

UMPa: A Multi-objective, multi-level partitioner for communication minimization

Ümit V. Çatalyürek¹, Mehmet Deveci¹, Kamer Kaya¹, Bora Uçar²

¹Department of Biomedical Informatics, The Ohio State University ²LIP, ENS Lyon

Introduction

- Problem: distributing communicating tasks, modeled as a graph, among processing units.
 - Balanced load distribution
 - Good communication pattern
- Objective functions from the literature:
 - Total communication volume
 - Maximum communication volume
 - Maximum send volume

Problem: Input and objective

- Input: task graph G=(V,E)
 - V: vertex set representing a set of tasks
 - E: edge set representing task communications
- Objective: Find a partition $\prod = \{P_1, P_2, ..., P_K\}$ of the tasks s.t.

$$\max_{k} \left(\sum_{v \in P_{k}} c(v) \times f(v) \right)$$

is minimized

- c(v): volume of each transfer sent by v.
- f(v): number of parts that requires the data sent by v.

Problem: communication costs

 The objective function is equivalent to minimizing maximum send volume (maxSV).

Part	Send Vol.	Rec. Vol.	Send+rec.
P_{1}	3 + 2	2 + 1	8
P ₂	2+1+1	3 + 2 + 4	13
P ₃	4	1	5
Total	13	13	26

- maxSRV ← max send+receive volume
- totV ← total communication volume

 $c(v_4) = 2$

 $c(v_5) = 4$

Hypergraph Model

- Hypergraph H = (V, N)
 - A net is a subset of vertices.
 - Each net n has cost c_H(n)
- We model the task graph G(V,E) as a hypergraph
 - For each task s in G, let v_s be the corresponding vertex in H.
 - For each task s in G, the net set N contains a net n_{s.}
 - $n_s = \{v_d : ((s,d) \in E)\} \cup \{v_s\}$
 - $\bullet \quad c_H(n_s) = c(s)$

Hypergraph Model

• λ_n : Connectivity of a net **n**, i.e., the number of parts net **n** is connected.

$$totV = \sum_{n \in \mathbb{N}} c_H(n) \times (\lambda_n - 1)$$

Minimizing the formula, equivalent to minimizing the total communication volume [Ç & Aykanat'99].

Directed Hypergraph Model

- Directed hypergraph:
 - Flow: from the source pin to the other pins.
 - Source of $n_s = v_s$
- Allows to minimize maxSV and maxSRV (in addition to totV).
- Objective: Partition the vertices into K parts s.t.
 - The load is distributed equally.
 - $W_k < W_{avg}(1+\varepsilon)$ for $1 \le k \le K$
 - maxSV is minimized.

•
$$SV(P) = \sum_{v_s \in P} c_H(n_s) \times (\lambda_{\eta_s} - 1)$$

• $\max SV = \max_{k} (SV(P_k))$

Hypergraph Model: Example

$$\lambda_{n_2} = 3$$
, $\lambda_{n_1} = \lambda_{n_3} = \lambda_{n_4} = \lambda_{n_5} = 2$

Multi-level Approach

- Three phases:
 - Coarsening: obtain smaller and similar hypergraphs to the original, until either a minimum vertex count is reached or reduction on vertex number is lower than a threshold.
 - Initial Partitioning: find solution for the smallest hypergraph
 - Uncoarsening: Project the initial solution to the coarser graphs and refine it iteratively until a solution for the original hypergraph obtained.

Multi-level Approach

- Most of the available tools adapt multi-level approach with recursive bisection method.
 - A partition is obtained by recursive partitioning into 2 parts.
 - Works fine for total communication.
 - May not be suitable for minimizing maximum send (and/or send+receive) volume.
 - Only the information about 2 parts is available at each step.
 - Send and receive volumes of other parts are unknown.

- K-way multi-level partitioner.
- Uses directed hypergraph model.
 - Communication of the net flows from source to target vertices.
- Minimizes maxSV, while breaking ties by favoring reducing maxSRV, then the total volume.
- Currently, only coarsening phase of UMPa is shared memory parallel.
- Ultimate goal: To parallelize UMPa (MPI+OpenMP).

UMPa: Coarsening

- Neighbor vertices (u and v) are clustered by using agglomerative matching in coarsening phase.
 - Similarity of u and v

$$\sum_{n \in nets(u) \cap nets(v)} \frac{c_H(n)}{(pins(n)-1)}$$

```
Data: \mathcal{H} = (\mathcal{V}, \mathcal{N}), rep[]
for each vertex u \in \mathcal{V} in parallel do
     if CHECKANDLOCK(u) then
           if u is matched before then
                 UNLOCK(u)
                 continue
           \operatorname{\mathsf{adj}}_u \leftarrow \{\}
           for each vertex v \in \text{neighbors}[u] do
                 \operatorname{adj}_u \leftarrow \operatorname{adj}_u \cup \{v\}
                 conn[v] \leftarrow sim(v,u)
           v^* \leftarrow u
           conn^* \leftarrow 0
           for each vertex v \in adj_u do
                 v^r \leftarrow \mathsf{rep}[v]
                 if v^r \neq v then
                      conn[v^r] \leftarrow conn[v^r] + conn[v]
                 if conn[v^r] > conn^* then
                      if CHECKANDLOCK(v^r) then
                            conn^* \leftarrow conn[v^r]
                            v^* \leftarrow v^r
                             UNLOCK(v^*)
           \mathsf{rep}[u] \leftarrow v^*
           UNLOCK(v^*)
           UNLOCK(u)
```


UMPa: Initial Partitioning

- For the initial partitioning, we used PaToH to obtain k initial parts.
 - Although PaToH is used to minimize total communication volume but not maximum send volume:
 - We do not want a drastic increase in any of the communication metrics. So, minimizing total volume is a good idea both in theory and practice.
 - Using recursive bisection and FM-based improvement are favorable due to the small net sizes and high vertex degrees.

UMPa: Uncoarsening

- Solutions for the coarser hypergraphs are iteratively projected to finer ones and refined.
- Refinement method:
 - Traverses the boundary vertices in random order.
 - Random, since FM/KL based heuristics are expensive especially in K-way.
 - Computes move gains for each visited vertex and select the best move.

```
\begin{aligned} \mathbf{Data:} & \mathcal{H} = (\mathcal{V}, \mathcal{N}), \, \mathsf{boundary}[], \, \mathsf{part}[], \, \mathsf{SV}[], \, \mathsf{SRV}[] \\ & \mathbf{for} \, \, \mathbf{each} \, \, \mathsf{unlocked} \, u \in \mathsf{boundary} \, \mathbf{do} \\ & (\mathit{bestMaxSV}, \mathit{bestMaxSRV}, \mathit{bestTotV}) \leftarrow (\mathit{maxSV}, \mathit{maxSRV}, \mathit{totV}) \\ & \mathit{bestPart} \leftarrow \mathsf{part}[u] \\ & \mathbf{for} \, \, \mathbf{each} \, \, \mathsf{part} \, p \, \mathsf{other} \, \, \mathsf{than} \, \mathsf{part}[u] \, \, \mathbf{do} \\ & | \, \mathbf{if} \, \, p \, \mathsf{has} \, \, \mathsf{enough} \, \mathsf{space} \, \, \mathsf{for} \, \, \mathsf{vertex} \, u \, \, \mathbf{then} \\ & | \, (\mathit{SV}[], \mathit{SRV}[], \mathit{moveV}) \leftarrow \mathsf{calculateComVols}(v, \, p) \\ & | \, (\mathit{moveMaxSV}, \mathit{moveMaxSRV}) \leftarrow \\ & | \, \mathsf{calculateMax}(\mathsf{moveSV}[], \, \mathsf{moveSRV}[]) \\ & | \, \, \mathsf{MoveSelect}(\mathit{moveMaxSV}, \mathit{moveMaxSRV}, \mathit{moveV}, p, \\ & | \, \, \mathit{bestMaxSV}, \mathit{bestMaxSRV}, \mathit{bestTotV}, \mathit{bestPart}) \end{aligned}
\mathbf{if} \, \, \mathit{bestPart} \neq \mathsf{part}[u] \, \, \mathbf{then} \\ & | \, \, \mathsf{move} \, \, \mathit{u} \, \, \mathsf{to} \, \mathit{bestPart} \, \, \mathsf{and} \, \, \mathsf{update} \, \, \mathsf{data} \, \, \mathsf{structures} \, \, \mathsf{accordingly} \end{aligned}
```


Move Selection

- Always move a visited vertex to the part with the maximum reduction on maxSV.
 - Tie-breaking is applied for equal reductions.
 - When there is an equality, the vertex move is favored toward the part that minimizes maxSRV, then totV.

Tie-breaking

Vertex	Part	maxSV	maxSRV	totV
$\overline{v_1}$	\mathcal{V}_1	-1	+1	-2
v_1	$ \mathcal{V}_2 $	-2	-2	-3
v_2	$ \mathcal{V}_2 $	0	-1	-1
v_2	$ \mathcal{V}_3 $	-1	+1	0
v_3	$ \mathcal{V}_1 $	-1	-1	0
v_3	$ \mathcal{V}_3 $	-1	-1	-1
v_4	$ \mathcal{V}_1 $	-1	-1	0
v_4	V_3	-1	+1	+1
v_5	$ \mathcal{V}_3 $	0	0	-1
v_6	$ \mathcal{V}_1 $	-1	0	+1
v_6	$ \mathcal{V}_3 $	-1	0	0
v_7	$ \mathcal{V}_1 $	-1	+1	0
v_7	V_3	-1	-1	0
v_5	$ \mathcal{V}_2 $	+2	+2	-1
v_8	$ \mathcal{V}_1 $	0	0	0
v_8	$ V_2 $	+2	+2	+1

Initially, maxSV=6, maxSRV=9, totV= 12. (v₃, v₄, v₆, v₇)

Experimental Results

- Experiments
 - 123 graphs
 - 10 graph classes
 - For K = 4, 16, 64, 256
 - Each instance is partitioned 10 times.
- Compared with PaToH minimizing total volume.
- The power of tie-breaking is also studied.

Average Performance

	PaToH + Refinement		UMPa			UMPa			
	No tie breaking			No tie breaking			With tie breaking		
K	maxSV	maxSRV	totV	maxSV	maxSRV	totV	maxSV	maxSRV	totV
4	0.93	1.05	1.06	0.73	0.83	0.93	0.66	0.77	0.84
16	0.93	1.06	1.04	0.84	0.94	1.11	0.73	0.83	0.98
64	0.91	1.04	1.02	0.86	0.98	1.12	0.76	0.87	1.00
256	0.91	1.03	1.01	0.89	1.00	1.10	0.81	0.91	1.02
Avg.	0.92	1.05	1.03	0.83	0.93	1.06	0.74	0.84	0.96

- The geometric mean of the relative results wrt PaToH used to minimize totV.
- Tie-breaking is very useful.
- As K increases the reduction rate decreases, since the total communication is distributed to more parts.

Experiment Results: K=16

Graph	maxSV	maxSRV	totV	Time
coPapersDBLP	0.862	0.845	1.252	1.591
as-22july06	0.760	0.787	1.016	4.286
road_central	0.558	0.577	0.716	0.247
smallworld	0.907	0.909	0.928	6.236
delaunay_n14	0.966	1.004	1.019	4.632
delaunay_n17	0.917	0.928	1.033	2.330
hugetrace-00010	0.980	0.981	1.107	0.462
hugetric-00020	0.964	0.964	1.075	0.484
venturiLevel3	0.924	0.925	1.072	0.584
adaptive	0.944	0.945	1.062	0.543
rgg_n_2_15_s0	0.815	0.867	0.982	3.029
rgg_n_2_21_s0	0.919	0.949	1.030	0.440
tn2010	0.838	1.062	4.214	1.222
ut2010	0.219	0.253	0.328	1.907
af_shell9	0.987	0.986	1.065	0.583
audikw1	0.787	0.826	1.094	0.479
asia.osm	0.476	0.496	0.790	0.190
belgium.osm	0.855	0.865	0.990	0.408
memplus	0.696	0.522	1.267	3.130
t60k	0.958	0.958	1.055	3.414

- Best and worst improvements for each graph class normalized w.r.t.
 PaToH.
- 78% (75%, 67%)
 improvement on maxSV for ut2010.

Experiment Results: K=256

Graph	maxSV	maxSRV	totV	Time
coPapersCiteseer	0.694	0.693	1.005	2.937
coPapersDBLP	0.730	0.690	0.972	7.216
as-22july06	0.397	0.637	1.181	12.495
smallworld	0.839	0.843	0.899	7.965
delaunay_n20	0.927	0.943	1.024	3.829
delaunay_n21	0.948	0.963	1.033	3.066
hugetrace-00000	1.020	1.021	1.075	2.228
hugetric-00010	0.950	0.951	1.065	1.814
adaptive	0.976	0.978	1.063	2.322
venturiLevel3	0.993	0.996	1.057	2.642
rgg_n_2_22_s0	0.906	0.941	1.010	1.647
$rgg_n_2_2_3_s0$	0.862	0.891	1.009	1.286
ri2010	0.866	0.965	0.994	12.028
tx2010	0.586	0.816	0.951	1.836
af_shell10	0.986	0.987	1.056	1.758
audikw1	0.895	0.917	1.018	2.551
asia.osm	0.917	0.925	0.989	0.260
great-britain.osm	0.788	0.804	0.997	0.505
finan512	0.965	1.040	1.022	10.073
memplus	0.509	0.541	1.264	16.837

 50% improvement on maxSV and maxSRV for memplus although total volume increases by 26%.

Execution Time

- K-way partitioners are costly due to the complexity of the refinement heuristic for maxSV.
- UMPa gets slower when the number of parts is large

K					Avg.
Relative time	1.02	1.29	2.01	5.76	1.98

Conclusion & Future Work

- Proposed a directed hypergraph model to minimize maxSV, maxSRV and totV.
- We developed a multi-level, K-way partitioner, UMPa.
- Employed a tie-breaking scheme to handle multiple communication metrics.
- Currently, UMPa is parallel (shared memory) at coarsening phase.
- Parallelizing & speeding up UMPa and the proposed refinement approach.

- For more information visit
 - http://bmi.osu.edu/hpc
- Research at the HPC Lab is funded by


```
\begin{array}{l|l} \textbf{for each} & n \in \mathsf{nets}[u] \ \textbf{do} \\ & \textbf{if} \ s(n) = u \ \textbf{then} \\ & send\mathsf{Gain}[\mathsf{part}[u]] \leftarrow \mathsf{send}\mathsf{Gain}[\mathsf{part}[u]] + (\lambda_n - 1)\mathsf{c}[n] \\ & \textbf{if} \ \Lambda(n,\mathsf{part}[u]) > 1 \ \textbf{then} \\ & receiveGain \leftarrow receiveGain - \mathsf{c}[n] \\ & uToPartU \leftarrow uToPartU + \mathsf{c}[n] \\ & \textbf{else if} \ \Lambda(n,\mathsf{part}[u]) = 1 \ \textbf{then} \\ & send\mathsf{Gain}[\mathsf{part}[s(n)]] \leftarrow \mathsf{send}\mathsf{Gain}[\mathsf{part}[s(n)]] + \mathsf{c}[n] \\ & receiveGain \leftarrow receiveGain + \mathsf{c}[n] \end{array}
```



```
for each part p other than part[u] do
    if p has enough space for vertex u then
        receiveLoss \leftarrow 0
         sendLoss[] \leftarrow 0
         sendLoss[p] \leftarrow sendGain[part[u]] + uToPartU
         for each n \in nets[u] do
             if s(n) = u then
                 if \Lambda(n,p) > 0 then
                      sendLoss[p] \leftarrow sendLoss[p] - c[n]
                      receiveLoss \leftarrow receiveLoss - c[n]
             else if \Lambda(n,p)=0 then
                  sendLoss[part[s(n)]] \leftarrow sendLoss[part[s(n)]] + c[n]
                 receiveLoss \leftarrow receiveLoss + c[n]
         (moveSV, moveSRV) \leftarrow (-\infty, -\infty)
         for each part q do
             \Delta_S \leftarrow \text{sendLoss}[q] - \text{sendGain}[q]
             \Delta_R \leftarrow 0
             if q = part[u] then
                 \Delta_R \leftarrow receiveGain
             else if q = p then
                 \Delta_R \leftarrow receiveLoss
             moveSV \leftarrow max(moveSV, SV[q] + \Delta_S)
             moveSRV \leftarrow max(moveSRV, SV[q] + \Delta_S + RV[q] + \Delta_R)
        moveV \leftarrow totV + receiveLoss - receiveGain
         MOVESELECT(moveSV, moveSRV, moveV, p,
                          bestMaxSV, bestMaxSRV, bestTotV, bestPart)
```