Using Stable Communities for Modularity Maximization

Sanjukta Bhowmick and Sriram Srinivasan University of Nebraska at Omaha Feb 13 2012

Introduction

- Networks are models of systems of interacting/ interdependent entities
 - **→** Vertices ⇔ Entities, Edges ⇔ Relations
- Analysis Objective: Find communities—groups of vertices that have denser connections within groups and sparser connections across groups.
- Modularity: $Q = \Sigma i (C(i,i)-a(i)^2)$
 - Fraction of within community edges expected edges for random connections

Modularity Maximization

- Higher modularity indicates better community

 —"height of a peak is a measure of the strength of the community division" [Newman Girvan 2003]
- Optimization Problem: Find Qmax-- the maximum modularity of a given network.
- The decision the problem is NP-hard [Brandes *et. al.* 2007]

Vertex Perturbation

- Agglomerative methods –greedy heuristics for increasing modularity
- ✓ Value of modularity is affected by the order in which the vertices are processed
- The community membership also changes
- We use the CNM agglomerative method introduced by Clauset Newman and Moore (2004).

Agglomerative Clustering

Effect of Vertex Perturbation

Stable Communities

Maximum Modularity .25

Stable Communities

- Stable communities: groups of vertices that are always allocated to the same community independent of ordering or algorithm
- How do we identify groups of stable communities without executing first executing a community detection algorithm?
- Define stable communities in terms of internal and external connections

First Approach

Connections within the group >= Connections outside the group

Second Approach

Connections within each subset of vertices in the group >= Connections outside the group

Very difficult to find any groups that satisfy this condition

Third Approach

Connections within each subset of vertices >= (Connections to any individual external group)/groups

Stable Communities of Strength K

- 7 For each unallocated vertex vi
- Create subset S of vi and neighbors
- For all neighbors nj
 - xj=number of internal connections in S
 - yj= number of external connections in S where external neighbors are within distance k
- If xj>yj for all nj then S is a stable community
- Merge stable communities

$$K=1$$
; $xj=3,2$ $yj=2$

$$K=0$$
; $xj=3,2$ $yj=2(1+1),2(1+1)$

Preprocessing using Stable Communities

- We observed that the modularity value increases if stable communities are identified as a preprocessing step
 - Find stable communities
 - Combine them into communities
 - Execute agglomerative method for modularity maximization

Modularity Using Stable Communities

Modularity Using Stable Communities

•Jazz: 10 stable communities. Size 4-2

•Football: 1 stable community. Size 6

Delaunay: No stable community

Execution Time

Also on the value of k----diameter of external communities

For bad examples execution time can get doubled without any benefit

Currently cannot handle > 5000 vertices

Practical Issues

- Quality of stable communities depends on
 - **7** Value of k
 - Minimum size of community
- False positives can distort the results
- Currently is a preprocessing step for only agglomerative methods
- Final results depends on the underlying algorithm

Summary

- Measure the invariance of networks under ordering
- Improves the modularity if used as preprocessing
- Research Questions
 - How well does this address resolution limit, degeneracy of solutions?
 - Can this be used to identify perturbation in networks?
 - Faster and more accurate stable community detection

ESSENS

Extensible Scalable Software for Evolving NetworkS

Acknowledgements

- College of IST, University of Nebraska at Omaha
- FIRE, University of Nebraska at Omaha Sponsored Program Office