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Introduction

@ We will discuss coarsening and greedy clustering of graphs.
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Introduction

@ We will discuss coarsening and greedy clustering of graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).
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Introduction

@ We will discuss coarsening and greedy clustering of graphs.
o Clustering ~ isolating ‘related’ groups of vertices in a graph.

@ Relevant in: social networks, epidemiology, papers, metabolism, and
ecosystems (Newman & Girvan, 2004).

@ Our primary interests are speed and parallelisation.
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Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.
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Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.
e A clustering of G is a partitioning C of V:

V= U C as a disjoint union.
ceC
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Modularity clustering

e Let G = (V,E) be a graph with edge weights w : E — Rx.
@ A clustering of G is a partitioning C of V:

V = U C as a disjoint union.
ceC

@ Quality of a clustering is measured by its modularity mod(C),
introduced in 2004 by Newman and Girvan.
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Modularity clustering

o Clustering modularity is defined as

o e g (me)
MOTTR T ()
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Modularity clustering

o Clustering modularity is defined as

o e g (me)
MOTTR T ()

@ Here, vertex weights ( : V' — R>q are defined as

C(v):= 3 w{uv})

{u,v}€E
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Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)
cec CC’/;iCC
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Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)
cec CC’/;iCC

® Here, Q:=)" _rw(e) and

cut(C,C"):={{u,v} € E|ue CandveC(C}
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Modularity clustering

@ mod(C) can be rewritten to

492 > 1O (2 -¢(0) -2 | Y wleut(C,CN)

ceC c'ec
C'#£C

® Here, Q:=)" _rw(e) and
cut(C,C"):={{u,v} € E|ue CandveC(C}

@ To calculate modularity, we only need to keep track of summed vertex
weights of clusters and summed edge weights between clusters.
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Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.
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Merging clusters

@ Merge two clusters C, C’ € C to a single larger cluster CU C'.
@ Then,

(Cul)={(0)+¢(C)
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Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((Cuc)=¢(C)+¢(C)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

1

o (29w(cut(C, ') = <(C) C(Cl)>'
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Merging clusters

@ Merge two clusters C, C' € C to a single larger cluster C U (.
g g g

@ Then,
((Cuc)=¢(C)+¢(C)

and the modularity is increased by (eq. (4) of Ovelgdnne et al., 2010)

2_£122 (29w(cut(c, ') = <(C) C(Cl)>'

@ This suggests a greedy agglomerative strategy (e.g. Zhu et al., 2008).
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sop (2 Qu(cut(C, ")) = ¢(C) C(C,)>'
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sop (2 Qu(cut(C, ")) = ¢(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

2_;22 (2 Qu(cut(C, ")) = ¢(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).

@ Go to step 2 until only a single cluster remains.
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

Sz (22u(cut(C, €)) - () ¢(C)).

© Merge all matched clusters, summing ¢ and w (graph coarsening).
@ Go to step 2 until only a single cluster remains.

© Return encountered clustering with highest modularity.
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Agglomerative clustering

@ Start with all vertices being a separate cluster: C = {{v} | v € V}.
@ Find a heavy matching of clusters with edge weights

1

T <2§2w(cut(C, ') = <(C) C(C,)>'

© Merge all matched clusters, summing ¢ and w (graph coarsening).
@ Go to step 2 until only a single cluster remains.

© Return encountered clustering with highest modularity.

We make use of parallelism in steps 2 and 3.
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Agglomerative clustering (netherlands)

0 iterations.
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Agglomerative clustering (netherlands)

11 iterations.
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Agglomerative clustering (netherlands)

21 iterations.
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Agglomerative clustering (netherlands)

26 iterations.
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Agglomerative clustering (netherlands)

33 iterations.
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Agglomerative clustering (netherlands)

Final clustering.
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Star graphs

Agglomerative clustering slows down on star graphs.
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Star graphs

Merging vertices with the same neighbours is bad for clustering.
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Star graphs

So we merge multiple satellites to the same centre.
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Centre potential

@ To identify star centres and satellites, we propose a centre potential.
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Centre potential

@ To identify star centres and satellites, we propose a centre potential.

@ This potential is defined for vertices v as
deg(v)?
cp(v) = ———"——"——.
V)= deaw)

{u,v}€E
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Centre potential

@ To identify star centres and satellites, we propose a centre potential.
@ This potential is defined for vertices v as
deg(v)?
cp(v) i = ——=——"—"——.
> deg(u)

{u,v}€E

@ We use cp(-) to identify satellites and match these to centres.
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Centre potential
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that

and cp(satellite) — 0 as k — oo,

N

cp(satellite) <
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Centre potential

@ For a star graph where k satellites are connected to a clique of /
vertices with 0 < | < k, we have that
cp(satellite) < and cp(satellite) — 0 as k — oo,

cp(centre) > and cp(centre) — oo as k — oc.

1
2
4
3
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G’ = (V' E',u’, (') and surjective map 7 : V — V/
such that:
» E'={{m(u),7(v)} | {u,v} € E} (collapse edges),
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/
such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),

| 4

W'(e') = Z w(e) (sum edge weights),

T(e)=e’
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’
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GPU coarsening

e Input: a graph G = (V,E,w,{) and amap p: V — N.
@ Output: a graph G' = (V' E’, ', (') and surjective map 7 : V — V/

such that:
» E'={{n(v),n(v)} | {u,v} € E} (collapse edges),
>
W'(e') = Z w(e) (sum edge weights),
T(e)=e’
>

(V)= Z ¢(v) (sum vertex weights),

w(v)=v’

» 7(u) = 7w(v) if and only if pu(u) = u(v) (compress i to 7).
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering



GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.

@ View G as a collection of adjacency lists for each vertex.
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.

o First, we create m and 7! from p.
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GPU coarsening (implementation)

@ Implemented using the CUDA Thrust library.
@ View G as a collection of adjacency lists for each vertex.
o First, we create m and 7! from p.

@ Then, we create the new adjacency lists and weights for G'.
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GPU coarsening (implementation)

Implemented using the CUDA Thrust library.
View G as a collection of adjacency lists for each vertex.
First, we create  and 7! from p.

Then, we create the new adjacency lists and weights for G'.

Use i, m, %, and a bookkeeping array p in global GPU memory.
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GPU coarsening (algorithm)

2219 |9 (22|2 |3 |3 |2 |4

SHIEEE NS
N
w

Initialise p sequentially and store u.
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GPU coarsening (algorithm)

2219 |9 (22|2 |3 |3 |2 |4

SHIERE NS
N
w

Sort by increasing p-value (sort_by_key).
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GPU coarsening (algorithm)

22 | 22

SHIERE NS
N
N
N
w
w
w
N
O
O
O

Sort by increasing p-value (sort_by_key).

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012



GPU coarsening (algorithm)

22 | 22

SHIERE NS
N
N
N
w
w
w
N
O
O
O

Determine different matched groups (adjacent not_equal).
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GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Determine different matched groups (adjacent not_equal).
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GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Extract boundaries for 7=1 (copy_index_if nonzero).
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GPU coarsening (algorithm)

p 8 |11 9 |[10][12]1 |5 |6 [4 |7
w |1 ]o o |1 oo |1 ]1 o [0 |1 |O
1 |4 |7 11 | 13

T

Extract boundaries for 7=1 (copy_index_if nonzero).
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GPU coarsening (algorithm)

ENEREEE
=
o
o
=
o
o
—
—
o
o
—
o

Perform scan to find 7 indices (inclusive_scan).
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GPU coarsening (algorithm)

P) 113 |9 |10|12]1 [5 |6 |4 |7
w |1 |1 1 ]2 ]2 ]2 [3 ][4 |4 |4 |5 |5
a1 8 |11 13

T

Perform scan to find 7 indices (inclusive_scan).
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GPU coarsening (algorithm)

P) 113 |9 |10|12]1 [5 |6 |4 |7
w |1 |1 1 ]2 ]2 ]2 [3 ][4 |4 |4 |5 |5
111 8 |11 13

T

Extract m as w(p(i)) = u(i) (scatter).
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GPU coarsening (algorithm)

p |2 |8 [11[3 |9 |10]12[1 [5 |6 |4 |7
po |11 |1 ]2 2 |3 |4 |4 |4 |5 |5
|1 |4 |7 |8 [11]13

~ |4 |1 ]2 [5 |4 |4 |5 [1 [2 ]2 |1 |3 |

Extract 7 as w(p(i)) = u(i) (scatter).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V'’ in parallel.
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:

¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).
o Gather weighted neighbours of p(7=1(i")) to p(m~%(i’ + 1) — 1):

(i, w1, 2, w2, .. ., ke, Wk)-
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
¢'(i") = Clp(m (")) + -+ Cp(r N + 1) = 1)).
o Gather weighted neighbours of p(7=1(i")) to p(m~%(i’ + 1) — 1):

(71'(/'1),{.01,7['(/2),&)2, e ,W(ik),wk).
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
() = o 1IN + -+ C(p(r (i + 1) = 1))
o Gather weighted neighbours of p(7~1(i")) to p(71(i" + 1) — 1):
(m(ir), w1, 7(i2), w2, - - ., w(ik), wi)-

@ Sort the neighbour list by index.
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GPU coarsening (algorithm)

o Construct the adjacency lists of G’ for i’ € V' in parallel.

@ Sum vertex weights:
(1) = Clp(r (")) + -+ C(p(r (i + 1) = 1)).
o Gather weighted neighbours of p(7~1(i")) to p(71(i" + 1) — 1):
(m(ir), w1, 7(i2), w2, - - ., w(ik), wi)-

@ Sort the neighbour list by index.

@ Compress the neighbour list by replacing subsequences
(j/awlvj,7w27 s 7././"")/) with (jlawl Fwr+... .+ UJ/).
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GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain p.
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GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain p.

o Calculate centre potentials and match satellites in parallel.
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GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain .

o Calculate centre potentials and match satellites in parallel.

@ Coarsen in parallel as described previously.

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering

February 14, 2012



GPU clustering (parallelism)

@ We perform matching in parallel on the GPU to obtain .
o Calculate centre potentials and match satellites in parallel.

@ Coarsen in parallel as described previously.

@ This gives us a fine-grained shared-memory parallel clustering
algorithm.
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GPU clustering (parallelism)

We perform matching in parallel on the GPU to obtain .
Calculate centre potentials and match satellites in parallel.

Coarsen in parallel as described previously.

This gives us a fine-grained shared-memory parallel clustering
algorithm.

We do not perform local improvement (Kernighan—Lin): changing
cluster weights makes parallelising this very hard.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

@ Results are averaged over 16 runs.

e Time: matching and CPU < GPU data transfer, not disk I/O.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.
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Results

@ Created an implementation on the GPU using CUDA and on the CPU
using TBB.

Results are averaged over 16 runs.
Time: matching and CPU < GPU data transfer, not disk I/O.
Test set: 10th DIMACS challenge.

Test hardware: dual quad-core Xeon E5620 and an NVIDIA Tesla
C2050 (thanks: the Little Green Machine project).
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Results (scaling)

Clustering time scaling

100
90 P
80 [
70 oo
B0 [

BO |
40

SIBVEL § Y :>,§f>,<,~><,><

30 -

20 -

Relative clustering time (%)

10

Number of CPU threads
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Results (time)

Clustering time

10° ¢ -
3119 I ]
102 [ CUDA v+ ]
b TBB :--x--- x %
- ' X X
101 [ e
@ I
0
-Gé 107 F
20T oy E
= +
8102 f oy, ]
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T —— =
10* | .
10—5'...|...| NI Ll Al

10" 102 10° 10* 10° 10 107 10® 10°
Number of graph edges |E|

Fagginger Auer, Bisseling (UU) GPU Graph Coarsening & Clustering February 14, 2012



Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 196 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

Fagginger Auer, Bisseling (UU)

GPU Graph Coarsening & Clustering

February 14, 2012



Results (quality)

V| |E| | CUDA | TBB | Ovelgonne et al. (2010)
karate 34 78 | 0.363 | 0.383 0.412
jazz 196 | 2,742 | 0.314 | 0.369 0.444
email 1,133 | 5,451 | 0.440 | 0.473 0.572
PGP 10,680 | 24,316 | 0.809 | 0.841 0.880

@ Lower quality, because we do not use local refinement.
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GPU Graph Coarsening & Clustering
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Results (time)

@ Our algorithm is very fast for large graphs.
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Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.
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Results (time)

@ Our algorithm is very fast for large graphs.

o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

e TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.
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Results (time)

Our algorithm is very fast for large graphs.
o CUDA: road_central, |V| = 14,081,816, |E| = 16,933,413,
modularity 0.996 clustering in 4.6 seconds.

TBB: uk-2002, |V| = 18,520,486, |E| = 261,787,258, modularity
0.974 clustering in 31 seconds.

e Comparison to state of the art: DIMACS challenge.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.

@ We propose the centre potential to deal with star-like graphs.
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Conclusion

@ We presented a fine-grained shared-memory parallel clustering
algorithm.

@ This algorithm is suitable for both multi-core CPUs and GPUs.
@ We propose the centre potential to deal with star-like graphs.

@ The algorithm is very fast, but quality could be improved by parallel
local refinement.
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Questions

3 any questions?
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GPU matching problems

@ Performing matching in parallel is problematic.
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GPU matching problems

@ Performing matching in parallel is problematic.

@ Disjoint edges requirement leads to serialisation.
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GPU matching problems

Suppose we match vertices simultaneously.
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GPU matching problems

2

5

Vertices find an unmatched neighbour. ..
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GPU matching problems

... but generate an invalid matching.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.
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GPU matching

@ To solve this we create two groups of vertices: blue and red.

@ Blue vertices propose.

@ Red vertices respond.
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GPU matching

To solve this we create two groups of vertices: blue and red.
Blue vertices propose.

Red vertices respond.

Proposals that were responded to are matched.
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GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.
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GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
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GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.

@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).
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GPU matching (implementation)

e The graph (neighbour ranges, indices, and weights) is stored as a
triplet of 1D textures on the GPU.

@ We create one thread for each vertex in V.
@ Each vertex v € V only updates

> its colour/matching value m(v);
> and its proposal/response value o(v).

@ Both 7 and ¢ are stored in 1D arrays in global memory.
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GPU matching (algorithm)

1 2 8
4
Colour
Propose 9
Respond 5
Match 6
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GPU matching (algorithm)

8
1 2
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 45 6 7 8 9
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GPU matching (algorithm)

1 8
4
Colour
Propose 9
Respond 5
Match 6
1 2 3 4 5 6 7 8 9
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GPU matching (algorithm)

Colour
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GPU matching (algorithm)

Colour
Propose
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GPU matching (algorithm)

Colour
Propose
Respond

Match
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GPU matching (algorithm)
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GPU matching (algorithm)
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GPU matching (algorithm)
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GPU matching (algorithm)
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GPU matching (algorithm)
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GPU matching (algorithm)

8
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Respond 5
Match 6
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GPU matching (algorithm)

8
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Match 6
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