Scalable and Accurate Algorithm for Graph Clustering

Hristo Djidjev
Los Alamos National Laboratory

Melih Onus Cankaya University, Turkey

Networks

 Network: sets of nodes or verticies joined together in pairs by links or edges

Technological networks

Transportation Networks

Biological networks

Semantic Networks Social networks

The Internet and the WWW

credit: B. Cheswick

Social networks

credit: A. Klovdahl

Common network properties

- Small world effect:
 Short distances
 between nodes
- Power law distribution:
 Non-uniform degree
 distribution P(k) (ak (
 - Many low degree nodes
 - Few very high degree nodes
- Community structure

Community structure

- Communities: subsets of nodes within which there are dense links, but between which connections are sparser.
- Community detection problem: given a network
 N, find a partition of V(N) into communities

Modularity

- A useful measure of clustering quality
 - Introduced by Newman, 2003
- Modularity of a partition
 - = (fraction of edges within communities)
 - (expected fraction of such edges)
- <u>Community detection (graph clustering)</u> <u>problem</u>: Find a partition maximizing the modularity
- The optimization problem is NP-hard

Our goal:

Algorithm that is

accurate AND scalable

Approach

Reduce

Graph clustering Problem:

Find a partition of *G* of maximum modularity

Min-Cut Problem:

Find a minimum cut in a complete, edge-weighted graph *G'*

Solve

Min-Cut Problem:

Find a minimum cut in a complete weighted graph

Graph partitioning:

Finding a minimum cut that produces a balanced partition

Reduction: max modularity -> min cutsize

$$Q(\mathcal{P}) = \frac{1}{m} \sum_{i=1}^{k} (|E(V_i)| - \operatorname{Ex}(V_i, \mathcal{G}))$$

$$\max_{\mathcal{P}} \{ \sum_{i=1}^{k} (|E(V_i)| - \operatorname{Ex}(V_i, \mathcal{G})) \}$$

$$= -\min_{\mathcal{P}} \{ |\operatorname{Cut}(\mathcal{P})| - \operatorname{ExCut}(\mathcal{P}, \mathcal{G}) \}$$

weight
$$(i, j) = \begin{cases} 1 - p_{ij}, & \text{if } (i, j) \in E(G), \\ -p_{ij}, & \text{if } (i, j) \notin E(G), \end{cases}$$

Choice of random graph models

weight
$$(i, j) = \begin{cases} 1 - p_{ij}, & \text{if } (i, j) \in E(G) \\ -p_{ij}, & \text{if } (i, j) \not\in E(G) \end{cases}$$

 p_{ij} : the probability that there is an edge between vertices i and j in a random graph from a given distribution

Erdos - Renyi
$$p_{ij} = p = \frac{m}{\binom{n}{2}}$$
 Model:

Chung - Lu
$$p_{ij} = \frac{d_i d_j}{\sum_{k=1}^n d_k}$$

Reduction phase of algorithm

Community Detection Problem: Maximize modularity

make complete & define weights

weight
$$(i, j) = \begin{cases} 1 - p_{ij}, & \text{if } (i, j) \in E(G) \\ -p_{ij}, & \text{if } (i, j) \notin E(G) \end{cases}$$

Min-Cut Problem: Minimize cut size

Phase 2: Solving the mincut problem

Use multi-level graph partitioning method

- Consists of the three phases:
 - Coarsening phase
 - Partitioning phase
 - Uncoarsening and refinement phase

Refinement: Kernighan-Lin procedure

- Find an initial raw partition
- Improve by a greedy procedure that swaps pairs of vertices from different partitions
- Continue until no further improvement possible

Implementation issues

- GP always produces balanced partitions.
 - Ignore the restrictions on the sizes of the parts.
- The number of the parts in the optimal clustering is not known.
 - Employ a recursive bisection procedure.
- The original graph G might be sparse, while the transformed one G' is complete.
 - Do not explicitly generate G'.

Efficiently updating modularity

$$cut = cut(vis) - n_1 n_2 p$$

$$cut' = cut(vis)' - (n_1+1)(n_2-1)p$$

weight
$$(i, j) = \begin{cases} 1 - p_{ij}, & \text{if } (i, j) \in E(G) \\ -p_{ij}, & \text{if } (i, j) \notin E(G) \end{cases}$$

Finding the optimal number of communities

- Assign weights to the edges of G.
- Partition using the bisection algorithm
- If the number of resulting parts is one, then done;

Else run recursively on each subset.

• Time Complexity: O((n + m) k)

Example

Experiments

Test graphs: clustered, random

credit: Aaron Clauset

Comparison with other algorithms

	Exp#	# vert.	# edges	# clust	Q_{orig}	Q_{CNM}	Q_N	${ m Q_{GA}}$	Q_{RB}	$Q_{ m here}$
						${ m t_{CNM}}$	$\mathbf{t_{N}}$	${ m t_{GA}}$	$ m t_{RB}$	${ m t_{here}}$
	1	200	8934	2	0.388	0.387	0.388	0.387	0.386	0.388
	1	200				1.15	0.70	88.45	35.55	0.00
communities	2	400	21811	4	0.476	0.474	0.476	0.472	0.473	0.476
uni						2.45	3.35	335.50	102.40	0.15
nm	3	600	38743	6	0.447	0.445	0.447	0.445	0.445	0.447
cor						4.15	9.95	928.20	189.95	0.30
#	4	900	71654	9	0.386	0.370	0.386	0.385	0.384	0.386
	1					7.85	23.05	2539.15	388.25	0.50
	5	200	9919	2	0.298	0.296	0.298	0.296	0.296	0.298
×						1.05	0.65	98.60	38.70	0.10
sparsity	6	200	4958	2	0.299	0.297	0.299	0.297	0.297	0.299
spa						0.95	0.30	37.85	21.25	0.05
32	7 200	200	2483	2	0.300	0.299	0.300	0.300	0.299	0.300
		200				0.95	0.40	27.50	22.40	0.05
	8	400	38783	4	0.209	0.206	0.209	0.208	0.208	0.209
8						3.00	3.40	716.65	184.80	0.10
ivit	9	400	47775	4	0.123	0.113	0.123	0.122	0.122	0.122
sensitivity						3.45	3.30	819.90	229.85	0.05
sen	10	400	53864	4	Q 081	0.060	0.081	0.081	0.080	0.081
	10					3.50	3.80	1242.90	248.15	0.35

CNM = [Clauset, Newman, and Moore, 2004] GA = [Guimera and Amaral, 2005] N = [Newman, 2007] RB = [Reichardt and Bornholdt, 2004]

Comparison (cont.)

scalability		Exp#	# vert.	# edges	# clust	${f Q}_{ m orig}$	${ m Q_{CNM}}$	$\mathbf{Q_N}$	Q_{GA}	Q_{RB}	$\mathbf{Q}_{ ext{here}}$
							${ m t_{CNM}}$	${ m t_N}$	$ m t_{GA}$	$ m t_{RB}$	$ m t_{here}$
		1	1000	174990	2	0.357	0.357	0.357	0.356	0.358	0.357
	ty	1					10.33	17.00	15808.67	1333.67	0.47
	bili	2	5000	3749007	2	0.333	0.332	0.333	_	0.333	0.333
	ala						329.50	2973.00	_	53119.50	8.00
	SC	3	20000	24995617	2	0.300	0.297	0.300	_	_	0.300
							2199.33	18234.67	_	_	76.33

CNM = [Clauset, Newman, and Moore, 2004] GA = [Guimera and Amaral, 2005] N = [Newman, 2006]

RB = [Reichardt and Bornholdt, 2004]

Conclusions

- Community structure detection reduced to mincut
- mincut solved efficiently by multilevel graph partitioning
- The resulting algorithm is highly scalable and accurate

Thank you!