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Introduction

We will discuss coarsening and greedy clustering of graphs.

Clustering ' isolating ‘related’ groups of vertices in a graph.

Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

Our primary interests are speed and parallelisation.
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Modularity clustering

Let G = (V ,E ) be a graph with edge weights ω : E → R>0.

A clustering of G is a partitioning C of V :

V =
⋃
C∈C

C as a disjoint union.

Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.
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Modularity clustering

Clustering modularity is defined as

mod(C) :=

∑
C∈C

∑
{u,v}∈E

u,v∈C

ω({u, v})

∑
e∈E

ω(e)
−

∑
C∈C

( ∑
v∈C

ζ(v)

)2

4

( ∑
e∈E

ω(e)

)2
.

Here, vertex weights ζ : V → R≥0 are defined as

ζ(v) :=
∑

{u,v}∈E

ω({u, v}).
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Modularity clustering

mod(C) can be rewritten to

1

4 Ω2

∑
C∈C

ζ(C ) (2 Ω− ζ(C ))− 2 Ω

 ∑
C ′∈C
C ′ 6=C

ω(cut(C ,C ′))


 .

Here, Ω :=
∑

e∈E ω(e) and

cut(C ,C ′) := {{u, v} ∈ E | u ∈ C and v ∈ C ′}.

To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.
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Merging clusters

Merge two clusters C ,C ′ ∈ C to a single larger cluster C ∪ C ′.

Then,
ζ(C ∪ C ′) = ζ(C ) + ζ(C ′)

and the modularity is increased by (eq. (4) of Ovelgönne et al., 2010)

1

2 Ω2

(
2 Ωω(cut(C ,C ′))− ζ(C ) ζ(C ′)

)
.

This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).
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Agglomerative clustering

1 Start with all vertices being a separate cluster: C = {{v} | v ∈ V }.

2 Find a heavy matching of clusters with edge weights

1

2 Ω2

(
2 Ωω(cut(C ,C ′))− ζ(C ) ζ(C ′)

)
.

3 Merge all matched clusters, summing ζ and ω (graph coarsening).

4 Go to step 2 until only a single cluster remains.

5 Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.
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Agglomerative clustering (netherlands)

0 iterations.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012



Agglomerative clustering (netherlands)

11 iterations.
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Agglomerative clustering (netherlands)

21 iterations.
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Agglomerative clustering (netherlands)

26 iterations.
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Agglomerative clustering (netherlands)

33 iterations.
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Agglomerative clustering (netherlands)

Final clustering.
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Star graphs

Agglomerative clustering slows down on star graphs.
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Star graphs

Merging vertices with the same neighbours is bad for clustering.
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Star graphs

So we merge multiple satellites to the same centre.
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Centre potential

To identify star centres and satellites, we propose a centre potential.

This potential is defined for vertices v as

cp(v) :=
deg(v)2∑

{u,v}∈E

deg(u)
.

We use cp(·) to identify satellites and match these to centres.
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Centre potential

For a star graph where k satellites are connected to a clique of l
vertices with 0 < l < k, we have that

cp(satellite) ≤ 1

2
and cp(satellite) → 0 as k →∞,

cp(centre) ≥ 4

3
and cp(centre) →∞ as k →∞.
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GPU coarsening

Input: a graph G = (V ,E , ω, ζ) and a map µ : V → N.

Output: a graph G ′ = (V ′,E ′, ω′, ζ ′) and surjective map π : V → V ′

such that:

I E ′ = {{π(u), π(v)} | {u, v} ∈ E} (collapse edges),
I

ω′(e′) =
∑

π(e)=e′

ω(e) (sum edge weights),

I

ζ ′(v ′) =
∑

π(v)=v ′

ζ(v) (sum vertex weights),

I π(u) = π(v) if and only if µ(u) = µ(v) (compress µ to π).
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GPU coarsening (implementation)

Implemented using the CUDA Thrust library.

View G as a collection of adjacency lists for each vertex.

First, we create π and π−1 from µ.

Then, we create the new adjacency lists and weights for G ′.

Use µ, π, π−1, and a bookkeeping array ρ in global GPU memory.
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GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Initialise ρ sequentially and store µ.
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GPU coarsening (algorithm)

ρ 1 2 3 4 5 6 7 8 9 10 11 12

µ 9 2 3 22 9 9 22 2 3 3 2 4

π−1

π

Sort by increasing µ-value (sort by key).
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GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 2 2 2 3 3 3 4 9 9 9 22 22

π−1

π

Determine different matched groups (adjacent not equal).
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GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1

π

Extract boundaries for π−1 (copy index if nonzero).
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GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 0 0 1 0 0 1 1 0 0 1 0

π−1 1 4 7 8 11 13

π

Perform scan to find π indices (inclusive scan).
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GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π

Extract π as π(ρ(i)) = µ(i) (scatter).
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GPU coarsening (algorithm)

ρ 2 8 11 3 9 10 12 1 5 6 4 7

µ 1 1 1 2 2 2 3 4 4 4 5 5

π−1 1 4 7 8 11 13

π 4 1 2 5 4 4 5 1 2 2 1 3
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GPU coarsening (algorithm)

Construct the adjacency lists of G ′ for i ′ ∈ V ′ in parallel.

Sum vertex weights:

ζ ′(i ′) = ζ(ρ(π−1(i ′))) + . . . + ζ(ρ(π−1(i ′ + 1)− 1)).

Gather weighted neighbours of ρ(π−1(i ′)) to ρ(π−1(i ′ + 1)− 1):

Sort the neighbour list by index.

Compress the neighbour list by replacing subsequences
(j ′, ω1, j

′, ω2, . . . , j
′, ωl) with (j ′, ω1 + ω2 + . . . + ωl).
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GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain µ.

Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan–Lin): changing
cluster weights makes parallelising this very hard.
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Results

Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.

Time: matching and CPU ↔ GPU data transfer, not disk I/O.

Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).
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Results (scaling)
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Results (time)
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Results (quality)

|V | |E | CUDA TBB Ovelgönne et al. (2010)

karate 34 78 0.363 0.383 0.412
jazz 198 2,742 0.314 0.369 0.444
email 1,133 5,451 0.440 0.473 0.572
PGP 10,680 24,316 0.809 0.841 0.880

Lower quality, because we do not use local refinement.
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Results (time)

Our algorithm is very fast for large graphs.

CUDA: road central, |V | = 14,081,816, |E | = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V | = 18,520,486, |E | = 261,787,258, modularity
0.974 clustering in 31 seconds.

Comparison to state of the art: DIMACS challenge.
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Conclusion

We presented a fine-grained shared-memory parallel clustering
algorithm.

This algorithm is suitable for both multi-core CPUs and GPUs.

We propose the centre potential to deal with star-like graphs.

The algorithm is very fast, but quality could be improved by parallel
local refinement.
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Questions

∃ any questions?
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GPU matching problems

Performing matching in parallel is problematic.

Disjoint edges requirement leads to serialisation.
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GPU matching problems
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Suppose we match vertices simultaneously.
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GPU matching problems
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Vertices find an unmatched neighbour. . .
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GPU matching problems
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. . . but generate an invalid matching.
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GPU matching

To solve this we create two groups of vertices: blue and red.

Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.
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GPU matching (implementation)

The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

We create one thread for each vertex in V .

Each vertex v ∈ V only updates

I its colour/matching value π(v);
I and its proposal/response value σ(v).

Both π and σ are stored in 1D arrays in global memory.
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GPU matching (algorithm)
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