
1

Graph Partitioning using Natural Cuts

Daniel Delling Andrew Goldberg
Ilya Razenshteyn Renato Werneck

Microsoft Research Silicon Valley

DIMACS 2012

2

Graph Partitioning

• Informally: split graph into loosely connected regions (cells).

3

Graph Partitioning

• Formal definition:
• Input: undirected graph G = (V ,E)
• Output: partition of V into cells V1, V2, . . . , Vk

• Goal: minimize edges between cells

• Standard variant: enforce |Vi | ≤ U for fixed U:
• #cells may vary (≥ dn/Ue).

• Balanced variant: fix #cells k and imbalance ε:
• exactly k (maybe disconnected) cells, size ≤ (1 + ε)dn/Ue.

4

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts
rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

PUNCH:

Partitioner Using Natural-Cut Heuristics

4

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts
rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

PUNCH:

Partitioner Using Natural-Cut Heuristics

4

Natural Cuts

Road networks: dense regions (grids) interleaved with natural cuts
rivers, mountains, deserts, forests, parks, political borders, freeways, . . .

PUNCH: Partitioner Using Natural-Cut Heuristics

5

Algorithm Outline

1. Filtering phase:
• find natural cuts at appropriate scale

• keep cut edges, contract all others

2. Assembly phase:
• partition (smaller) contracted graph
• greedy + local search [+ combinations]

5

Algorithm Outline

1. Filtering phase:
• find natural cuts at appropriate scale
• keep cut edges, contract all others

2. Assembly phase:
• partition (smaller) contracted graph
• greedy + local search [+ combinations]

5

Algorithm Outline

1. Filtering phase:
• find natural cuts at appropriate scale
• keep cut edges, contract all others

2. Assembly phase:
• partition (smaller) contracted graph
• greedy + local search [+ combinations]

6

Filtering: Finding Natural Cuts

• Must find sparse cuts between
dense regions:

• Sparsest cuts?
• Too expensive.

• Compute random s–t cuts?
• Mostly trivial: degrees are small.

• We need something else:
• s–t cuts between regions

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :

• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:

• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core

• Unscanned neighbors: ring

3. Find minimum core/ring cut:

• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:

• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

7

Filtering: Finding Natural Cuts

1. Pick a center v .

2. Grow BFS of size U around v :
• First U/10 nodes: core
• Unscanned neighbors: ring

3. Find minimum core/ring cut:
• standard s–t mincut.

4. Repeat for several “random” v :
• until each vertex in ≥ 2 cores

v

U/10 nodes

U nodes

Preprocess tiny cuts explicitly:

• identify 1-cuts and 2-cuts

• reduces road networks in half

• accelerates natural cut detection

8

Properties of Filtering

1. many edges are never cut

2. cut edges partition graph into fragments

3. fragment size ≤ U (usually much less)

• Build fragment graph:
• fragment → weighted vertex
• adjacent fragments → weighted edge

U fragments frag size

4 096 605 864 30
65 536 104 410 173

1 048 576 10 045 1 793
(Europe: 18M nodes)

Assembly phase can operate on much smaller graph.

8

Properties of Filtering

1. many edges are never cut

2. cut edges partition graph into fragments

3. fragment size ≤ U (usually much less)

• Build fragment graph:
• fragment → weighted vertex
• adjacent fragments → weighted edge

U fragments frag size

4 096 605 864 30
65 536 104 410 173

1 048 576 10 045 1 793
(Europe: 18M nodes)

Assembly phase can operate on much smaller graph.

8

Properties of Filtering

1. many edges are never cut

2. cut edges partition graph into fragments

3. fragment size ≤ U (usually much less)

• Build fragment graph:
• fragment → weighted vertex
• adjacent fragments → weighted edge

U fragments frag size

4 096 605 864 30
65 536 104 410 173

1 048 576 10 045 1 793
(Europe: 18M nodes)

Assembly phase can operate on much smaller graph.

8

Properties of Filtering

1. many edges are never cut

2. cut edges partition graph into fragments

3. fragment size ≤ U (usually much less)

• Build fragment graph:
• fragment → weighted vertex
• adjacent fragments → weighted edge

U fragments frag size

4 096 605 864 30
65 536 104 410 173

1 048 576 10 045 1 793
(Europe: 18M nodes)

Assembly phase can operate on much smaller graph.

9

Assembly: Constructive

• Algorithm:

• start with isolated fragments;
• combine adjacent cells;
• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;

• combine adjacent cells;
• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;

• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;

• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;

• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;

• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;

• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;
• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;
• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

9

Assembly: Constructive

• Algorithm:
• start with isolated fragments;
• combine adjacent cells;
• stop when maximal.

• Randomized greedy:
• join fragments that are well-connected...
• ...relative to their sizes.

Reasonable solutions, but one can do better.

10

Assembly: Local Search

• For each pair of adjacent cells:
• disassemble into fragments;
• run constructive on subproblem;
• keep new solution if better.

• Variant adds assembled neighbors:
• more flexibility;
• best results (default).

• Could also disassemble neighbors:
• subproblems too large;
• worse results.

Evaluate each subproblem multiple times (use randomization).

10

Assembly: Local Search

• For each pair of adjacent cells:
• disassemble into fragments;
• run constructive on subproblem;
• keep new solution if better.

• Variant adds assembled neighbors:
• more flexibility;
• best results (default).

• Could also disassemble neighbors:
• subproblems too large;
• worse results.

Evaluate each subproblem multiple times (use randomization).

10

Assembly: Local Search

• For each pair of adjacent cells:
• disassemble into fragments;
• run constructive on subproblem;
• keep new solution if better.

• Variant adds assembled neighbors:
• more flexibility;
• best results (default).

• Could also disassemble neighbors:
• subproblems too large;
• worse results.

Evaluate each subproblem multiple times (use randomization).

10

Assembly: Local Search

• For each pair of adjacent cells:
• disassemble into fragments;
• run constructive on subproblem;
• keep new solution if better.

• Variant adds assembled neighbors:
• more flexibility;
• best results (default).

• Could also disassemble neighbors:
• subproblems too large;
• worse results.

Evaluate each subproblem multiple times (use randomization).

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

Local search retries

(Europe, U = 216)

More processing time → better solutions

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

Local search retries

(Europe, U = 216)

More processing time → better solutions

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

●
● ● ●

Local search retries
Multistart

(Europe, U = 216)

More processing time → better solutions

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

●
● ● ●

Local search retries
Multistart

(Europe, U = 216)

More processing time → better solutions

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

●

●
●

●
● ● ●

Local search retries
Multistart
Combination

(Europe, U = 216)

More processing time → better solutions

11

Assembly: Better Solutions

• Multiple tries for each pair
• local search is randomized

• Multistart:
• constructive+local search;
• pick best of multiple runs.

• Combination:
• combine some solutions;
• merge + local search.

●

●

●

●

●
●

●
●

● ● ●

ASSEMBLY TIME (s)

C
U

T
 S

IZ
E

10
00

0
11

00
0

12
00

0
13

00
0

14
00

0
15

00
0

0.1 1 10 100 1000 10000

●

●
●

●
● ● ●

Local search retries
Multistart
Combination

(Europe, U = 216)

More processing time → better solutions

12

Running Times

● ● ● ● ● ● ●

Maximum cell size (U)

T
im

e
(s

)

● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●

●

●

●

●

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

210 212 214 216 218 220 222

Tiny cuts
Natural cuts
Greedy + Local search
Total

Europe (18M vertices), 12 cores

Bottlenecks: assembly for small U, filtering for large U

12

Running Times

● ● ● ● ● ● ●

Maximum cell size (U)

T
im

e
(s

)

● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

● ●

●

●

●

●

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

210 212 214 216 218 220 222

Tiny cuts
Natural cuts
Greedy + Local search
Total

Europe (18M vertices), 12 cores

Bottlenecks: assembly for small U, filtering for large U

13

Solution Quality

U A B B/
√
U B/ 3

√
U

1 024 895 16.8 0.52 1.66
4 096 3 602 27.6 0.43 1.73

16 384 14 437 45.6 0.36 1.80
65 536 57 376 72.7 0.28 1.80

262 144 222 626 103.7 0.20 1.62
1 048 576 826 166 134.3 0.13 1.32
4 194 304 3 105 245 127.9 0.06 0.79

(Europe, 16 retries, no multistart/combination)

U: maximum cell size allowed

A: average cell size in PUNCH solution

B: average boundary edges per cell

Road networks have very small separators!

13

Solution Quality

U A B B/
√
U B/ 3

√
U

1 024 895 16.8 0.52 1.66
4 096 3 602 27.6 0.43 1.73

16 384 14 437 45.6 0.36 1.80
65 536 57 376 72.7 0.28 1.80

262 144 222 626 103.7 0.20 1.62
1 048 576 826 166 134.3 0.13 1.32
4 194 304 3 105 245 127.9 0.06 0.79

(Europe, 16 retries, no multistart/combination)

U: maximum cell size allowed

A: average cell size in PUNCH solution

B: average boundary edges per cell

Road networks have very small separators!

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

14

Experimental Comparison

Existing packages:

• METIS [KK99]

• SCOTCH [PR96]

• Kappa [HSS10], KaSPar [OS10], Kaffpa [SS11], KaffpaE [SS12]

They work on the balanced variant:

• find k cells with size ≤ (1 + ε)dn/Ue.

PUNCH can find balanced partitions:

1. run standard PUNCH
with U = (1 + ε)dn/Ue;

2. pick k base cells,
reassign the rest (randomized multistart)

15

Balanced Partitions

PUNCH finds better solutions...

K=4 K=16 K=64

Solution Quality

R
el

at
iv

e
cu

t s
iz

e
(P

U
N

C
H

=
1)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

PUNCH
KAFFPA
KASPAR
KAPPA
SCOTCH
METIS

(Europe, ε = 0.03)

...in reasonable time.(Europe, ε = 0.03)

15

Balanced Partitions

PUNCH finds better solutions...

K=4 K=16 K=64

Solution Quality

R
el

at
iv

e
cu

t s
iz

e
(P

U
N

C
H

=
1)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

PUNCH
KAFFPA
KASPAR
KAPPA
SCOTCH
METIS

(Europe, ε = 0.03)

...in reasonable time.

K=4 K=16 K=64

Running Times

R
un

ni
ng

 T
im

e
[s

]

0
50

0
10

00
15

00
20

00
25

00
30

00

PUNCH
KAFFPA
KASPAR
KAPPA
SCOTCH
METIS

(Europe, ε = 0.03)

15

Balanced Partitions

PUNCH finds better solutions...

K=4 K=16 K=64

Solution Quality

R
el

at
iv

e
cu

t s
iz

e
(P

U
N

C
H

=
1)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

PUNCH
KAFFPA
KASPAR
KAPPA
SCOTCH
METIS

(Europe, ε = 0.03)

...in reasonable time.

K=4 K=16 K=64

Running Times

R
un

ni
ng

 T
im

e
[s

]

2
8

32
12

8
51

2
20

48

PUNCH
KAFFPA
KASPAR
KAPPA
SCOTCH
METIS

(Europe, ε = 0.03)

16

Vancouver by METIS

17

Vancouver by PUNCH

18

Portland by METIS

19

Portland by PUNCH

20

DIMACS Instances

Setup:

• ε = 0.03

• 9 runs

• default PUNCH

median solution
instance 2 5 8 16 32 64
luxembourg 16 46 82 148 245 377
belgium 72 167 316 565 923 1436
netherlands 40 81 191 380 679 1210
italy 36 91 201 349 690 1187
great-britain 84 225 393 638 1175 1846
germany 113 283 509 881 1512 2332
asia 7 20 48 112 249 470
europe 140 312 523 955 1536 2576

20

DIMACS Instances

Setup:

• ε = 0.03

• 9 runs

• default PUNCH

average time [s]
instance 2 5 8 16 32 64
luxembourg 1.2 2.4 2.4 1.9 1.5 2.2
belgium 16.0 19.9 20.8 20.4 15.7 18.3
netherlands 28.1 17.1 15.2 15.0 12.1 16.9
italy 97.8 78.6 65.0 51.9 41.7 40.0
great-britain 60.4 60.6 57.7 50.8 43.6 47.6
germany 128.6 125.8 104.7 91.5 74.3 76.4
asia 67.5 76.6 60.1 50.9 46.1 43.7
europe 1051.0 814.0 627.4 512.8 427.7 375.0

20

DIMACS Instances

Setup:

• ε = 0.03

• 9 runs

• strong PUNCH

median solution
instance 2 5 8 16 32 64
luxembourg 16 46 80 142 238 377
belgium 71 163 313 548 900 1421
netherlands 40 81 191 369 662 1199
italy 36 90 200 339 673 1175
great-britain 83 220 381 636 1140 1821
germany 111 279 503 852 1488 2317
asia 7 20 48 111 242 462
europe 139 311 522 923 1517 2538

20

DIMACS Instances

Setup:

• ε = 0.03

• 9 runs

• strong PUNCH

average time [s]
instance 2 5 8 16 32 64
luxembourg 7.2 16.4 18.1 13.7 11.1 8.6
belgium 51.2 99.9 113.6 115.0 94.9 58.5
netherlands 132.2 57.3 52.8 59.2 50.1 48.4
italy 157.2 173.8 174.3 135.1 110.2 80.7
great-britain 103.6 165.5 189.8 167.0 135.3 108.5
germany 195.6 347.7 291.8 253.9 214.1 153.0
asia 83.4 200.0 95.3 73.7 66.4 58.4
europe 2217.9 1451.8 939.8 732.5 604.0 494.6

20

DIMACS Instances

Setup:

• ε = 0.03

• 9 runs

• strong PUNCH

best solution
instance 2 5 8 16 32 64
luxembourg 16 46 79 139 235 369
belgium 70 161 308 532 880 1401
netherlands 40 81 191 360 652 1186
italy 36 89 198 338 665 1166
great-britain 82 213 377 633 1118 1796
germany 108 276 485 845 1475 2282
asia 7 20 47 110 238 452
europe 138 311 515 905 1488 2509

21

Final Thoughts

• PUNCH can be used to find multilevel partitions
top-down works best

• How to improve balancing?

• Can it be made faster?
though fast enough for our purposes

• How far is it from optimal?

• Does it work well on other graph classes?

• Crucial ingredient for Bing Maps driving directions engine

22

Thank you!

