

An Evaluation of the Zoltan Parallel (Hyper-)Graph Partitioners

Erik G. Boman and Siva Rajamanickam

10th DIMACS Challenge, Atlanta, Feb. 2012

Models and Objectives

- Graph edge cut (EC)
 - Classic model, lots of software, but has limitations
 - Inaccurate representation of communication in parallel computing
 - Requires symmetric/undirected graph
- Graph communication volume (CV)
 - CV-sum: total comm. volume
 - CV-max: max comm. volume for any part (process)
- Hypergraph edge cut
 - One hyperedge for each vertex, includes all nbors
 - Exactly CV-sum

Partitioning Software

Lots of good partitioners available.

Focus on software used in scientific computing.

Software	Graph	Hypergraph	Parallel
Chaco	X		
(P)Jostle	X		X
(PT)Scotch	X		X
(Par)Metis	X		X
Patoh		X	
Mondriaan		X	
Zoltan	X*	X	X
Ka(FF)PPa	X		X

Zoltan

- Parallel toolkit for load balancing and combinatorial scientific computing
 - Also a Trilinos package
- Contains several native partitioning algorithms
 - And interfaces to others as 3rd party libraries
- We focus on PHG (Parallel Hypergraph and Graph Partitioner)
 - Was designed as a hypergraph partitioner
 - Graph partitioning is supported by treating each edge as an hyperedge of size two

Empirical Study

- Evaluate performance of Zoltan both as graph and hypergraph partitioner
 - Default parameters, "out-of-box"
- Use subset of DIMACS challenge data
 - Selected 22 graphs that we deemed relevant to scientific computing
 - 7 families represented
 - Excluded random and scale-free graphs
 - Picked large graphs suitable for parallel computing
- Parallel test platform
 - Hopper Cray XE6, 24 cores per node (#8 in Top500)

Edge cut (EC)

Graph partitioner (ParMetis) wins, as expected

Comm. volume (CV-max)

No partitioner optimizes this objective. A bit surprisingly, ParMetis wins again.

Comm. volume (CV-sum)

This time, a close race .Right metric for hypergraphs, but ParMetis takes advantage of symmetry.

Cut Quality Scalability

Cut Quality Scalability

Cut Quality Scalability

Zoltan HG Scalability (time)

Impact on Parallel Codes

– GMRES in Trilinos

- Epetra distributed matrix
- Mat-vecs dominate
- No preconditioner
- Choice of metric/ partitioner makes little difference
 - Any partitioner better than block will do
 - Bad news for partitioning research?

Matrix	Block	ParMet is	Zoltan HG
audikw1	8.81	3.22	3.01
nlpkkt120	8.45	6.18	6.00
G3_circuit	2.76	1.59	1.55
af_shell10	2.61	2.74	2.79

Real data is NOT always symmetric

Nonsymmetric A

- Symmetrize for graph partitioners
- Use A+A' (square case)
- Use AA' or A'A (rectangular case)
- Usually better to partition A directly
 - Never need to form A+A' or A'A
 - Need hypergraph partitioner

Nonsymmetric Ex. 1

- A is nonsymmetric
- Compare graph partitioning on (A+A') and hypergraph on A
- Measure cuts on A

Web-Stanford	H.P. on A	G.P. on A+A'
CV-max (A)	267	2,768
CV-sum (A)	2,020	21,858

Nonsymmetric Ex. 2

- A is rectangular term-document matrix
- Suppose we want a row partitioning of A
- Compare two options:
 - Graph partitioning on AA'
 - Hypergraph partitioning on A
- Ex: tbdlinux (113k x 20k, 2M nonzeros)
 - Note: AA' is too dense, so must filter it

tbdlinux	H.P. on A	G.P. on AA'
CV-max (A)	5,063	17,080
CV-sum (A)	38,970	132,210

Conclusions

- Zoltan is a good general-purpose partitioner
 - CV close to ParMetis on symmetric problems
 - Real benefit is for nonsymmetric problems
- Zoltan is decent also as a graph partitioner
 - Does not exploit symmetry, so not as good as ParMetis
- Zoltan shows good scalability up to ~1K cores
 - Cut quality degrades slowly
 - Partitioning time decreases (though not linearly)
- In real apps, any reasonable partitioner will do
 - Optimizing the "right" metric isn't necessary
- Suggestion for future DIMACS partition challenge:
 - Please include nonsymmetric problems (digraphs or hypergraphs)