mathcal{C}'):=\{\{u,v\}\in \mathcal{E}\ |\ u\in \mathcal{C} \text{ and } v\in \mathcal{C}'\}.$

٠

• $mod(\mathcal{C})$ can be rewritten to

$$\frac{1}{4\Omega^2} \sum_{C \in \mathcal{C}} \left[\zeta(C) \left(2\Omega - \zeta(C) \right) - 2\Omega \left(\sum_{\substack{C' \in \mathcal{C} \\ C' \neq C}} \omega(\mathsf{cut}(C, C')) \right) \right]$$

• Here, $\Omega := \sum_{e \in E} \omega(e)$ and

$$\mathsf{cut}(\mathsf{C},\mathsf{C}'):=\{\{u,v\}\in\mathsf{E}\ |\ u\in\mathsf{C}\ \mathsf{and}\ v\in\mathsf{C}'\}.$$

 To calculate modularity, we only need to keep track of summed vertex weights of clusters and summed edge weights between clusters.

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

- Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.
- Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

• Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

$$\frac{1}{2\Omega^2} \left(2\Omega \,\omega(\operatorname{cut}(C,C')) - \zeta(C) \,\zeta(C') \right).$$

• Merge two clusters $C, C' \in C$ to a single larger cluster $C \cup C'$.

• Then,

$$\zeta(\mathcal{C}\cup\mathcal{C}')=\zeta(\mathcal{C})+\zeta(\mathcal{C}')$$

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

$$\frac{1}{2\Omega^2}\left(2\Omega\omega(\operatorname{cut}(\mathcal{C},\mathcal{C}'))-\zeta(\mathcal{C})\zeta(\mathcal{C}')\right).$$

• This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).

() Start with all vertices being a separate cluster: $C = \{\{v\} \mid v \in V\}$.

Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
Find a heavy matching of clusters with edge weights

$$\frac{1}{2\Omega^2} \left(2\Omega \, \omega(\operatorname{cut}(\mathcal{C},\mathcal{C}')) - \zeta(\mathcal{C}) \, \zeta(\mathcal{C}') \right).$$

Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
Find a heavy matching of clusters with edge weights

$$\frac{1}{2\,\Omega^2}\,\Big(2\,\Omega\,\omega(\mathsf{cut}({\mathcal C},{\mathcal C}'))-\zeta({\mathcal C})\,\zeta({\mathcal C}')\Big).$$

Solution Merge all matched clusters, summing ζ and ω (graph coarsening).

Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
Find a heavy matching of clusters with edge weights

$$\frac{1}{2\,\Omega^2}\,\Big(2\,\Omega\,\omega(\mathsf{cut}({\mathcal C},{\mathcal C}'))-\zeta({\mathcal C})\,\zeta({\mathcal C}')\Big).$$

Merge all matched clusters, summing ζ and ω (graph coarsening).
Go to step 2 until only a single cluster remains.

O Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
O Find a heavy matching of clusters with edge weights

$$\frac{1}{2\Omega^2} \left(2\Omega \, \omega(\operatorname{cut}({\mathcal C},{\mathcal C}')) - \zeta({\mathcal C}) \, \zeta({\mathcal C}') \right).$$

• Merge all matched clusters, summing ζ and ω (graph coarsening).

- Go to step 2 until only a single cluster remains.
- Seturn encountered clustering with highest modularity.

O Start with all vertices being a separate cluster: C = {{v} | v ∈ V}.
O Find a heavy matching of clusters with edge weights

$$\frac{1}{2\Omega^2} \left(2\Omega \, \omega(\operatorname{cut}({\mathcal C},{\mathcal C}')) - \zeta({\mathcal C}) \, \zeta({\mathcal C}') \right).$$

- **③** Merge all matched clusters, summing ζ and ω (graph coarsening).
- Go to step 2 until only a single cluster remains.
- Seturn encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.

Final clustering.

Star graphs

Agglomerative clustering slows down on star graphs.

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

Star graphs

Merging vertices with the same neighbours is bad for clustering.

Star graphs

So we merge multiple satellites to the same centre.

• To identify star centres and satellites, we propose a centre potential.

- To identify star centres and satellites, we propose a centre potential.
- This potential is defined for vertices v as

$$\mathsf{cp}(v) := rac{\mathsf{deg}(v)^2}{\sum\limits_{\{u,v\}\in E}\mathsf{deg}(u)}.$$

- To identify star centres and satellites, we propose a centre potential.
- This potential is defined for vertices v as

$$\mathsf{cp}(v) := rac{\mathsf{deg}(v)^2}{\sum\limits_{\{u,v\}\in E}\mathsf{deg}(u)}.$$

• We use $cp(\cdot)$ to identify satellites and match these to centres.

Centre potential

Centre potential

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

Centre potential

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

$$\mathsf{cp}(\mathsf{satellite}) \leq rac{1}{2}$$
 and $\mathsf{cp}(\mathsf{satellite}) o \mathsf{0}$ as $k o \infty,$

Centre potential

• For a star graph where k satellites are connected to a clique of l vertices with 0 < l < k, we have that

$${
m cp}({
m satellite}) \leq rac{1}{2} ext{ and } {
m cp}({
m satellite}) o 0 ext{ as } k o \infty,$$

 ${
m cp}({
m centre}) \geq rac{4}{3} ext{ and } {
m cp}({
m centre}) o \infty ext{ as } k o \infty.$

• Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:
 - ► $E' = \{\{\pi(u), \pi(v)\} \mid \{u, v\} \in E\}$ (collapse edges),

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

►

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

$$\zeta'(
u') = \sum_{\pi(
u) =
u'} \zeta(
u) \qquad (ext{sum vertex weights}),$$

- Input: a graph $G = (V, E, \omega, \zeta)$ and a map $\mu : V \to \mathbb{N}$.
- Output: a graph G' = (V', E', ω', ζ') and surjective map π : V → V' such that:

•
$$E' = \{ \{ \pi(u), \pi(v) \} \mid \{ u, v \} \in E \}$$
 (collapse edges),

$$\omega'(e') = \sum_{\pi(e)=e'} \omega(e)$$
 (sum edge weights),

$$\zeta'(v') = \sum_{\pi(v)=v'} \zeta(v)$$
 (sum vertex weights),

• $\pi(u) = \pi(v)$ if and only if $\mu(u) = \mu(v)$ (compress μ to π).

►

• Implemented using the CUDA Thrust library.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .
- Then, we create the new adjacency lists and weights for G'.

- Implemented using the CUDA Thrust library.
- View G as a collection of adjacency lists for each vertex.
- First, we create π and π^{-1} from μ .
- Then, we create the new adjacency lists and weights for G'.
- Use μ , π , π^{-1} , and a bookkeeping array ρ in global GPU memory.

ρ	1	2	3	4	5	6	7	8	9	10	11	12
μ	9	2	3	22	9	9	22	2	3	3	2	4
π^{-1}												
π												

Initialise ρ sequentially and store μ .

ρ	1	2	3	4	5	6	7	8	9	10	11	12
μ	9	2	3	22	9	9	22	2	3	3	2	4
π^{-1}									-			
π												

Sort by increasing μ -value (sort_by_key).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	2	2	2	3	3	3	4	9	9	9	22	22
π^{-1}												
π												

Sort by increasing μ -value (sort_by_key).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	2	2	2	3	3	3	4	9	9	9	22	22
π^{-1}												
π												

Determine different matched groups (adjacent_not_equal).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}												
π												

Determine different matched groups (adjacent_not_equal).

Extract boundaries for π^{-1} (copy_index_if_nonzero).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}	1	4	7	8	11	13		-				
π												

Extract boundaries for π^{-1} (copy_index_if_nonzero).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	0	0	1	0	0	1	1	0	0	1	0
π^{-1}	1	4	7	8	11	13		-				
π												

Perform scan to find π indices (inclusive_scan).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13		-				
π												

Perform scan to find π indices (inclusive_scan).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13						
π												

Extract π as $\pi(\rho(i)) = \mu(i)$ (scatter).

ρ	2	8	11	3	9	10	12	1	5	6	4	7
μ	1	1	1	2	2	2	3	4	4	4	5	5
π^{-1}	1	4	7	8	11	13						
π	4	1	2	5	4	4	5	1	2	2	1	3

Extract π as $\pi(\rho(i)) = \mu(i)$ (scatter).

• Construct the adjacency lists of G' for $i' \in V'$ in parallel.

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(i_1, \omega_1, i_2, \omega_2, \ldots, i_k, \omega_k).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

• Sort the neighbour list by index.

- Construct the adjacency lists of G' for $i' \in V'$ in parallel.
- Sum vertex weights:

$$\zeta'(i') = \zeta(\rho(\pi^{-1}(i'))) + \ldots + \zeta(\rho(\pi^{-1}(i'+1)-1)).$$

• Gather weighted neighbours of $\rho(\pi^{-1}(i'))$ to $\rho(\pi^{-1}(i'+1)-1)$:

$$(\pi(i_1),\omega_1,\pi(i_2),\omega_2,\ldots,\pi(i_k),\omega_k).$$

- Sort the neighbour list by index.
- Compress the neighbour list by replacing subsequences $(j', \omega_1, j', \omega_2, \dots, j', \omega_l)$ with $(j', \omega_1 + \omega_2 + \dots + \omega_l)$.

• We perform matching in parallel on the GPU to obtain $\mu.$

- We perform matching in parallel on the GPU to obtain $\mu.$
- Calculate centre potentials and match satellites in parallel.

- We perform matching in parallel on the GPU to obtain μ .
- Calculate centre potentials and match satellites in parallel.
- Coarsen in parallel as described previously.

- We perform matching in parallel on the GPU to obtain μ .
- Calculate centre potentials and match satellites in parallel.
- Coarsen in parallel as described previously.
- This gives us a fine-grained shared-memory parallel clustering algorithm.

- We perform matching in parallel on the GPU to obtain μ .
- Calculate centre potentials and match satellites in parallel.
- Coarsen in parallel as described previously.
- This gives us a fine-grained shared-memory parallel clustering algorithm.
- We do not perform local improvement (Kernighan-Lin): changing cluster weights makes parallelising this very hard.
• Created an implementation on the GPU using CUDA and on the CPU using TBB.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.
- Test set: 10th DIMACS challenge.

- Created an implementation on the GPU using CUDA and on the CPU using TBB.
- Results are averaged over 16 runs.
- Time: matching and CPU \leftrightarrow GPU data transfer, not disk I/O.
- Test set: 10th DIMACS challenge.
- Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla C2050 (thanks: the Little Green Machine project).

Results (scaling)

Clustering time scaling

Results (quality)

	V	<i>E</i>	CUDA	TBB	Ovelgönne et al. (2010)
karate	34	78	0.363	0.383	0.412
jazz	198	2,742	0.314	0.369	0.444
email	1,133	5,451	0.440	0.473	0.572
PGP	10,680	24,316	0.809	0.841	0.880

Results (quality)

	V	<i>E</i>	CUDA	TBB	Ovelgönne et al. (2010)
karate	34	78	0.363	0.383	0.412
jazz	198	2,742	0.314	0.369	0.444
email	1,133	5,451	0.440	0.473	0.572
PGP	10,680	24,316	0.809	0.841	0.880

• Lower quality, because we do not use local refinement.

• Our algorithm is very fast for large graphs.

- Our algorithm is very fast for large graphs.
- CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413, modularity 0.996 clustering in 4.6 seconds.

- Our algorithm is very fast for large graphs.
- CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413, modularity 0.996 clustering in 4.6 seconds.
- TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity 0.974 clustering in 31 seconds.

- Our algorithm is very fast for large graphs.
- CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413, modularity 0.996 clustering in 4.6 seconds.
- TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity 0.974 clustering in 31 seconds.
- Comparison to state of the art: DIMACS challenge.

• We presented a fine-grained shared-memory parallel clustering algorithm.

- We presented a fine-grained shared-memory parallel clustering algorithm.
- This algorithm is suitable for both multi-core CPUs and GPUs.

- We presented a fine-grained shared-memory parallel clustering algorithm.
- This algorithm is suitable for both multi-core CPUs and GPUs.
- We propose the centre potential to deal with star-like graphs.

- We presented a fine-grained shared-memory parallel clustering algorithm.
- This algorithm is suitable for both multi-core CPUs and GPUs.
- We propose the centre potential to deal with star-like graphs.
- The algorithm is very fast, but quality could be improved by parallel local refinement.

Questions

 \exists any questions?

• Performing matching in parallel is problematic.

- Performing matching in parallel is problematic.
- Disjoint edges requirement leads to serialisation.

Suppose we match vertices simultaneously.

Vertices find an unmatched neighbour...

... but generate an invalid matching.

• To solve this we create two groups of vertices: blue and red.

- To solve this we create two groups of vertices: **blue** and **red**.
- Blue vertices propose.

- To solve this we create two groups of vertices: blue and red.
- **Blue** vertices propose.
- **Red** vertices respond.

- To solve this we create two groups of vertices: blue and red.
- **Blue** vertices propose.
- **Red** vertices respond.
- Proposals that were responded to are matched.

• The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.

- The graph (neighbour ranges, indices, and weights) is stored as a triplet of 1D textures on the GPU.
- We create one thread for each vertex in V.
- Each vertex $v \in V$ only updates
 - its colour/matching value $\pi(v)$;
 - and its proposal/response value $\sigma(v)$.
- Both π and σ are stored in 1D arrays in global memory.

