Graph Partitioning using Natural Cuts

Daniel Delling Andrew Goldberg Ilya Razenshteyn Renato Werneck

Microsoft Research Silicon Valley

DIMACS 2012

Graph Partitioning

• Informally: split graph into loosely connected regions (cells).

Graph Partitioning

- Formal definition:
	- Input: undirected graph $G = (V, E)$
	- Output: partition of V into cells V_1, V_2, \ldots, V_k
	- Goal: minimize edges between cells
- Standard variant: enforce $|V_i| \leq U$ for fixed U :
	- #cells may vary $(\geq \lceil n/U \rceil)$.
- Balanced variant: fix $\#$ cells k and imbalance ϵ :
	- exactly k (maybe disconnected) cells, size $\leq (1+\epsilon)\lceil n/U\rceil$.

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

Partitioner Using Natural-Cut Heuristics

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

PUNCH: Partitioner Using Natural-Cut Heuristics

Algorithm Outline

- 1. Filtering phase:
	- find natural cuts at appropriate scale

Algorithm Outline

- 1. Filtering phase:
	- find natural cuts at appropriate scale
	- keep cut edges, contract all others

Algorithm Outline

- 1. Filtering phase:
	- find natural cuts at appropriate scale
	- keep cut edges, contract all others
- 2. Assembly phase:
	- partition (smaller) contracted graph
	- greedy $+$ local search $[+$ combinations]

- Must find sparse cuts between dense regions:
- Sparsest cuts?
	- Too expensive.
- Compute random $s-t$ cuts?
	- Mostly trivial: degrees are small.
- We need something else:
	- $s-t$ cuts between regions

1. Pick a center v.

 $^{\circledR}$

- 1. Pick a center v .
- 2. Grow BFS of size U around v :
	- First $U/10$ nodes: core

- 1. Pick a center v .
- 2. Grow BFS of size U around v :
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring

- 1. Pick a center v .
- 2. Grow BFS of size U around v :
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v:
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v:
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

Preprocess tiny cuts explicitly:

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v:
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

Preprocess tiny cuts explicitly:

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v :
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

Preprocess tiny cuts explicitly:

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v :
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

Preprocess tiny cuts explicitly:

- 1. Pick a **center** v .
- 2. Grow BFS of size U around v:
	- First $U/10$ nodes: core
	- Unscanned neighbors: ring
- 3. Find minimum core/ring cut:
	- standard $s-t$ mincut.
- 4. Repeat for several "random" v:
	- until each vertex in > 2 cores

Preprocess tiny cuts explicitly:

- identify 1-cuts and 2-cuts
- reduces road networks in half
- accelerates natural cut detection

- 1. many edges are never cut
- 2. cut edges partition graph into fragments
- 3. fragment size $\leq U$ (usually much less)

- 1. many edges are never cut
- 2. cut edges partition graph into fragments
- 3. fragment size $\leq U$ (usually much less)
	- Build fragment graph:
		- fragment \rightarrow weighted vertex
		- adjacent fragments \rightarrow weighted edge

- 1. many edges are never cut
- 2. cut edges partition graph into fragments
- 3. fragment size $\leq U$ (usually much less)
	- Build fragment graph:
		- fragment \rightarrow weighted vertex
		- adjacent fragments \rightarrow weighted edge

- 1. many edges are never cut
- 2. cut edges partition graph into fragments
- 3. fragment size $\leq U$ (usually much less)
	- Build fragment graph:
		- fragment \rightarrow weighted vertex
		- adjacent fragments \rightarrow weighted edge

Assembly phase can operate on much smaller graph.

• Algorithm:

- Algorithm:
	- start with isolated fragments;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;
	- stop when maximal.

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;
	- stop when maximal.

- Randomized greedy:
	- join fragments that are well-connected...
	- relative to their sizes.

- Algorithm:
	- start with isolated fragments;
	- combine adjacent cells;
	- stop when maximal.

- Randomized greedy:
	- join fragments that are well-connected...
	- relative to their sizes.

Reasonable solutions, but one can do better.

- For each pair of adjacent cells:
	- disassemble into fragments;
	- run constructive on subproblem;
	- keep new solution if better.

- For each pair of adjacent cells:
	- disassemble into fragments;
	- run constructive on subproblem;
	- keep new solution if better.
- Variant adds assembled neighbors:
	- more flexibility;
	- best results (default).

- For each pair of adjacent cells:
	- disassemble into fragments;
	- run constructive on subproblem;
	- keep new solution if better.
- Variant adds assembled neighbors:
	- more flexibility;
	- best results (default).
- Could also disassemble neighbors:
	- subproblems too large;
	- worse results.

- For each pair of adjacent cells:
	- disassemble into fragments;
	- run constructive on subproblem;
	- keep new solution if better.
- Variant adds assembled neighbors:
	- more flexibility;
	- best results (default).
- Could also disassemble neighbors:
	- subproblems too large;
	- worse results.

Evaluate each subproblem multiple times (use randomization).

- Multiple tries for each pair
	- local search is randomized

- Multiple tries for each pair
	- local search is randomized
- Multistart:
	- constructive+local search;
	- pick best of multiple runs.

- Multiple tries for each pair
	- local search is randomized
- Multistart:
	- constructive+local search;
	- pick best of multiple runs.

- Multiple tries for each pair
	- local search is randomized
- Multistart:
	- constructive+local search;
	- pick best of multiple runs.
- Combination:
	- combine some solutions;
	- merge $+$ local search.

- Multiple tries for each pair
	- local search is randomized
- Multistart:
	- constructive+local search;
	- pick best of multiple runs.
- Combination:
	- combine some solutions;
	- merge $+$ local search.

- Multiple tries for each pair
	- local search is randomized
- Multistart:
	- constructive+local search;
	- pick best of multiple runs.
- Combination:
	- combine some solutions;
	- merge $+$ local search.

(Europe, $U = 2^{16}$)

More processing time \rightarrow better solutions

Running Times

Europe (18M vertices), 12 cores

Running Times

Europe (18M vertices), 12 cores

Bottlenecks: assembly for small U , filtering for large U

Solution Quality

(Europe, 16 retries, no multistart/combination)

- $U:$ maximum cell size allowed
- A: average cell size in PUNCH solution
- B: average boundary edges per cell

Solution Quality

- $U:$ maximum cell size allowed
- A: average cell size in PUNCH solution
- B: average boundary edges per cell

Road networks have very small separators!

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

PUNCH can find balanced partitions:

1. run standard PUNCH with $U = (1 + \epsilon) \lceil n/U \rceil$;

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

PUNCH can find balanced partitions:

1. run standard PUNCH with $U = (1 + \epsilon) \lceil n/U \rceil$;

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lfloor n/U \rfloor$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lceil n/U \rceil$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lceil n/U \rceil$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lceil n/U \rceil$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lfloor n/U \rfloor$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Existing packages:

- METIS [KK99]
- SCOTCH [PR96]
- Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size $\leq (1+\epsilon)\lceil n/U\rceil$.

- 1. run standard PUNCH with $U = (1 + \epsilon) \lfloor n/U \rfloor$;
- 2. pick k base cells, reassign the rest (randomized multistart)

Balanced Partitions

PUNCH finds better solutions...

Balanced Partitions

Balanced Partitions

Vancouver by METIS

Vancouver by PUNCH

Portland by METIS

Portland by PUNCH

- $\bullet \epsilon = 0.03$
- 9 runs
- default PUNCH

- $\bullet \epsilon = 0.03$
- 9 runs
- default PUNCH

- $\bullet \epsilon = 0.03$
- 9 runs
- strong PUNCH

- $\bullet \epsilon = 0.03$
- 9 runs
- strong PUNCH

- $\bullet \epsilon = 0.03$
- 9 runs
- strong PUNCH

Final Thoughts

- PUNCH can be used to find multilevel partitions top-down works best
- How to improve balancing?
- Can it be made faster? though fast enough for our purposes
- How far is it from optimal?
- Does it work well on other graph classes?
- Crucial ingredient for Bing Maps driving directions engine

Thank you!

