1   /*
2    * %W% %E%
3    *
4    * Copyright (c) 2006, Oracle and/or its affiliates. All rights reserved.
5    * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6    */
7   
8   package java.util;
9   import java.io.Serializable;
10  import java.io.ObjectOutputStream;
11  import java.io.IOException;
12  import java.lang.reflect.Array;
13  
14  /**
15   * This class consists exclusively of static methods that operate on or return
16   * collections.  It contains polymorphic algorithms that operate on
17   * collections, "wrappers", which return a new collection backed by a
18   * specified collection, and a few other odds and ends.
19   *
20   * <p>The methods of this class all throw a <tt>NullPointerException</tt>
21   * if the collections or class objects provided to them are null.
22   *
23   * <p>The documentation for the polymorphic algorithms contained in this class
24   * generally includes a brief description of the <i>implementation</i>.  Such
25   * descriptions should be regarded as <i>implementation notes</i>, rather than
26   * parts of the <i>specification</i>.  Implementors should feel free to
27   * substitute other algorithms, so long as the specification itself is adhered
28   * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
29   * a mergesort, but it does have to be <i>stable</i>.)
30   *
31   * <p>The "destructive" algorithms contained in this class, that is, the
32   * algorithms that modify the collection on which they operate, are specified
33   * to throw <tt>UnsupportedOperationException</tt> if the collection does not
34   * support the appropriate mutation primitive(s), such as the <tt>set</tt>
35   * method.  These algorithms may, but are not required to, throw this
36   * exception if an invocation would have no effect on the collection.  For
37   * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
38   * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
39   *
40   * <p>This class is a member of the
41   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
42   * Java Collections Framework</a>.
43   *
44   * @author  Josh Bloch
45   * @author  Neal Gafter
46   * @version %I%, %G%
47   * @see     Collection
48   * @see     Set
49   * @see     List
50   * @see     Map
51   * @since   1.2
52   */
53  
54  public class Collections {
55      // Suppresses default constructor, ensuring non-instantiability.
56      private Collections() {
57      }
58  
59      // Algorithms
60  
61      /*
62       * Tuning parameters for algorithms - Many of the List algorithms have
63       * two implementations, one of which is appropriate for RandomAccess
64       * lists, the other for "sequential."  Often, the random access variant
65       * yields better performance on small sequential access lists.  The
66       * tuning parameters below determine the cutoff point for what constitutes
67       * a "small" sequential access list for each algorithm.  The values below
68       * were empirically determined to work well for LinkedList. Hopefully
69       * they should be reasonable for other sequential access List
70       * implementations.  Those doing performance work on this code would
71       * do well to validate the values of these parameters from time to time.
72       * (The first word of each tuning parameter name is the algorithm to which
73       * it applies.)
74       */
75      private static final int BINARYSEARCH_THRESHOLD   = 5000;
76      private static final int REVERSE_THRESHOLD        =   18;
77      private static final int SHUFFLE_THRESHOLD        =    5;
78      private static final int FILL_THRESHOLD           =   25;
79      private static final int ROTATE_THRESHOLD         =  100;
80      private static final int COPY_THRESHOLD           =   10;
81      private static final int REPLACEALL_THRESHOLD     =   11;
82      private static final int INDEXOFSUBLIST_THRESHOLD =   35;
83  
84      /**
85       * Sorts the specified list into ascending order, according to the
86       * <i>natural ordering</i> of its elements.  All elements in the list must
87       * implement the <tt>Comparable</tt> interface.  Furthermore, all elements
88       * in the list must be <i>mutually comparable</i> (that is,
89       * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
90       * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
91       *
92       * This sort is guaranteed to be <i>stable</i>:  equal elements will
93       * not be reordered as a result of the sort.<p>
94       *
95       * The specified list must be modifiable, but need not be resizable.<p>
96       *
97       * The sorting algorithm is a modified mergesort (in which the merge is
98       * omitted if the highest element in the low sublist is less than the
99       * lowest element in the high sublist).  This algorithm offers guaranteed
100      * n log(n) performance.
101      *
102      * This implementation dumps the specified list into an array, sorts
103      * the array, and iterates over the list resetting each element
104      * from the corresponding position in the array.  This avoids the
105      * n<sup>2</sup> log(n) performance that would result from attempting
106      * to sort a linked list in place.
107      *
108      * @param  list the list to be sorted.
109      * @throws ClassCastException if the list contains elements that are not
110      *         <i>mutually comparable</i> (for example, strings and integers).
111      * @throws UnsupportedOperationException if the specified list's
112      *         list-iterator does not support the <tt>set</tt> operation.
113      * @see Comparable
114      */
115     public static <T extends Comparable<? super T>> void sort(List<T> list) {
116     Object[] a = list.toArray();
117     Arrays.sort(a);
118     ListIterator<T> i = list.listIterator();
119     for (int j=0; j<a.length; j++) {
120         i.next();
121         i.set((T)a[j]);
122     }
123     }
124 
125     /**
126      * Sorts the specified list according to the order induced by the
127      * specified comparator.  All elements in the list must be <i>mutually
128      * comparable</i> using the specified comparator (that is,
129      * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
130      * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
131      *
132      * This sort is guaranteed to be <i>stable</i>:  equal elements will
133      * not be reordered as a result of the sort.<p>
134      *
135      * The sorting algorithm is a modified mergesort (in which the merge is
136      * omitted if the highest element in the low sublist is less than the
137      * lowest element in the high sublist).  This algorithm offers guaranteed
138      * n log(n) performance.
139      *
140      * The specified list must be modifiable, but need not be resizable.
141      * This implementation dumps the specified list into an array, sorts
142      * the array, and iterates over the list resetting each element
143      * from the corresponding position in the array.  This avoids the
144      * n<sup>2</sup> log(n) performance that would result from attempting
145      * to sort a linked list in place.
146      *
147      * @param  list the list to be sorted.
148      * @param  c the comparator to determine the order of the list.  A
149      *        <tt>null</tt> value indicates that the elements' <i>natural
150      *        ordering</i> should be used.
151      * @throws ClassCastException if the list contains elements that are not
152      *         <i>mutually comparable</i> using the specified comparator.
153      * @throws UnsupportedOperationException if the specified list's
154      *         list-iterator does not support the <tt>set</tt> operation.
155      * @see Comparator
156      */
157     public static <T> void sort(List<T> list, Comparator<? super T> c) {
158     Object[] a = list.toArray();
159     Arrays.sort(a, (Comparator)c);
160     ListIterator i = list.listIterator();
161     for (int j=0; j<a.length; j++) {
162         i.next();
163         i.set(a[j]);
164     }
165     }
166 
167 
168     /**
169      * Searches the specified list for the specified object using the binary
170      * search algorithm.  The list must be sorted into ascending order
171      * according to the {@linkplain Comparable natural ordering} of its
172      * elements (as by the {@link #sort(List)} method) prior to making this
173      * call.  If it is not sorted, the results are undefined.  If the list
174      * contains multiple elements equal to the specified object, there is no
175      * guarantee which one will be found.
176      *
177      * <p>This method runs in log(n) time for a "random access" list (which
178      * provides near-constant-time positional access).  If the specified list
179      * does not implement the {@link RandomAccess} interface and is large,
180      * this method will do an iterator-based binary search that performs
181      * O(n) link traversals and O(log n) element comparisons.
182      *
183      * @param  list the list to be searched.
184      * @param  key the key to be searched for.
185      * @return the index of the search key, if it is contained in the list;
186      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
187      *         <i>insertion point</i> is defined as the point at which the
188      *         key would be inserted into the list: the index of the first
189      *         element greater than the key, or <tt>list.size()</tt> if all
190      *         elements in the list are less than the specified key.  Note
191      *         that this guarantees that the return value will be &gt;= 0 if
192      *         and only if the key is found.
193      * @throws ClassCastException if the list contains elements that are not
194      *         <i>mutually comparable</i> (for example, strings and
195      *         integers), or the search key is not mutually comparable
196      *         with the elements of the list.
197      */
198     public static <T>
199     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
200         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
201             return Collections.indexedBinarySearch(list, key);
202         else
203             return Collections.iteratorBinarySearch(list, key);
204     }
205 
206     private static <T>
207     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
208     {
209     int low = 0;
210     int high = list.size()-1;
211 
212     while (low <= high) {
213         int mid = (low + high) >>> 1;
214         Comparable<? super T> midVal = list.get(mid);
215         int cmp = midVal.compareTo(key);
216 
217         if (cmp < 0)
218         low = mid + 1;
219         else if (cmp > 0)
220         high = mid - 1;
221         else
222         return mid; // key found
223     }
224     return -(low + 1);  // key not found
225     }
226 
227     private static <T>
228     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
229     {
230     int low = 0;
231     int high = list.size()-1;
232         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
233 
234         while (low <= high) {
235             int mid = (low + high) >>> 1;
236             Comparable<? super T> midVal = get(i, mid);
237             int cmp = midVal.compareTo(key);
238 
239             if (cmp < 0)
240                 low = mid + 1;
241             else if (cmp > 0)
242                 high = mid - 1;
243             else
244                 return mid; // key found
245         }
246         return -(low + 1);  // key not found
247     }
248 
249     /**
250      * Gets the ith element from the given list by repositioning the specified
251      * list listIterator.
252      */
253     private static <T> T get(ListIterator<? extends T> i, int index) {
254     T obj = null;
255         int pos = i.nextIndex();
256         if (pos <= index) {
257             do {
258                 obj = i.next();
259             } while (pos++ < index);
260         } else {
261             do {
262                 obj = i.previous();
263             } while (--pos > index);
264         }
265         return obj;
266     }
267 
268     /**
269      * Searches the specified list for the specified object using the binary
270      * search algorithm.  The list must be sorted into ascending order
271      * according to the specified comparator (as by the
272      * {@link #sort(List, Comparator) sort(List, Comparator)}
273      * method), prior to making this call.  If it is
274      * not sorted, the results are undefined.  If the list contains multiple
275      * elements equal to the specified object, there is no guarantee which one
276      * will be found.
277      *
278      * <p>This method runs in log(n) time for a "random access" list (which
279      * provides near-constant-time positional access).  If the specified list
280      * does not implement the {@link RandomAccess} interface and is large,
281      * this method will do an iterator-based binary search that performs
282      * O(n) link traversals and O(log n) element comparisons.
283      *
284      * @param  list the list to be searched.
285      * @param  key the key to be searched for.
286      * @param  c the comparator by which the list is ordered.
287      *         A <tt>null</tt> value indicates that the elements'
288      *         {@linkplain Comparable natural ordering} should be used.
289      * @return the index of the search key, if it is contained in the list;
290      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
291      *         <i>insertion point</i> is defined as the point at which the
292      *         key would be inserted into the list: the index of the first
293      *         element greater than the key, or <tt>list.size()</tt> if all
294      *         elements in the list are less than the specified key.  Note
295      *         that this guarantees that the return value will be &gt;= 0 if
296      *         and only if the key is found.
297      * @throws ClassCastException if the list contains elements that are not
298      *         <i>mutually comparable</i> using the specified comparator,
299      *         or the search key is not mutually comparable with the
300      *         elements of the list using this comparator.
301      */
302     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
303         if (c==null)
304             return binarySearch((List) list, key);
305 
306         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
307             return Collections.indexedBinarySearch(list, key, c);
308         else
309             return Collections.iteratorBinarySearch(list, key, c);
310     }
311 
312     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
313     int low = 0;
314     int high = l.size()-1;
315 
316     while (low <= high) {
317         int mid = (low + high) >>> 1;
318         T midVal = l.get(mid);
319         int cmp = c.compare(midVal, key);
320 
321         if (cmp < 0)
322         low = mid + 1;
323         else if (cmp > 0)
324         high = mid - 1;
325         else
326         return mid; // key found
327     }
328     return -(low + 1);  // key not found
329     }
330 
331     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
332     int low = 0;
333     int high = l.size()-1;
334         ListIterator<? extends T> i = l.listIterator();
335 
336         while (low <= high) {
337             int mid = (low + high) >>> 1;
338             T midVal = get(i, mid);
339             int cmp = c.compare(midVal, key);
340 
341             if (cmp < 0)
342                 low = mid + 1;
343             else if (cmp > 0)
344                 high = mid - 1;
345             else
346                 return mid; // key found
347         }
348         return -(low + 1);  // key not found
349     }
350 
351     private interface SelfComparable extends Comparable<SelfComparable> {}
352 
353 
354     /**
355      * Reverses the order of the elements in the specified list.<p>
356      *
357      * This method runs in linear time.
358      *
359      * @param  list the list whose elements are to be reversed.
360      * @throws UnsupportedOperationException if the specified list or
361      *         its list-iterator does not support the <tt>set</tt> operation.
362      */
363     public static void reverse(List<?> list) {
364         int size = list.size();
365         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
366             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
367                 swap(list, i, j);
368         } else {
369             ListIterator fwd = list.listIterator();
370             ListIterator rev = list.listIterator(size);
371             for (int i=0, mid=list.size()>>1; i<mid; i++) {
372         Object tmp = fwd.next();
373                 fwd.set(rev.previous());
374                 rev.set(tmp);
375             }
376         }
377     }
378 
379     /**
380      * Randomly permutes the specified list using a default source of
381      * randomness.  All permutations occur with approximately equal
382      * likelihood.<p>
383      *
384      * The hedge "approximately" is used in the foregoing description because
385      * default source of randomness is only approximately an unbiased source
386      * of independently chosen bits. If it were a perfect source of randomly
387      * chosen bits, then the algorithm would choose permutations with perfect
388      * uniformity.<p>
389      *
390      * This implementation traverses the list backwards, from the last element
391      * up to the second, repeatedly swapping a randomly selected element into
392      * the "current position".  Elements are randomly selected from the
393      * portion of the list that runs from the first element to the current
394      * position, inclusive.<p>
395      *
396      * This method runs in linear time.  If the specified list does not
397      * implement the {@link RandomAccess} interface and is large, this
398      * implementation dumps the specified list into an array before shuffling
399      * it, and dumps the shuffled array back into the list.  This avoids the
400      * quadratic behavior that would result from shuffling a "sequential
401      * access" list in place.
402      *
403      * @param  list the list to be shuffled.
404      * @throws UnsupportedOperationException if the specified list or
405      *         its list-iterator does not support the <tt>set</tt> operation.
406      */
407     public static void shuffle(List<?> list) {
408         if (r == null) {
409             r = new Random();
410         }
411         shuffle(list, r);
412     }
413     private static Random r;
414 
415     /**
416      * Randomly permute the specified list using the specified source of
417      * randomness.  All permutations occur with equal likelihood
418      * assuming that the source of randomness is fair.<p>
419      *
420      * This implementation traverses the list backwards, from the last element
421      * up to the second, repeatedly swapping a randomly selected element into
422      * the "current position".  Elements are randomly selected from the
423      * portion of the list that runs from the first element to the current
424      * position, inclusive.<p>
425      *
426      * This method runs in linear time.  If the specified list does not
427      * implement the {@link RandomAccess} interface and is large, this
428      * implementation dumps the specified list into an array before shuffling
429      * it, and dumps the shuffled array back into the list.  This avoids the
430      * quadratic behavior that would result from shuffling a "sequential
431      * access" list in place.
432      *
433      * @param  list the list to be shuffled.
434      * @param  rnd the source of randomness to use to shuffle the list.
435      * @throws UnsupportedOperationException if the specified list or its
436      *         list-iterator does not support the <tt>set</tt> operation.
437      */
438     public static void shuffle(List<?> list, Random rnd) {
439         int size = list.size();
440         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
441             for (int i=size; i>1; i--)
442                 swap(list, i-1, rnd.nextInt(i));
443         } else {
444             Object arr[] = list.toArray();
445 
446             // Shuffle array
447             for (int i=size; i>1; i--)
448                 swap(arr, i-1, rnd.nextInt(i));
449 
450             // Dump array back into list
451             ListIterator it = list.listIterator();
452             for (int i=0; i<arr.length; i++) {
453                 it.next();
454                 it.set(arr[i]);
455             }
456         }
457     }
458 
459     /**
460      * Swaps the elements at the specified positions in the specified list.
461      * (If the specified positions are equal, invoking this method leaves
462      * the list unchanged.)
463      *
464      * @param list The list in which to swap elements.
465      * @param i the index of one element to be swapped.
466      * @param j the index of the other element to be swapped.
467      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
468      *         is out of range (i &lt; 0 || i &gt;= list.size()
469      *         || j &lt; 0 || j &gt;= list.size()).
470      * @since 1.4
471      */
472     public static void swap(List<?> list, int i, int j) {
473     final List l = list;
474     l.set(i, l.set(j, l.get(i)));
475     }
476 
477     /**
478      * Swaps the two specified elements in the specified array.
479      */
480     private static void swap(Object[] arr, int i, int j) {
481         Object tmp = arr[i];
482         arr[i] = arr[j];
483         arr[j] = tmp;
484     }
485 
486     /**
487      * Replaces all of the elements of the specified list with the specified
488      * element. <p>
489      *
490      * This method runs in linear time.
491      *
492      * @param  list the list to be filled with the specified element.
493      * @param  obj The element with which to fill the specified list.
494      * @throws UnsupportedOperationException if the specified list or its
495      *         list-iterator does not support the <tt>set</tt> operation.
496      */
497     public static <T> void fill(List<? super T> list, T obj) {
498         int size = list.size();
499 
500         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
501             for (int i=0; i<size; i++)
502                 list.set(i, obj);
503         } else {
504             ListIterator<? super T> itr = list.listIterator();
505             for (int i=0; i<size; i++) {
506                 itr.next();
507                 itr.set(obj);
508             }
509         }
510     }
511 
512     /**
513      * Copies all of the elements from one list into another.  After the
514      * operation, the index of each copied element in the destination list
515      * will be identical to its index in the source list.  The destination
516      * list must be at least as long as the source list.  If it is longer, the
517      * remaining elements in the destination list are unaffected. <p>
518      *
519      * This method runs in linear time.
520      *
521      * @param  dest The destination list.
522      * @param  src The source list.
523      * @throws IndexOutOfBoundsException if the destination list is too small
524      *         to contain the entire source List.
525      * @throws UnsupportedOperationException if the destination list's
526      *         list-iterator does not support the <tt>set</tt> operation.
527      */
528     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
529         int srcSize = src.size();
530         if (srcSize > dest.size())
531             throw new IndexOutOfBoundsException("Source does not fit in dest");
532 
533         if (srcSize < COPY_THRESHOLD ||
534             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
535             for (int i=0; i<srcSize; i++)
536                 dest.set(i, src.get(i));
537         } else {
538             ListIterator<? super T> di=dest.listIterator();
539         ListIterator<? extends T> si=src.listIterator();
540             for (int i=0; i<srcSize; i++) {
541                 di.next();
542                 di.set(si.next());
543             }
544         }
545     }
546 
547     /**
548      * Returns the minimum element of the given collection, according to the
549      * <i>natural ordering</i> of its elements.  All elements in the
550      * collection must implement the <tt>Comparable</tt> interface.
551      * Furthermore, all elements in the collection must be <i>mutually
552      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
553      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
554      * <tt>e2</tt> in the collection).<p>
555      *
556      * This method iterates over the entire collection, hence it requires
557      * time proportional to the size of the collection.
558      *
559      * @param  coll the collection whose minimum element is to be determined.
560      * @return the minimum element of the given collection, according
561      *         to the <i>natural ordering</i> of its elements.
562      * @throws ClassCastException if the collection contains elements that are
563      *         not <i>mutually comparable</i> (for example, strings and
564      *         integers).
565      * @throws NoSuchElementException if the collection is empty.
566      * @see Comparable
567      */
568     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
569     Iterator<? extends T> i = coll.iterator();
570     T candidate = i.next();
571 
572         while (i.hasNext()) {
573         T next = i.next();
574         if (next.compareTo(candidate) < 0)
575         candidate = next;
576     }
577     return candidate;
578     }
579 
580     /**
581      * Returns the minimum element of the given collection, according to the
582      * order induced by the specified comparator.  All elements in the
583      * collection must be <i>mutually comparable</i> by the specified
584      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
585      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
586      * <tt>e2</tt> in the collection).<p>
587      *
588      * This method iterates over the entire collection, hence it requires
589      * time proportional to the size of the collection.
590      *
591      * @param  coll the collection whose minimum element is to be determined.
592      * @param  comp the comparator with which to determine the minimum element.
593      *         A <tt>null</tt> value indicates that the elements' <i>natural
594      *         ordering</i> should be used.
595      * @return the minimum element of the given collection, according
596      *         to the specified comparator.
597      * @throws ClassCastException if the collection contains elements that are
598      *         not <i>mutually comparable</i> using the specified comparator.
599      * @throws NoSuchElementException if the collection is empty.
600      * @see Comparable
601      */
602     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
603         if (comp==null)
604             return (T)min((Collection<SelfComparable>) (Collection) coll);
605 
606     Iterator<? extends T> i = coll.iterator();
607     T candidate = i.next();
608 
609         while (i.hasNext()) {
610         T next = i.next();
611         if (comp.compare(next, candidate) < 0)
612         candidate = next;
613     }
614     return candidate;
615     }
616 
617     /**
618      * Returns the maximum element of the given collection, according to the
619      * <i>natural ordering</i> of its elements.  All elements in the
620      * collection must implement the <tt>Comparable</tt> interface.
621      * Furthermore, all elements in the collection must be <i>mutually
622      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
623      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
624      * <tt>e2</tt> in the collection).<p>
625      *
626      * This method iterates over the entire collection, hence it requires
627      * time proportional to the size of the collection.
628      *
629      * @param  coll the collection whose maximum element is to be determined.
630      * @return the maximum element of the given collection, according
631      *         to the <i>natural ordering</i> of its elements.
632      * @throws ClassCastException if the collection contains elements that are
633      *         not <i>mutually comparable</i> (for example, strings and
634      *         integers).
635      * @throws NoSuchElementException if the collection is empty.
636      * @see Comparable
637      */
638     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
639     Iterator<? extends T> i = coll.iterator();
640     T candidate = i.next();
641 
642         while (i.hasNext()) {
643         T next = i.next();
644         if (next.compareTo(candidate) > 0)
645         candidate = next;
646     }
647     return candidate;
648     }
649 
650     /**
651      * Returns the maximum element of the given collection, according to the
652      * order induced by the specified comparator.  All elements in the
653      * collection must be <i>mutually comparable</i> by the specified
654      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
655      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
656      * <tt>e2</tt> in the collection).<p>
657      *
658      * This method iterates over the entire collection, hence it requires
659      * time proportional to the size of the collection.
660      *
661      * @param  coll the collection whose maximum element is to be determined.
662      * @param  comp the comparator with which to determine the maximum element.
663      *         A <tt>null</tt> value indicates that the elements' <i>natural
664      *        ordering</i> should be used.
665      * @return the maximum element of the given collection, according
666      *         to the specified comparator.
667      * @throws ClassCastException if the collection contains elements that are
668      *         not <i>mutually comparable</i> using the specified comparator.
669      * @throws NoSuchElementException if the collection is empty.
670      * @see Comparable
671      */
672     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
673         if (comp==null)
674             return (T)max((Collection<SelfComparable>) (Collection) coll);
675 
676     Iterator<? extends T> i = coll.iterator();
677     T candidate = i.next();
678 
679         while (i.hasNext()) {
680         T next = i.next();
681         if (comp.compare(next, candidate) > 0)
682         candidate = next;
683     }
684     return candidate;
685     }
686 
687     /**
688      * Rotates the elements in the specified list by the specified distance.
689      * After calling this method, the element at index <tt>i</tt> will be
690      * the element previously at index <tt>(i - distance)</tt> mod
691      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
692      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
693      * the size of the list.)
694      *
695      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
696      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
697      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
698      * <tt>[s, t, a, n, k]</tt>.
699      *
700      * <p>Note that this method can usefully be applied to sublists to
701      * move one or more elements within a list while preserving the
702      * order of the remaining elements.  For example, the following idiom
703      * moves the element at index <tt>j</tt> forward to position
704      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
705      * <pre>
706      *     Collections.rotate(list.subList(j, k+1), -1);
707      * </pre>
708      * To make this concrete, suppose <tt>list</tt> comprises
709      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
710      * (<tt>b</tt>) forward two positions, perform the following invocation:
711      * <pre>
712      *     Collections.rotate(l.subList(1, 4), -1);
713      * </pre>
714      * The resulting list is <tt>[a, c, d, b, e]</tt>.
715      *
716      * <p>To move more than one element forward, increase the absolute value
717      * of the rotation distance.  To move elements backward, use a positive
718      * shift distance.
719      *
720      * <p>If the specified list is small or implements the {@link
721      * RandomAccess} interface, this implementation exchanges the first
722      * element into the location it should go, and then repeatedly exchanges
723      * the displaced element into the location it should go until a displaced
724      * element is swapped into the first element.  If necessary, the process
725      * is repeated on the second and successive elements, until the rotation
726      * is complete.  If the specified list is large and doesn't implement the
727      * <tt>RandomAccess</tt> interface, this implementation breaks the
728      * list into two sublist views around index <tt>-distance mod size</tt>.
729      * Then the {@link #reverse(List)} method is invoked on each sublist view,
730      * and finally it is invoked on the entire list.  For a more complete
731      * description of both algorithms, see Section 2.3 of Jon Bentley's
732      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
733      *
734      * @param list the list to be rotated.
735      * @param distance the distance to rotate the list.  There are no
736      *        constraints on this value; it may be zero, negative, or
737      *        greater than <tt>list.size()</tt>.
738      * @throws UnsupportedOperationException if the specified list or
739      *         its list-iterator does not support the <tt>set</tt> operation.
740      * @since 1.4
741      */
742     public static void rotate(List<?> list, int distance) {
743         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
744             rotate1((List)list, distance);
745         else
746             rotate2((List)list, distance);
747     }
748 
749     private static <T> void rotate1(List<T> list, int distance) {
750         int size = list.size();
751         if (size == 0)
752             return;
753         distance = distance % size;
754         if (distance < 0)
755             distance += size;
756         if (distance == 0)
757             return;
758 
759         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
760             T displaced = list.get(cycleStart);
761             int i = cycleStart;
762             do {
763                 i += distance;
764                 if (i >= size)
765                     i -= size;
766                 displaced = list.set(i, displaced);
767                 nMoved ++;
768             } while(i != cycleStart);
769         }
770     }
771 
772     private static void rotate2(List<?> list, int distance) {
773         int size = list.size();
774         if (size == 0)
775             return;
776         int mid =  -distance % size;
777         if (mid < 0)
778             mid += size;
779         if (mid == 0)
780             return;
781 
782         reverse(list.subList(0, mid));
783         reverse(list.subList(mid, size));
784         reverse(list);
785     }
786 
787     /**
788      * Replaces all occurrences of one specified value in a list with another.
789      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
790      * in <tt>list</tt> such that
791      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
792      * (This method has no effect on the size of the list.)
793      *
794      * @param list the list in which replacement is to occur.
795      * @param oldVal the old value to be replaced.
796      * @param newVal the new value with which <tt>oldVal</tt> is to be
797      *        replaced.
798      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
799      *         <tt>e</tt> such that
800      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
801      * @throws UnsupportedOperationException if the specified list or
802      *         its list-iterator does not support the <tt>set</tt> operation.
803      * @since  1.4
804      */
805     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
806         boolean result = false;
807         int size = list.size();
808         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
809             if (oldVal==null) {
810                 for (int i=0; i<size; i++) {
811                     if (list.get(i)==null) {
812                         list.set(i, newVal);
813                         result = true;
814                     }
815                 }
816             } else {
817                 for (int i=0; i<size; i++) {
818                     if (oldVal.equals(list.get(i))) {
819                         list.set(i, newVal);
820                         result = true;
821                     }
822                 }
823             }
824         } else {
825             ListIterator<T> itr=list.listIterator();
826             if (oldVal==null) {
827                 for (int i=0; i<size; i++) {
828                     if (itr.next()==null) {
829                         itr.set(newVal);
830                         result = true;
831                     }
832                 }
833             } else {
834                 for (int i=0; i<size; i++) {
835                     if (oldVal.equals(itr.next())) {
836                         itr.set(newVal);
837                         result = true;
838                     }
839                 }
840             }
841         }
842         return result;
843     }
844 
845     /**
846      * Returns the starting position of the first occurrence of the specified
847      * target list within the specified source list, or -1 if there is no
848      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
849      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
850      * or -1 if there is no such index.  (Returns -1 if
851      * <tt>target.size() > source.size()</tt>.)
852      *
853      * <p>This implementation uses the "brute force" technique of scanning
854      * over the source list, looking for a match with the target at each
855      * location in turn.
856      *
857      * @param source the list in which to search for the first occurrence
858      *        of <tt>target</tt>.
859      * @param target the list to search for as a subList of <tt>source</tt>.
860      * @return the starting position of the first occurrence of the specified
861      *         target list within the specified source list, or -1 if there
862      *         is no such occurrence.
863      * @since  1.4
864      */
865     public static int indexOfSubList(List<?> source, List<?> target) {
866         int sourceSize = source.size();
867         int targetSize = target.size();
868         int maxCandidate = sourceSize - targetSize;
869 
870         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
871             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
872         nextCand:
873             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
874                 for (int i=0, j=candidate; i<targetSize; i++, j++)
875                     if (!eq(target.get(i), source.get(j)))
876                         continue nextCand;  // Element mismatch, try next cand
877                 return candidate;  // All elements of candidate matched target
878             }
879         } else {  // Iterator version of above algorithm
880             ListIterator<?> si = source.listIterator();
881         nextCand:
882             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
883                 ListIterator<?> ti = target.listIterator();
884                 for (int i=0; i<targetSize; i++) {
885                     if (!eq(ti.next(), si.next())) {
886                         // Back up source iterator to next candidate
887                         for (int j=0; j<i; j++)
888                             si.previous();
889                         continue nextCand;
890                     }
891                 }
892                 return candidate;
893             }
894         }
895         return -1;  // No candidate matched the target
896     }
897 
898     /**
899      * Returns the starting position of the last occurrence of the specified
900      * target list within the specified source list, or -1 if there is no such
901      * occurrence.  More formally, returns the highest index <tt>i</tt>
902      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
903      * or -1 if there is no such index.  (Returns -1 if
904      * <tt>target.size() > source.size()</tt>.)
905      *
906      * <p>This implementation uses the "brute force" technique of iterating
907      * over the source list, looking for a match with the target at each
908      * location in turn.
909      *
910      * @param source the list in which to search for the last occurrence
911      *        of <tt>target</tt>.
912      * @param target the list to search for as a subList of <tt>source</tt>.
913      * @return the starting position of the last occurrence of the specified
914      *         target list within the specified source list, or -1 if there
915      *         is no such occurrence.
916      * @since  1.4
917      */
918     public static int lastIndexOfSubList(List<?> source, List<?> target) {
919         int sourceSize = source.size();
920         int targetSize = target.size();
921         int maxCandidate = sourceSize - targetSize;
922 
923         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
924             source instanceof RandomAccess) {   // Index access version
925         nextCand:
926             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
927                 for (int i=0, j=candidate; i<targetSize; i++, j++)
928                     if (!eq(target.get(i), source.get(j)))
929                         continue nextCand;  // Element mismatch, try next cand
930                 return candidate;  // All elements of candidate matched target
931             }
932         } else {  // Iterator version of above algorithm
933             if (maxCandidate < 0)
934                 return -1;
935             ListIterator<?> si = source.listIterator(maxCandidate);
936         nextCand:
937             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
938                 ListIterator<?> ti = target.listIterator();
939                 for (int i=0; i<targetSize; i++) {
940                     if (!eq(ti.next(), si.next())) {
941                         if (candidate != 0) {
942                             // Back up source iterator to next candidate
943                             for (int j=0; j<=i+1; j++)
944                                 si.previous();
945                         }
946                         continue nextCand;
947                     }
948                 }
949                 return candidate;
950             }
951         }
952         return -1;  // No candidate matched the target
953     }
954 
955 
956     // Unmodifiable Wrappers
957 
958     /**
959      * Returns an unmodifiable view of the specified collection.  This method
960      * allows modules to provide users with "read-only" access to internal
961      * collections.  Query operations on the returned collection "read through"
962      * to the specified collection, and attempts to modify the returned
963      * collection, whether direct or via its iterator, result in an
964      * <tt>UnsupportedOperationException</tt>.<p>
965      *
966      * The returned collection does <i>not</i> pass the hashCode and equals
967      * operations through to the backing collection, but relies on
968      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
969      * is necessary to preserve the contracts of these operations in the case
970      * that the backing collection is a set or a list.<p>
971      *
972      * The returned collection will be serializable if the specified collection
973      * is serializable.
974      *
975      * @param  c the collection for which an unmodifiable view is to be
976      *         returned.
977      * @return an unmodifiable view of the specified collection.
978      */
979     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
980     return new UnmodifiableCollection<T>(c);
981     }
982 
983     /**
984      * @serial include
985      */
986     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
987     // use serialVersionUID from JDK 1.2.2 for interoperability
988     private static final long serialVersionUID = 1820017752578914078L;
989 
990     final Collection<? extends E> c;
991 
992     UnmodifiableCollection(Collection<? extends E> c) {
993             if (c==null)
994                 throw new NullPointerException();
995             this.c = c;
996         }
997 
998     public int size()           {return c.size();}
999     public boolean isEmpty()        {return c.isEmpty();}
1000    public boolean contains(Object o)   {return c.contains(o);}
1001    public Object[] toArray()           {return c.toArray();}
1002    public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1003        public String toString()            {return c.toString();}
1004
1005    public Iterator<E> iterator() {
1006        return new Iterator<E>() {
1007        Iterator<? extends E> i = c.iterator();
1008
1009        public boolean hasNext() {return i.hasNext();}
1010        public E next()      {return i.next();}
1011        public void remove() {
1012            throw new UnsupportedOperationException();
1013                }
1014        };
1015        }
1016
1017    public boolean add(E e){
1018        throw new UnsupportedOperationException();
1019        }
1020    public boolean remove(Object o) {
1021        throw new UnsupportedOperationException();
1022        }
1023
1024    public boolean containsAll(Collection<?> coll) {
1025        return c.containsAll(coll);
1026        }
1027    public boolean addAll(Collection<? extends E> coll) {
1028        throw new UnsupportedOperationException();
1029        }
1030    public boolean removeAll(Collection<?> coll) {
1031        throw new UnsupportedOperationException();
1032        }
1033    public boolean retainAll(Collection<?> coll) {
1034        throw new UnsupportedOperationException();
1035        }
1036    public void clear() {
1037        throw new UnsupportedOperationException();
1038        }
1039    }
1040
1041    /**
1042     * Returns an unmodifiable view of the specified set.  This method allows
1043     * modules to provide users with "read-only" access to internal sets.
1044     * Query operations on the returned set "read through" to the specified
1045     * set, and attempts to modify the returned set, whether direct or via its
1046     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1047     *
1048     * The returned set will be serializable if the specified set
1049     * is serializable.
1050     *
1051     * @param  s the set for which an unmodifiable view is to be returned.
1052     * @return an unmodifiable view of the specified set.
1053     */
1054    public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1055    return new UnmodifiableSet<T>(s);
1056    }
1057
1058    /**
1059     * @serial include
1060     */
1061    static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1062                     implements Set<E>, Serializable {
1063    private static final long serialVersionUID = -9215047833775013803L;
1064
1065    UnmodifiableSet(Set<? extends E> s) {super(s);}
1066    public boolean equals(Object o) {return o == this || c.equals(o);}
1067    public int hashCode()       {return c.hashCode();}
1068    }
1069
1070    /**
1071     * Returns an unmodifiable view of the specified sorted set.  This method
1072     * allows modules to provide users with "read-only" access to internal
1073     * sorted sets.  Query operations on the returned sorted set "read
1074     * through" to the specified sorted set.  Attempts to modify the returned
1075     * sorted set, whether direct, via its iterator, or via its
1076     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1077     * an <tt>UnsupportedOperationException</tt>.<p>
1078     *
1079     * The returned sorted set will be serializable if the specified sorted set
1080     * is serializable.
1081     *
1082     * @param s the sorted set for which an unmodifiable view is to be
1083     *        returned.
1084     * @return an unmodifiable view of the specified sorted set.
1085     */
1086    public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1087    return new UnmodifiableSortedSet<T>(s);
1088    }
1089
1090    /**
1091     * @serial include
1092     */
1093    static class UnmodifiableSortedSet<E>
1094                         extends UnmodifiableSet<E>
1095                         implements SortedSet<E>, Serializable {
1096    private static final long serialVersionUID = -4929149591599911165L;
1097        private final SortedSet<E> ss;
1098
1099    UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1100
1101        public Comparator<? super E> comparator() {return ss.comparator();}
1102
1103        public SortedSet<E> subSet(E fromElement, E toElement) {
1104            return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1105        }
1106        public SortedSet<E> headSet(E toElement) {
1107            return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1108        }
1109        public SortedSet<E> tailSet(E fromElement) {
1110            return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1111        }
1112
1113        public E first()               {return ss.first();}
1114        public E last()                {return ss.last();}
1115    }
1116
1117    /**
1118     * Returns an unmodifiable view of the specified list.  This method allows
1119     * modules to provide users with "read-only" access to internal
1120     * lists.  Query operations on the returned list "read through" to the
1121     * specified list, and attempts to modify the returned list, whether
1122     * direct or via its iterator, result in an
1123     * <tt>UnsupportedOperationException</tt>.<p>
1124     *
1125     * The returned list will be serializable if the specified list
1126     * is serializable. Similarly, the returned list will implement
1127     * {@link RandomAccess} if the specified list does.
1128     *
1129     * @param  list the list for which an unmodifiable view is to be returned.
1130     * @return an unmodifiable view of the specified list.
1131     */
1132    public static <T> List<T> unmodifiableList(List<? extends T> list) {
1133    return (list instanceof RandomAccess ?
1134                new UnmodifiableRandomAccessList<T>(list) :
1135                new UnmodifiableList<T>(list));
1136    }
1137
1138    /**
1139     * @serial include
1140     */
1141    static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1142                      implements List<E> {
1143        static final long serialVersionUID = -283967356065247728L;
1144    final List<? extends E> list;
1145
1146    UnmodifiableList(List<? extends E> list) {
1147        super(list);
1148        this.list = list;
1149    }
1150
1151    public boolean equals(Object o) {return o == this || list.equals(o);}
1152    public int hashCode()       {return list.hashCode();}
1153
1154    public E get(int index) {return list.get(index);}
1155    public E set(int index, E element) {
1156        throw new UnsupportedOperationException();
1157        }
1158    public void add(int index, E element) {
1159        throw new UnsupportedOperationException();
1160        }
1161    public E remove(int index) {
1162        throw new UnsupportedOperationException();
1163        }
1164    public int indexOf(Object o)            {return list.indexOf(o);}
1165    public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1166    public boolean addAll(int index, Collection<? extends E> c) {
1167        throw new UnsupportedOperationException();
1168        }
1169    public ListIterator<E> listIterator()   {return listIterator(0);}
1170
1171    public ListIterator<E> listIterator(final int index) {
1172        return new ListIterator<E>() {
1173        ListIterator<? extends E> i = list.listIterator(index);
1174
1175        public boolean hasNext()     {return i.hasNext();}
1176        public E next()          {return i.next();}
1177        public boolean hasPrevious() {return i.hasPrevious();}
1178        public E previous()      {return i.previous();}
1179        public int nextIndex()       {return i.nextIndex();}
1180        public int previousIndex()   {return i.previousIndex();}
1181
1182        public void remove() {
1183            throw new UnsupportedOperationException();
1184                }
1185        public void set(E e) {
1186            throw new UnsupportedOperationException();
1187                }
1188        public void add(E e) {
1189            throw new UnsupportedOperationException();
1190                }
1191        };
1192    }
1193
1194    public List<E> subList(int fromIndex, int toIndex) {
1195            return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1196        }
1197
1198        /**
1199         * UnmodifiableRandomAccessList instances are serialized as
1200         * UnmodifiableList instances to allow them to be deserialized
1201         * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1202         * This method inverts the transformation.  As a beneficial
1203         * side-effect, it also grafts the RandomAccess marker onto
1204         * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1205         *
1206         * Note: Unfortunately, UnmodifiableRandomAccessList instances
1207         * serialized in 1.4.1 and deserialized in 1.4 will become
1208         * UnmodifiableList instances, as this method was missing in 1.4.
1209         */
1210        private Object readResolve() {
1211            return (list instanceof RandomAccess
1212            ? new UnmodifiableRandomAccessList<E>(list)
1213            : this);
1214        }
1215    }
1216
1217    /**
1218     * @serial include
1219     */
1220    static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1221                                              implements RandomAccess
1222    {
1223        UnmodifiableRandomAccessList(List<? extends E> list) {
1224            super(list);
1225        }
1226
1227    public List<E> subList(int fromIndex, int toIndex) {
1228            return new UnmodifiableRandomAccessList<E>(
1229                list.subList(fromIndex, toIndex));
1230        }
1231
1232        private static final long serialVersionUID = -2542308836966382001L;
1233
1234        /**
1235         * Allows instances to be deserialized in pre-1.4 JREs (which do
1236         * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1237         * a readResolve method that inverts this transformation upon
1238         * deserialization.
1239         */
1240        private Object writeReplace() {
1241            return new UnmodifiableList<E>(list);
1242        }
1243    }
1244
1245    /**
1246     * Returns an unmodifiable view of the specified map.  This method
1247     * allows modules to provide users with "read-only" access to internal
1248     * maps.  Query operations on the returned map "read through"
1249     * to the specified map, and attempts to modify the returned
1250     * map, whether direct or via its collection views, result in an
1251     * <tt>UnsupportedOperationException</tt>.<p>
1252     *
1253     * The returned map will be serializable if the specified map
1254     * is serializable.
1255     *
1256     * @param  m the map for which an unmodifiable view is to be returned.
1257     * @return an unmodifiable view of the specified map.
1258     */
1259    public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1260    return new UnmodifiableMap<K,V>(m);
1261    }
1262
1263    /**
1264     * @serial include
1265     */
1266    private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1267    // use serialVersionUID from JDK 1.2.2 for interoperability
1268    private static final long serialVersionUID = -1034234728574286014L;
1269
1270    private final Map<? extends K, ? extends V> m;
1271
1272    UnmodifiableMap(Map<? extends K, ? extends V> m) {
1273            if (m==null)
1274                throw new NullPointerException();
1275            this.m = m;
1276        }
1277
1278    public int size()                {return m.size();}
1279    public boolean isEmpty()             {return m.isEmpty();}
1280    public boolean containsKey(Object key)   {return m.containsKey(key);}
1281    public boolean containsValue(Object val) {return m.containsValue(val);}
1282    public V get(Object key)             {return m.get(key);}
1283
1284    public V put(K key, V value) {
1285        throw new UnsupportedOperationException();
1286        }
1287    public V remove(Object key) {
1288        throw new UnsupportedOperationException();
1289        }
1290    public void putAll(Map<? extends K, ? extends V> m) {
1291        throw new UnsupportedOperationException();
1292        }
1293    public void clear() {
1294        throw new UnsupportedOperationException();
1295        }
1296
1297    private transient Set<K> keySet = null;
1298    private transient Set<Map.Entry<K,V>> entrySet = null;
1299    private transient Collection<V> values = null;
1300
1301    public Set<K> keySet() {
1302        if (keySet==null)
1303        keySet = unmodifiableSet(m.keySet());
1304        return keySet;
1305    }
1306
1307    public Set<Map.Entry<K,V>> entrySet() {
1308        if (entrySet==null)
1309        entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1310        return entrySet;
1311    }
1312
1313    public Collection<V> values() {
1314        if (values==null)
1315        values = unmodifiableCollection(m.values());
1316        return values;
1317    }
1318
1319    public boolean equals(Object o) {return o == this || m.equals(o);}
1320    public int hashCode()           {return m.hashCode();}
1321        public String toString()        {return m.toString();}
1322
1323        /**
1324         * We need this class in addition to UnmodifiableSet as
1325         * Map.Entries themselves permit modification of the backing Map
1326         * via their setValue operation.  This class is subtle: there are
1327         * many possible attacks that must be thwarted.
1328         *
1329         * @serial include
1330         */
1331        static class UnmodifiableEntrySet<K,V>
1332        extends UnmodifiableSet<Map.Entry<K,V>> {
1333        private static final long serialVersionUID = 7854390611657943733L;
1334
1335            UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1336                super((Set)s);
1337            }
1338            public Iterator<Map.Entry<K,V>> iterator() {
1339                return new Iterator<Map.Entry<K,V>>() {
1340            Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1341
1342                    public boolean hasNext() {
1343                        return i.hasNext();
1344                    }
1345            public Map.Entry<K,V> next() {
1346            return new UnmodifiableEntry<K,V>(i.next());
1347                    }
1348                    public void remove() {
1349                        throw new UnsupportedOperationException();
1350                    }
1351                };
1352            }
1353
1354            public Object[] toArray() {
1355                Object[] a = c.toArray();
1356                for (int i=0; i<a.length; i++)
1357                    a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1358                return a;
1359            }
1360
1361            public <T> T[] toArray(T[] a) {
1362                // We don't pass a to c.toArray, to avoid window of
1363                // vulnerability wherein an unscrupulous multithreaded client
1364                // could get his hands on raw (unwrapped) Entries from c.
1365        Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1366
1367                for (int i=0; i<arr.length; i++)
1368                    arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1369
1370                if (arr.length > a.length)
1371                    return (T[])arr;
1372
1373                System.arraycopy(arr, 0, a, 0, arr.length);
1374                if (a.length > arr.length)
1375                    a[arr.length] = null;
1376                return a;
1377            }
1378
1379            /**
1380             * This method is overridden to protect the backing set against
1381             * an object with a nefarious equals function that senses
1382             * that the equality-candidate is Map.Entry and calls its
1383             * setValue method.
1384             */
1385            public boolean contains(Object o) {
1386                if (!(o instanceof Map.Entry))
1387                    return false;
1388                return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
1389            }
1390
1391            /**
1392             * The next two methods are overridden to protect against
1393             * an unscrupulous List whose contains(Object o) method senses
1394             * when o is a Map.Entry, and calls o.setValue.
1395             */
1396            public boolean containsAll(Collection<?> coll) {
1397                Iterator<?> e = coll.iterator();
1398                while (e.hasNext())
1399                    if (!contains(e.next())) // Invokes safe contains() above
1400                        return false;
1401                return true;
1402            }
1403            public boolean equals(Object o) {
1404                if (o == this)
1405                    return true;
1406
1407                if (!(o instanceof Set))
1408                    return false;
1409                Set s = (Set) o;
1410                if (s.size() != c.size())
1411                    return false;
1412                return containsAll(s); // Invokes safe containsAll() above
1413            }
1414
1415            /**
1416             * This "wrapper class" serves two purposes: it prevents
1417             * the client from modifying the backing Map, by short-circuiting
1418             * the setValue method, and it protects the backing Map against
1419             * an ill-behaved Map.Entry that attempts to modify another
1420             * Map Entry when asked to perform an equality check.
1421             */
1422            private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1423                private Map.Entry<? extends K, ? extends V> e;
1424
1425                UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1426
1427                public K getKey()     {return e.getKey();}
1428                public V getValue()  {return e.getValue();}
1429                public V setValue(V value) {
1430                    throw new UnsupportedOperationException();
1431                }
1432                public int hashCode()     {return e.hashCode();}
1433                public boolean equals(Object o) {
1434                    if (!(o instanceof Map.Entry))
1435                        return false;
1436                    Map.Entry t = (Map.Entry)o;
1437                    return eq(e.getKey(),   t.getKey()) &&
1438                           eq(e.getValue(), t.getValue());
1439                }
1440                public String toString()  {return e.toString();}
1441            }
1442        }
1443    }
1444
1445    /**
1446     * Returns an unmodifiable view of the specified sorted map.  This method
1447     * allows modules to provide users with "read-only" access to internal
1448     * sorted maps.  Query operations on the returned sorted map "read through"
1449     * to the specified sorted map.  Attempts to modify the returned
1450     * sorted map, whether direct, via its collection views, or via its
1451     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1452     * an <tt>UnsupportedOperationException</tt>.<p>
1453     *
1454     * The returned sorted map will be serializable if the specified sorted map
1455     * is serializable.
1456     *
1457     * @param m the sorted map for which an unmodifiable view is to be
1458     *        returned.
1459     * @return an unmodifiable view of the specified sorted map.
1460     */
1461    public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1462    return new UnmodifiableSortedMap<K,V>(m);
1463    }
1464
1465    /**
1466     * @serial include
1467     */
1468    static class UnmodifiableSortedMap<K,V>
1469      extends UnmodifiableMap<K,V>
1470      implements SortedMap<K,V>, Serializable {
1471    private static final long serialVersionUID = -8806743815996713206L;
1472
1473        private final SortedMap<K, ? extends V> sm;
1474
1475    UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1476
1477        public Comparator<? super K> comparator() {return sm.comparator();}
1478
1479        public SortedMap<K,V> subMap(K fromKey, K toKey) {
1480            return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1481        }
1482        public SortedMap<K,V> headMap(K toKey) {
1483            return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1484        }
1485        public SortedMap<K,V> tailMap(K fromKey) {
1486            return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1487        }
1488
1489        public K firstKey()           {return sm.firstKey();}
1490        public K lastKey()            {return sm.lastKey();}
1491    }
1492
1493
1494    // Synch Wrappers
1495
1496    /**
1497     * Returns a synchronized (thread-safe) collection backed by the specified
1498     * collection.  In order to guarantee serial access, it is critical that
1499     * <strong>all</strong> access to the backing collection is accomplished
1500     * through the returned collection.<p>
1501     *
1502     * It is imperative that the user manually synchronize on the returned
1503     * collection when iterating over it:
1504     * <pre>
1505     *  Collection c = Collections.synchronizedCollection(myCollection);
1506     *     ...
1507     *  synchronized(c) {
1508     *      Iterator i = c.iterator(); // Must be in the synchronized block
1509     *      while (i.hasNext())
1510     *         foo(i.next());
1511     *  }
1512     * </pre>
1513     * Failure to follow this advice may result in non-deterministic behavior.
1514     *
1515     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1516     * and <tt>equals</tt> operations through to the backing collection, but
1517     * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1518     * necessary to preserve the contracts of these operations in the case
1519     * that the backing collection is a set or a list.<p>
1520     *
1521     * The returned collection will be serializable if the specified collection
1522     * is serializable.
1523     *
1524     * @param  c the collection to be "wrapped" in a synchronized collection.
1525     * @return a synchronized view of the specified collection.
1526     */
1527    public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1528    return new SynchronizedCollection<T>(c);
1529    }
1530
1531    static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1532    return new SynchronizedCollection<T>(c, mutex);
1533    }
1534
1535    /**
1536     * @serial include
1537     */
1538    static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1539    // use serialVersionUID from JDK 1.2.2 for interoperability
1540    private static final long serialVersionUID = 3053995032091335093L;
1541
1542    final Collection<E> c;  // Backing Collection
1543    final Object mutex;     // Object on which to synchronize
1544
1545    SynchronizedCollection(Collection<E> c) {
1546            if (c==null)
1547                throw new NullPointerException();
1548        this.c = c;
1549            mutex = this;
1550        }
1551    SynchronizedCollection(Collection<E> c, Object mutex) {
1552        this.c = c;
1553            this.mutex = mutex;
1554        }
1555
1556    public int size() {
1557        synchronized(mutex) {return c.size();}
1558        }
1559    public boolean isEmpty() {
1560        synchronized(mutex) {return c.isEmpty();}
1561        }
1562    public boolean contains(Object o) {
1563        synchronized(mutex) {return c.contains(o);}
1564        }
1565    public Object[] toArray() {
1566        synchronized(mutex) {return c.toArray();}
1567        }
1568    public <T> T[] toArray(T[] a) {
1569        synchronized(mutex) {return c.toArray(a);}
1570        }
1571
1572    public Iterator<E> iterator() {
1573            return c.iterator(); // Must be manually synched by user!
1574        }
1575
1576    public boolean add(E e) {
1577        synchronized(mutex) {return c.add(e);}
1578        }
1579    public boolean remove(Object o) {
1580        synchronized(mutex) {return c.remove(o);}
1581        }
1582
1583    public boolean containsAll(Collection<?> coll) {
1584        synchronized(mutex) {return c.containsAll(coll);}
1585        }
1586    public boolean addAll(Collection<? extends E> coll) {
1587        synchronized(mutex) {return c.addAll(coll);}
1588        }
1589    public boolean removeAll(Collection<?> coll) {
1590        synchronized(mutex) {return c.removeAll(coll);}
1591        }
1592    public boolean retainAll(Collection<?> coll) {
1593        synchronized(mutex) {return c.retainAll(coll);}
1594        }
1595    public void clear() {
1596        synchronized(mutex) {c.clear();}
1597        }
1598    public String toString() {
1599        synchronized(mutex) {return c.toString();}
1600        }
1601        private void writeObject(ObjectOutputStream s) throws IOException {
1602        synchronized(mutex) {s.defaultWriteObject();}
1603        }
1604    }
1605
1606    /**
1607     * Returns a synchronized (thread-safe) set backed by the specified
1608     * set.  In order to guarantee serial access, it is critical that
1609     * <strong>all</strong> access to the backing set is accomplished
1610     * through the returned set.<p>
1611     *
1612     * It is imperative that the user manually synchronize on the returned
1613     * set when iterating over it:
1614     * <pre>
1615     *  Set s = Collections.synchronizedSet(new HashSet());
1616     *      ...
1617     *  synchronized(s) {
1618     *      Iterator i = s.iterator(); // Must be in the synchronized block
1619     *      while (i.hasNext())
1620     *          foo(i.next());
1621     *  }
1622     * </pre>
1623     * Failure to follow this advice may result in non-deterministic behavior.
1624     *
1625     * <p>The returned set will be serializable if the specified set is
1626     * serializable.
1627     *
1628     * @param  s the set to be "wrapped" in a synchronized set.
1629     * @return a synchronized view of the specified set.
1630     */
1631    public static <T> Set<T> synchronizedSet(Set<T> s) {
1632    return new SynchronizedSet<T>(s);
1633    }
1634
1635    static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1636    return new SynchronizedSet<T>(s, mutex);
1637    }
1638
1639    /**
1640     * @serial include
1641     */
1642    static class SynchronizedSet<E>
1643      extends SynchronizedCollection<E>
1644      implements Set<E> {
1645    private static final long serialVersionUID = 487447009682186044L;
1646
1647    SynchronizedSet(Set<E> s) {
1648            super(s);
1649        }
1650    SynchronizedSet(Set<E> s, Object mutex) {
1651            super(s, mutex);
1652        }
1653
1654    public boolean equals(Object o) {
1655        synchronized(mutex) {return c.equals(o);}
1656        }
1657    public int hashCode() {
1658        synchronized(mutex) {return c.hashCode();}
1659        }
1660    }
1661
1662    /**
1663     * Returns a synchronized (thread-safe) sorted set backed by the specified
1664     * sorted set.  In order to guarantee serial access, it is critical that
1665     * <strong>all</strong> access to the backing sorted set is accomplished
1666     * through the returned sorted set (or its views).<p>
1667     *
1668     * It is imperative that the user manually synchronize on the returned
1669     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1670     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1671     * <pre>
1672     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1673     *      ...
1674     *  synchronized(s) {
1675     *      Iterator i = s.iterator(); // Must be in the synchronized block
1676     *      while (i.hasNext())
1677     *          foo(i.next());
1678     *  }
1679     * </pre>
1680     * or:
1681     * <pre>
1682     *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1683     *  SortedSet s2 = s.headSet(foo);
1684     *      ...
1685     *  synchronized(s) {  // Note: s, not s2!!!
1686     *      Iterator i = s2.iterator(); // Must be in the synchronized block
1687     *      while (i.hasNext())
1688     *          foo(i.next());
1689     *  }
1690     * </pre>
1691     * Failure to follow this advice may result in non-deterministic behavior.
1692     *
1693     * <p>The returned sorted set will be serializable if the specified
1694     * sorted set is serializable.
1695     *
1696     * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1697     * @return a synchronized view of the specified sorted set.
1698     */
1699    public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1700    return new SynchronizedSortedSet<T>(s);
1701    }
1702
1703    /**
1704     * @serial include
1705     */
1706    static class SynchronizedSortedSet<E>
1707    extends SynchronizedSet<E>
1708    implements SortedSet<E>
1709    {
1710    private static final long serialVersionUID = 8695801310862127406L;
1711
1712        final private SortedSet<E> ss;
1713
1714    SynchronizedSortedSet(SortedSet<E> s) {
1715            super(s);
1716            ss = s;
1717        }
1718    SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1719            super(s, mutex);
1720            ss = s;
1721        }
1722
1723    public Comparator<? super E> comparator() {
1724        synchronized(mutex) {return ss.comparator();}
1725        }
1726
1727        public SortedSet<E> subSet(E fromElement, E toElement) {
1728        synchronized(mutex) {
1729                return new SynchronizedSortedSet<E>(
1730                    ss.subSet(fromElement, toElement), mutex);
1731            }
1732        }
1733        public SortedSet<E> headSet(E toElement) {
1734        synchronized(mutex) {
1735                return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1736            }
1737        }
1738        public SortedSet<E> tailSet(E fromElement) {
1739        synchronized(mutex) {
1740               return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1741            }
1742        }
1743
1744        public E first() {
1745        synchronized(mutex) {return ss.first();}
1746        }
1747        public E last() {
1748        synchronized(mutex) {return ss.last();}
1749        }
1750    }
1751
1752    /**
1753     * Returns a synchronized (thread-safe) list backed by the specified
1754     * list.  In order to guarantee serial access, it is critical that
1755     * <strong>all</strong> access to the backing list is accomplished
1756     * through the returned list.<p>
1757     *
1758     * It is imperative that the user manually synchronize on the returned
1759     * list when iterating over it:
1760     * <pre>
1761     *  List list = Collections.synchronizedList(new ArrayList());
1762     *      ...
1763     *  synchronized(list) {
1764     *      Iterator i = list.iterator(); // Must be in synchronized block
1765     *      while (i.hasNext())
1766     *          foo(i.next());
1767     *  }
1768     * </pre>
1769     * Failure to follow this advice may result in non-deterministic behavior.
1770     *
1771     * <p>The returned list will be serializable if the specified list is
1772     * serializable.
1773     *
1774     * @param  list the list to be "wrapped" in a synchronized list.
1775     * @return a synchronized view of the specified list.
1776     */
1777    public static <T> List<T> synchronizedList(List<T> list) {
1778    return (list instanceof RandomAccess ?
1779                new SynchronizedRandomAccessList<T>(list) :
1780                new SynchronizedList<T>(list));
1781    }
1782
1783    static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1784    return (list instanceof RandomAccess ?
1785                new SynchronizedRandomAccessList<T>(list, mutex) :
1786                new SynchronizedList<T>(list, mutex));
1787    }
1788
1789    /**
1790     * @serial include
1791     */
1792    static class SynchronizedList<E>
1793    extends SynchronizedCollection<E>
1794    implements List<E> {
1795        static final long serialVersionUID = -7754090372962971524L;
1796
1797    final List<E> list;
1798
1799    SynchronizedList(List<E> list) {
1800        super(list);
1801        this.list = list;
1802    }
1803    SynchronizedList(List<E> list, Object mutex) {
1804            super(list, mutex);
1805        this.list = list;
1806        }
1807
1808    public boolean equals(Object o) {
1809        synchronized(mutex) {return list.equals(o);}
1810        }
1811    public int hashCode() {
1812        synchronized(mutex) {return list.hashCode();}
1813        }
1814
1815    public E get(int index) {
1816        synchronized(mutex) {return list.get(index);}
1817        }
1818    public E set(int index, E element) {
1819        synchronized(mutex) {return list.set(index, element);}
1820        }
1821    public void add(int index, E element) {
1822        synchronized(mutex) {list.add(index, element);}
1823        }
1824    public E remove(int index) {
1825        synchronized(mutex) {return list.remove(index);}
1826        }
1827
1828    public int indexOf(Object o) {
1829        synchronized(mutex) {return list.indexOf(o);}
1830        }
1831    public int lastIndexOf(Object o) {
1832        synchronized(mutex) {return list.lastIndexOf(o);}
1833        }
1834
1835    public boolean addAll(int index, Collection<? extends E> c) {
1836        synchronized(mutex) {return list.addAll(index, c);}
1837        }
1838
1839    public ListIterator<E> listIterator() {
1840        return list.listIterator(); // Must be manually synched by user
1841        }
1842
1843    public ListIterator<E> listIterator(int index) {
1844        return list.listIterator(index); // Must be manually synched by user
1845        }
1846
1847    public List<E> subList(int fromIndex, int toIndex) {
1848        synchronized(mutex) {
1849                return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1850                                            mutex);
1851            }
1852        }
1853
1854        /**
1855         * SynchronizedRandomAccessList instances are serialized as
1856         * SynchronizedList instances to allow them to be deserialized
1857         * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1858         * This method inverts the transformation.  As a beneficial
1859         * side-effect, it also grafts the RandomAccess marker onto
1860         * SynchronizedList instances that were serialized in pre-1.4 JREs.
1861         *
1862         * Note: Unfortunately, SynchronizedRandomAccessList instances
1863         * serialized in 1.4.1 and deserialized in 1.4 will become
1864         * SynchronizedList instances, as this method was missing in 1.4.
1865         */
1866        private Object readResolve() {
1867            return (list instanceof RandomAccess
1868            ? new SynchronizedRandomAccessList<E>(list)
1869            : this);
1870        }
1871    }
1872
1873    /**
1874     * @serial include
1875     */
1876    static class SynchronizedRandomAccessList<E>
1877    extends SynchronizedList<E>
1878    implements RandomAccess {
1879
1880        SynchronizedRandomAccessList(List<E> list) {
1881            super(list);
1882        }
1883
1884    SynchronizedRandomAccessList(List<E> list, Object mutex) {
1885            super(list, mutex);
1886        }
1887
1888    public List<E> subList(int fromIndex, int toIndex) {
1889        synchronized(mutex) {
1890                return new SynchronizedRandomAccessList<E>(
1891                    list.subList(fromIndex, toIndex), mutex);
1892            }
1893        }
1894
1895        static final long serialVersionUID = 1530674583602358482L;
1896
1897        /**
1898         * Allows instances to be deserialized in pre-1.4 JREs (which do
1899         * not have SynchronizedRandomAccessList).  SynchronizedList has
1900         * a readResolve method that inverts this transformation upon
1901         * deserialization.
1902         */
1903        private Object writeReplace() {
1904            return new SynchronizedList<E>(list);
1905        }
1906    }
1907
1908    /**
1909     * Returns a synchronized (thread-safe) map backed by the specified
1910     * map.  In order to guarantee serial access, it is critical that
1911     * <strong>all</strong> access to the backing map is accomplished
1912     * through the returned map.<p>
1913     *
1914     * It is imperative that the user manually synchronize on the returned
1915     * map when iterating over any of its collection views:
1916     * <pre>
1917     *  Map m = Collections.synchronizedMap(new HashMap());
1918     *      ...
1919     *  Set s = m.keySet();  // Needn't be in synchronized block
1920     *      ...
1921     *  synchronized(m) {  // Synchronizing on m, not s!
1922     *      Iterator i = s.iterator(); // Must be in synchronized block
1923     *      while (i.hasNext())
1924     *          foo(i.next());
1925     *  }
1926     * </pre>
1927     * Failure to follow this advice may result in non-deterministic behavior.
1928     *
1929     * <p>The returned map will be serializable if the specified map is
1930     * serializable.
1931     *
1932     * @param  m the map to be "wrapped" in a synchronized map.
1933     * @return a synchronized view of the specified map.
1934     */
1935    public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1936    return new SynchronizedMap<K,V>(m);
1937    }
1938
1939    /**
1940     * @serial include
1941     */
1942    private static class SynchronizedMap<K,V>
1943    implements Map<K,V>, Serializable {
1944    // use serialVersionUID from JDK 1.2.2 for interoperability
1945    private static final long serialVersionUID = 1978198479659022715L;
1946
1947    private final Map<K,V> m;     // Backing Map
1948        final Object      mutex;    // Object on which to synchronize
1949
1950    SynchronizedMap(Map<K,V> m) {
1951            if (m==null)
1952                throw new NullPointerException();
1953            this.m = m;
1954            mutex = this;
1955        }
1956
1957    SynchronizedMap(Map<K,V> m, Object mutex) {
1958            this.m = m;
1959            this.mutex = mutex;
1960        }
1961
1962    public int size() {
1963        synchronized(mutex) {return m.size();}
1964        }
1965    public boolean isEmpty(){
1966        synchronized(mutex) {return m.isEmpty();}
1967        }
1968    public boolean containsKey(Object key) {
1969        synchronized(mutex) {return m.containsKey(key);}
1970        }
1971    public boolean containsValue(Object value){
1972        synchronized(mutex) {return m.containsValue(value);}
1973        }
1974    public V get(Object key) {
1975        synchronized(mutex) {return m.get(key);}
1976        }
1977
1978    public V put(K key, V value) {
1979        synchronized(mutex) {return m.put(key, value);}
1980        }
1981    public V remove(Object key) {
1982        synchronized(mutex) {return m.remove(key);}
1983        }
1984    public void putAll(Map<? extends K, ? extends V> map) {
1985        synchronized(mutex) {m.putAll(map);}
1986        }
1987    public void clear() {
1988        synchronized(mutex) {m.clear();}
1989    }
1990
1991    private transient Set<K> keySet = null;
1992    private transient Set<Map.Entry<K,V>> entrySet = null;
1993    private transient Collection<V> values = null;
1994
1995    public Set<K> keySet() {
1996            synchronized(mutex) {
1997                if (keySet==null)
1998                    keySet = new SynchronizedSet<K>(m.keySet(), mutex);
1999                return keySet;
2000            }
2001    }
2002
2003    public Set<Map.Entry<K,V>> entrySet() {
2004            synchronized(mutex) {
2005                if (entrySet==null)
2006                    entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
2007                return entrySet;
2008            }
2009    }
2010
2011    public Collection<V> values() {
2012            synchronized(mutex) {
2013                if (values==null)
2014                    values = new SynchronizedCollection<V>(m.values(), mutex);
2015                return values;
2016            }
2017        }
2018
2019    public boolean equals(Object o) {
2020            synchronized(mutex) {return m.equals(o);}
2021        }
2022    public int hashCode() {
2023            synchronized(mutex) {return m.hashCode();}
2024        }
2025    public String toString() {
2026        synchronized(mutex) {return m.toString();}
2027        }
2028        private void writeObject(ObjectOutputStream s) throws IOException {
2029        synchronized(mutex) {s.defaultWriteObject();}
2030        }
2031    }
2032
2033    /**
2034     * Returns a synchronized (thread-safe) sorted map backed by the specified
2035     * sorted map.  In order to guarantee serial access, it is critical that
2036     * <strong>all</strong> access to the backing sorted map is accomplished
2037     * through the returned sorted map (or its views).<p>
2038     *
2039     * It is imperative that the user manually synchronize on the returned
2040     * sorted map when iterating over any of its collection views, or the
2041     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2042     * <tt>tailMap</tt> views.
2043     * <pre>
2044     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2045     *      ...
2046     *  Set s = m.keySet();  // Needn't be in synchronized block
2047     *      ...
2048     *  synchronized(m) {  // Synchronizing on m, not s!
2049     *      Iterator i = s.iterator(); // Must be in synchronized block
2050     *      while (i.hasNext())
2051     *          foo(i.next());
2052     *  }
2053     * </pre>
2054     * or:
2055     * <pre>
2056     *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2057     *  SortedMap m2 = m.subMap(foo, bar);
2058     *      ...
2059     *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2060     *      ...
2061     *  synchronized(m) {  // Synchronizing on m, not m2 or s2!
2062     *      Iterator i = s.iterator(); // Must be in synchronized block
2063     *      while (i.hasNext())
2064     *          foo(i.next());
2065     *  }
2066     * </pre>
2067     * Failure to follow this advice may result in non-deterministic behavior.
2068     *
2069     * <p>The returned sorted map will be serializable if the specified
2070     * sorted map is serializable.
2071     *
2072     * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2073     * @return a synchronized view of the specified sorted map.
2074     */
2075    public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2076    return new SynchronizedSortedMap<K,V>(m);
2077    }
2078
2079
2080    /**
2081     * @serial include
2082     */
2083    static class SynchronizedSortedMap<K,V>
2084    extends SynchronizedMap<K,V>
2085    implements SortedMap<K,V>
2086    {
2087    private static final long serialVersionUID = -8798146769416483793L;
2088
2089        private final SortedMap<K,V> sm;
2090
2091    SynchronizedSortedMap(SortedMap<K,V> m) {
2092            super(m);
2093            sm = m;
2094        }
2095    SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2096            super(m, mutex);
2097            sm = m;
2098        }
2099
2100    public Comparator<? super K> comparator() {
2101        synchronized(mutex) {return sm.comparator();}
2102        }
2103
2104        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2105        synchronized(mutex) {
2106                return new SynchronizedSortedMap<K,V>(
2107                    sm.subMap(fromKey, toKey), mutex);
2108            }
2109        }
2110        public SortedMap<K,V> headMap(K toKey) {
2111        synchronized(mutex) {
2112                return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2113            }
2114        }
2115        public SortedMap<K,V> tailMap(K fromKey) {
2116        synchronized(mutex) {
2117               return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2118            }
2119        }
2120
2121        public K firstKey() {
2122        synchronized(mutex) {return sm.firstKey();}
2123        }
2124        public K lastKey() {
2125        synchronized(mutex) {return sm.lastKey();}
2126        }
2127    }
2128
2129    // Dynamically typesafe collection wrappers
2130
2131    /**
2132     * Returns a dynamically typesafe view of the specified collection.  Any
2133     * attempt to insert an element of the wrong type will result in an
2134     * immediate <tt>ClassCastException</tt>.  Assuming a collection contains
2135     * no incorrectly typed elements prior to the time a dynamically typesafe
2136     * view is generated, and that all subsequent access to the collection
2137     * takes place through the view, it is <i>guaranteed</i> that the
2138     * collection cannot contain an incorrectly typed element.
2139     *
2140     * <p>The generics mechanism in the language provides compile-time
2141     * (static) type checking, but it is possible to defeat this mechanism
2142     * with unchecked casts.  Usually this is not a problem, as the compiler
2143     * issues warnings on all such unchecked operations.  There are, however,
2144     * times when static type checking alone is not sufficient.  For example,
2145     * suppose a collection is passed to a third-party library and it is
2146     * imperative that the library code not corrupt the collection by
2147     * inserting an element of the wrong type.
2148     *
2149     * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2150     * program fails with a <tt>ClassCastException</tt>, indicating that an
2151     * incorrectly typed element was put into a parameterized collection.
2152     * Unfortunately, the exception can occur at any time after the erroneous
2153     * element is inserted, so it typically provides little or no information
2154     * as to the real source of the problem.  If the problem is reproducible,
2155     * one can quickly determine its source by temporarily modifying the
2156     * program to wrap the collection with a dynamically typesafe view.
2157     * For example, this declaration:
2158     * <pre>
2159     *     Collection&lt;String&gt; c = new HashSet&lt;String&gt;();
2160     * </pre>
2161     * may be replaced temporarily by this one:
2162     * <pre>
2163     *     Collection&lt;String&gt; c = Collections.checkedCollection(
2164     *         new HashSet&lt;String&gt;(), String.class);
2165     * </pre>
2166     * Running the program again will cause it to fail at the point where
2167     * an incorrectly typed element is inserted into the collection, clearly
2168     * identifying the source of the problem.  Once the problem is fixed, the
2169     * modified declaration may be reverted back to the original.
2170     *
2171     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2172     * operations through to the backing collection, but relies on
2173     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
2174     * is necessary to preserve the contracts of these operations in the case
2175     * that the backing collection is a set or a list.
2176     *
2177     * <p>The returned collection will be serializable if the specified
2178     * collection is serializable.
2179     *
2180     * @param c the collection for which a dynamically typesafe view is to be
2181     *             returned
2182     * @param type the type of element that <tt>c</tt> is permitted to hold
2183     * @return a dynamically typesafe view of the specified collection
2184     * @since 1.5
2185     */
2186    public static <E> Collection<E> checkedCollection(Collection<E> c,
2187                                                      Class<E> type) {
2188        return new CheckedCollection<E>(c, type);
2189    }
2190
2191    /**
2192     * @serial include
2193     */
2194    static class CheckedCollection<E> implements Collection<E>, Serializable {
2195        private static final long serialVersionUID = 1578914078182001775L;
2196
2197        final Collection<E> c;
2198        final Class<E> type;
2199
2200        void typeCheck(Object o) {
2201            if (!type.isInstance(o))
2202                throw new ClassCastException("Attempt to insert " +
2203                   o.getClass() + " element into collection with element type "
2204                   + type);
2205        }
2206
2207        CheckedCollection(Collection<E> c, Class<E> type) {
2208            if (c==null || type == null)
2209                throw new NullPointerException();
2210            this.c = c;
2211            this.type = type;
2212        }
2213
2214        public int size()                   { return c.size(); }
2215        public boolean isEmpty()            { return c.isEmpty(); }
2216        public boolean contains(Object o)   { return c.contains(o); }
2217        public Object[] toArray()           { return c.toArray(); }
2218        public <T> T[] toArray(T[] a)       { return c.toArray(a); }
2219        public String toString()            { return c.toString(); }
2220        public boolean remove(Object o)     { return c.remove(o); }
2221        public boolean containsAll(Collection<?> coll) {
2222            return c.containsAll(coll);
2223        }
2224        public boolean removeAll(Collection<?> coll) {
2225            return c.removeAll(coll);
2226        }
2227        public boolean retainAll(Collection<?> coll) {
2228            return c.retainAll(coll);
2229        }
2230        public void clear() {
2231            c.clear();
2232        }
2233
2234        public Iterator<E> iterator() {
2235        return new Iterator<E>() {
2236        private final Iterator<E> it = c.iterator();
2237        public boolean hasNext() { return it.hasNext(); }
2238        public E next()          { return it.next(); }
2239        public void remove()     {        it.remove(); }};
2240    }
2241
2242    public boolean add(E e){
2243            typeCheck(e);
2244            return c.add(e);
2245        }
2246
2247        public boolean addAll(Collection<? extends E> coll) {
2248            /*
2249             * Dump coll into an array of the required type.  This serves
2250             * three purposes: it insulates us from concurrent changes in
2251             * the contents of coll, it type-checks all of the elements in
2252             * coll, and it provides all-or-nothing semantics (which we
2253             * wouldn't get if we type-checked each element as we added it).
2254             */
2255            E[] a = null;
2256            try {
2257                a = coll.toArray(zeroLengthElementArray());
2258            } catch (ArrayStoreException e) {
2259                throw new ClassCastException();
2260            }
2261
2262            boolean result = false;
2263            for (E e : a)
2264                result |= c.add(e);
2265            return result;
2266        }
2267
2268        private E[] zeroLengthElementArray = null; // Lazily initialized
2269
2270        /*
2271         * We don't need locking or volatile, because it's OK if we create
2272         * several zeroLengthElementArrays, and they're immutable.
2273         */
2274        E[] zeroLengthElementArray() {
2275            if (zeroLengthElementArray == null)
2276                zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
2277            return zeroLengthElementArray;
2278        }
2279    }
2280
2281    /**
2282     * Returns a dynamically typesafe view of the specified set.
2283     * Any attempt to insert an element of the wrong type will result in
2284     * an immediate <tt>ClassCastException</tt>.  Assuming a set contains
2285     * no incorrectly typed elements prior to the time a dynamically typesafe
2286     * view is generated, and that all subsequent access to the set
2287     * takes place through the view, it is <i>guaranteed</i> that the
2288     * set cannot contain an incorrectly typed element.
2289     *
2290     * <p>A discussion of the use of dynamically typesafe views may be
2291     * found in the documentation for the {@link #checkedCollection checkedCollection}
2292     * method.
2293     *
2294     * <p>The returned set will be serializable if the specified set is
2295     * serializable.
2296     *
2297     * @param s the set for which a dynamically typesafe view is to be
2298     *             returned
2299     * @param type the type of element that <tt>s</tt> is permitted to hold
2300     * @return a dynamically typesafe view of the specified set
2301     * @since 1.5
2302     */
2303    public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2304        return new CheckedSet<E>(s, type);
2305    }
2306
2307    /**
2308     * @serial include
2309     */
2310    static class CheckedSet<E> extends CheckedCollection<E>
2311                                 implements Set<E>, Serializable
2312    {
2313        private static final long serialVersionUID = 4694047833775013803L;
2314
2315        CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2316
2317        public boolean equals(Object o) { return o == this || c.equals(o); }
2318        public int hashCode()           { return c.hashCode(); }
2319    }
2320
2321    /**
2322     * Returns a dynamically typesafe view of the specified sorted set.  Any
2323     * attempt to insert an element of the wrong type will result in an
2324     * immediate <tt>ClassCastException</tt>.  Assuming a sorted set contains
2325     * no incorrectly typed elements prior to the time a dynamically typesafe
2326     * view is generated, and that all subsequent access to the sorted set
2327     * takes place through the view, it is <i>guaranteed</i> that the sorted
2328     * set cannot contain an incorrectly typed element.
2329     *
2330     * <p>A discussion of the use of dynamically typesafe views may be
2331     * found in the documentation for the {@link #checkedCollection checkedCollection}
2332     * method.
2333     *
2334     * <p>The returned sorted set will be serializable if the specified sorted
2335     * set is serializable.
2336     *
2337     * @param s the sorted set for which a dynamically typesafe view is to be
2338     *             returned
2339     * @param type the type of element that <tt>s</tt> is permitted to hold
2340     * @return a dynamically typesafe view of the specified sorted set
2341     * @since 1.5
2342     */
2343    public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2344                                                    Class<E> type) {
2345        return new CheckedSortedSet<E>(s, type);
2346    }
2347
2348    /**
2349     * @serial include
2350     */
2351    static class CheckedSortedSet<E> extends CheckedSet<E>
2352        implements SortedSet<E>, Serializable
2353    {
2354        private static final long serialVersionUID = 1599911165492914959L;
2355        private final SortedSet<E> ss;
2356
2357        CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2358            super(s, type);
2359            ss = s;
2360        }
2361
2362        public Comparator<? super E> comparator() { return ss.comparator(); }
2363        public E first()                   { return ss.first(); }
2364        public E last()                    { return ss.last(); }
2365
2366        public SortedSet<E> subSet(E fromElement, E toElement) {
2367            return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
2368                                           type);
2369        }
2370        public SortedSet<E> headSet(E toElement) {
2371            return new CheckedSortedSet<E>(ss.headSet(toElement), type);
2372        }
2373        public SortedSet<E> tailSet(E fromElement) {
2374            return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
2375        }
2376    }
2377
2378    /**
2379     * Returns a dynamically typesafe view of the specified list.
2380     * Any attempt to insert an element of the wrong type will result in
2381     * an immediate <tt>ClassCastException</tt>.  Assuming a list contains
2382     * no incorrectly typed elements prior to the time a dynamically typesafe
2383     * view is generated, and that all subsequent access to the list
2384     * takes place through the view, it is <i>guaranteed</i> that the
2385     * list cannot contain an incorrectly typed element.
2386     *
2387     * <p>A discussion of the use of dynamically typesafe views may be
2388     * found in the documentation for the {@link #checkedCollection checkedCollection}
2389     * method.
2390     *
2391     * <p>The returned list will be serializable if the specified list is
2392     * serializable.
2393     *
2394     * @param list the list for which a dynamically typesafe view is to be
2395     *             returned
2396     * @param type the type of element that <tt>list</tt> is permitted to hold
2397     * @return a dynamically typesafe view of the specified list
2398     * @since 1.5
2399     */
2400    public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2401        return (list instanceof RandomAccess ?
2402                new CheckedRandomAccessList<E>(list, type) :
2403                new CheckedList<E>(list, type));
2404    }
2405
2406    /**
2407     * @serial include
2408     */
2409    static class CheckedList<E> extends CheckedCollection<E>
2410                                implements List<E>
2411    {
2412        static final long serialVersionUID = 65247728283967356L;
2413        final List<E> list;
2414
2415        CheckedList(List<E> list, Class<E> type) {
2416            super(list, type);
2417            this.list = list;
2418        }
2419
2420        public boolean equals(Object o)  { return o == this || list.equals(o); }
2421        public int hashCode()            { return list.hashCode(); }
2422        public E get(int index)          { return list.get(index); }
2423        public E remove(int index)       { return list.remove(index); }
2424        public int indexOf(Object o)     { return list.indexOf(o); }
2425        public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2426
2427        public E set(int index, E element) {
2428            typeCheck(element);
2429            return list.set(index, element);
2430        }
2431
2432        public void add(int index, E element) {
2433            typeCheck(element);
2434            list.add(index, element);
2435        }
2436
2437        public boolean addAll(int index, Collection<? extends E> c) {
2438            // See CheckCollection.addAll, above, for an explanation
2439            E[] a = null;
2440            try {
2441                a = c.toArray(zeroLengthElementArray());
2442            } catch (ArrayStoreException e) {
2443                throw new ClassCastException();
2444            }
2445
2446            return list.addAll(index, Arrays.asList(a));
2447        }
2448        public ListIterator<E> listIterator()   { return listIterator(0); }
2449
2450        public ListIterator<E> listIterator(final int index) {
2451            return new ListIterator<E>() {
2452                ListIterator<E> i = list.listIterator(index);
2453
2454                public boolean hasNext()     { return i.hasNext(); }
2455                public E next()              { return i.next(); }
2456                public boolean hasPrevious() { return i.hasPrevious(); }
2457                public E previous()          { return i.previous(); }
2458                public int nextIndex()       { return i.nextIndex(); }
2459                public int previousIndex()   { return i.previousIndex(); }
2460                public void remove()         { i.remove(); }
2461
2462                public void set(E e) {
2463                    typeCheck(e);
2464                    i.set(e);
2465                }
2466
2467                public void add(E e) {
2468                    typeCheck(e);
2469                    i.add(e);
2470                }
2471            };
2472        }
2473
2474        public List<E> subList(int fromIndex, int toIndex) {
2475            return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2476        }
2477    }
2478
2479    /**
2480     * @serial include
2481     */
2482    static class CheckedRandomAccessList<E> extends CheckedList<E>
2483                                            implements RandomAccess
2484    {
2485        private static final long serialVersionUID = 1638200125423088369L;
2486
2487        CheckedRandomAccessList(List<E> list, Class<E> type) {
2488            super(list, type);
2489        }
2490
2491        public List<E> subList(int fromIndex, int toIndex) {
2492            return new CheckedRandomAccessList<E>(
2493                list.subList(fromIndex, toIndex), type);
2494        }
2495    }
2496
2497    /**
2498     * Returns a dynamically typesafe view of the specified map.  Any attempt
2499     * to insert a mapping whose key or value have the wrong type will result
2500     * in an immediate <tt>ClassCastException</tt>.  Similarly, any attempt to
2501     * modify the value currently associated with a key will result in an
2502     * immediate <tt>ClassCastException</tt>, whether the modification is
2503     * attempted directly through the map itself, or through a {@link
2504     * Map.Entry} instance obtained from the map's {@link Map#entrySet()
2505     * entry set} view.
2506     *
2507     * <p>Assuming a map contains no incorrectly typed keys or values
2508     * prior to the time a dynamically typesafe view is generated, and
2509     * that all subsequent access to the map takes place through the view
2510     * (or one of its collection views), it is <i>guaranteed</i> that the
2511     * map cannot contain an incorrectly typed key or value.
2512     *
2513     * <p>A discussion of the use of dynamically typesafe views may be
2514     * found in the documentation for the {@link #checkedCollection checkedCollection}
2515     * method.
2516     *
2517     * <p>The returned map will be serializable if the specified map is
2518     * serializable.
2519     *
2520     * @param m the map for which a dynamically typesafe view is to be
2521     *             returned
2522     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2523     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2524     * @return a dynamically typesafe view of the specified map
2525     * @since 1.5
2526     */
2527    public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
2528                                              Class<V> valueType) {
2529        return new CheckedMap<K,V>(m, keyType, valueType);
2530    }
2531
2532
2533    /**
2534     * @serial include
2535     */
2536    private static class CheckedMap<K,V> implements Map<K,V>,
2537                                                         Serializable
2538    {
2539        private static final long serialVersionUID = 5742860141034234728L;
2540
2541        private final Map<K, V> m;
2542        final Class<K> keyType;
2543        final Class<V> valueType;
2544
2545        private void typeCheck(Object key, Object value) {
2546            if (!keyType.isInstance(key))
2547                throw new ClassCastException("Attempt to insert " +
2548                    key.getClass() + " key into collection with key type "
2549                    + keyType);
2550
2551            if (!valueType.isInstance(value))
2552                throw new ClassCastException("Attempt to insert " +
2553                    value.getClass() +" value into collection with value type "
2554                    + valueType);
2555        }
2556
2557        CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2558            if (m == null || keyType == null || valueType == null)
2559                throw new NullPointerException();
2560            this.m = m;
2561            this.keyType = keyType;
2562            this.valueType = valueType;
2563        }
2564
2565        public int size()                      { return m.size(); }
2566        public boolean isEmpty()               { return m.isEmpty(); }
2567        public boolean containsKey(Object key) { return m.containsKey(key); }
2568        public boolean containsValue(Object v) { return m.containsValue(v); }
2569        public V get(Object key)               { return m.get(key); }
2570        public V remove(Object key)            { return m.remove(key); }
2571        public void clear()                    { m.clear(); }
2572        public Set<K> keySet()                 { return m.keySet(); }
2573        public Collection<V> values()          { return m.values(); }
2574        public boolean equals(Object o)        { return o == this || m.equals(o); }
2575        public int hashCode()                  { return m.hashCode(); }
2576        public String toString()               { return m.toString(); }
2577
2578        public V put(K key, V value) {
2579            typeCheck(key, value);
2580            return m.put(key, value);
2581        }
2582
2583        public void putAll(Map<? extends K, ? extends V> t) {
2584            // See CheckCollection.addAll, above, for an explanation
2585            K[] keys = null;
2586            try {
2587                keys = t.keySet().toArray(zeroLengthKeyArray());
2588            } catch (ArrayStoreException e) {
2589                throw new ClassCastException();
2590            }
2591            V[] values = null;
2592            try {
2593                values = t.values().toArray(zeroLengthValueArray());
2594            } catch (ArrayStoreException e) {
2595                throw new ClassCastException();
2596            }
2597
2598            if (keys.length != values.length)
2599                throw new ConcurrentModificationException();
2600
2601            for (int i = 0; i < keys.length; i++)
2602                m.put(keys[i], values[i]);
2603        }
2604
2605        // Lazily initialized
2606        private K[] zeroLengthKeyArray   = null;
2607        private V[] zeroLengthValueArray = null;
2608
2609        /*
2610         * We don't need locking or volatile, because it's OK if we create
2611         * several zeroLengthValueArrays, and they're immutable.
2612         */
2613        private K[] zeroLengthKeyArray() {
2614            if (zeroLengthKeyArray == null)
2615                zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
2616            return zeroLengthKeyArray;
2617        }
2618        private V[] zeroLengthValueArray() {
2619            if (zeroLengthValueArray == null)
2620                zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
2621            return zeroLengthValueArray;
2622        }
2623
2624        private transient Set<Map.Entry<K,V>> entrySet = null;
2625
2626        public Set<Map.Entry<K,V>> entrySet() {
2627            if (entrySet==null)
2628                entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2629            return entrySet;
2630        }
2631
2632        /**
2633         * We need this class in addition to CheckedSet as Map.Entry permits
2634         * modification of the backing Map via the setValue operation.  This
2635         * class is subtle: there are many possible attacks that must be
2636         * thwarted.
2637         *
2638         * @serial exclude
2639         */
2640        static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2641            Set<Map.Entry<K,V>> s;
2642            Class<V> valueType;
2643
2644            CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2645                this.s = s;
2646                this.valueType = valueType;
2647            }
2648
2649            public int size()                   { return s.size(); }
2650            public boolean isEmpty()            { return s.isEmpty(); }
2651            public String toString()            { return s.toString(); }
2652            public int hashCode()               { return s.hashCode(); }
2653            public boolean remove(Object o)     { return s.remove(o); }
2654            public boolean removeAll(Collection<?> coll) {
2655                return s.removeAll(coll);
2656            }
2657            public boolean retainAll(Collection<?> coll) {
2658                return s.retainAll(coll);
2659            }
2660            public void clear() {
2661                s.clear();
2662            }
2663
2664            public boolean add(Map.Entry<K, V> e){
2665                throw new UnsupportedOperationException();
2666            }
2667            public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2668                throw new UnsupportedOperationException();
2669            }
2670
2671
2672            public Iterator<Map.Entry<K,V>> iterator() {
2673                return new Iterator<Map.Entry<K,V>>() {
2674                    Iterator<Map.Entry<K, V>> i = s.iterator();
2675
2676                    public boolean hasNext() { return i.hasNext(); }
2677                    public void remove()     { i.remove(); }
2678
2679                    public Map.Entry<K,V> next() {
2680                        return new CheckedEntry<K,V>(i.next(), valueType);
2681                    }
2682                };
2683            }
2684
2685            public Object[] toArray() {
2686                Object[] source = s.toArray();
2687
2688                /*
2689                 * Ensure that we don't get an ArrayStoreException even if
2690                 * s.toArray returns an array of something other than Object
2691                 */
2692                Object[] dest = (CheckedEntry.class.isInstance(
2693                    source.getClass().getComponentType()) ? source :
2694                                 new Object[source.length]);
2695
2696                for (int i = 0; i < source.length; i++)
2697                    dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
2698                                                    valueType);
2699                return dest;
2700            }
2701
2702            public <T> T[] toArray(T[] a) {
2703                // We don't pass a to s.toArray, to avoid window of
2704                // vulnerability wherein an unscrupulous multithreaded client
2705                // could get his hands on raw (unwrapped) Entries from s.
2706                Object[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2707
2708                for (int i=0; i<arr.length; i++)
2709                    arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
2710                                                   valueType);
2711                if (arr.length > a.length)
2712                    return (T[])arr;
2713
2714                System.arraycopy(arr, 0, a, 0, arr.length);
2715                if (a.length > arr.length)
2716                    a[arr.length] = null;
2717                return a;
2718            }
2719
2720            /**
2721             * This method is overridden to protect the backing set against
2722             * an object with a nefarious equals function that senses
2723             * that the equality-candidate is Map.Entry and calls its
2724             * setValue method.
2725             */
2726            public boolean contains(Object o) {
2727                if (!(o instanceof Map.Entry))
2728                    return false;
2729                return s.contains(
2730                    new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
2731            }
2732
2733            /**
2734             * The next two methods are overridden to protect against
2735             * an unscrupulous collection whose contains(Object o) method
2736             * senses when o is a Map.Entry, and calls o.setValue.
2737             */
2738            public boolean containsAll(Collection<?> coll) {
2739                Iterator<?> e = coll.iterator();
2740                while (e.hasNext())
2741                    if (!contains(e.next())) // Invokes safe contains() above
2742                        return false;
2743                return true;
2744            }
2745
2746            public boolean equals(Object o) {
2747                if (o == this)
2748                    return true;
2749                if (!(o instanceof Set))
2750                    return false;
2751                Set<?> that = (Set<?>) o;
2752                if (that.size() != s.size())
2753                    return false;
2754                return containsAll(that); // Invokes safe containsAll() above
2755            }
2756
2757            /**
2758             * This "wrapper class" serves two purposes: it prevents
2759             * the client from modifying the backing Map, by short-circuiting
2760             * the setValue method, and it protects the backing Map against
2761             * an ill-behaved Map.Entry that attempts to modify another
2762             * Map Entry when asked to perform an equality check.
2763             */
2764            private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
2765                private Map.Entry<K, V> e;
2766                private Class<V> valueType;
2767
2768                CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
2769                    this.e = e;
2770                    this.valueType = valueType;
2771                }
2772
2773                public K getKey()        { return e.getKey(); }
2774                public V getValue()      { return e.getValue(); }
2775                public int hashCode()    { return e.hashCode(); }
2776                public String toString() { return e.toString(); }
2777
2778
2779                public V setValue(V value) {
2780                    if (!valueType.isInstance(value))
2781                        throw new ClassCastException("Attempt to insert " +
2782                        value.getClass() +
2783                        " value into collection with value type " + valueType);
2784                    return e.setValue(value);
2785                }
2786
2787                public boolean equals(Object o) {
2788                    if (!(o instanceof Map.Entry))
2789                        return false;
2790                    Map.Entry t = (Map.Entry)o;
2791                    return eq(e.getKey(),   t.getKey()) &&
2792                           eq(e.getValue(), t.getValue());
2793                }
2794            }
2795        }
2796    }
2797
2798    /**
2799     * Returns a dynamically typesafe view of the specified sorted map.  Any
2800     * attempt to insert a mapping whose key or value have the wrong type will
2801     * result in an immediate <tt>ClassCastException</tt>.  Similarly, any
2802     * attempt to modify the value currently associated with a key will result
2803     * in an immediate <tt>ClassCastException</tt>, whether the modification
2804     * is attempted directly through the map itself, or through a {@link
2805     * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
2806     * set} view.
2807     *
2808     * <p>Assuming a map contains no incorrectly typed keys or values
2809     * prior to the time a dynamically typesafe view is generated, and
2810     * that all subsequent access to the map takes place through the view
2811     * (or one of its collection views), it is <i>guaranteed</i> that the
2812     * map cannot contain an incorrectly typed key or value.
2813     *
2814     * <p>A discussion of the use of dynamically typesafe views may be
2815     * found in the documentation for the {@link #checkedCollection checkedCollection}
2816     * method.
2817     *
2818     * <p>The returned map will be serializable if the specified map is
2819     * serializable.
2820     *
2821     * @param m the map for which a dynamically typesafe view is to be
2822     *             returned
2823     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2824     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2825     * @return a dynamically typesafe view of the specified map
2826     * @since 1.5
2827     */
2828    public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2829                                                        Class<K> keyType,
2830                                                        Class<V> valueType) {
2831        return new CheckedSortedMap<K,V>(m, keyType, valueType);
2832    }
2833
2834    /**
2835     * @serial include
2836     */
2837    static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2838        implements SortedMap<K,V>, Serializable
2839    {
2840        private static final long serialVersionUID = 1599671320688067438L;
2841
2842        private final SortedMap<K, V> sm;
2843
2844        CheckedSortedMap(SortedMap<K, V> m,
2845                         Class<K> keyType, Class<V> valueType) {
2846            super(m, keyType, valueType);
2847            sm = m;
2848        }
2849
2850        public Comparator<? super K> comparator() { return sm.comparator(); }
2851        public K firstKey()                       { return sm.firstKey(); }
2852        public K lastKey()                        { return sm.lastKey(); }
2853
2854        public SortedMap<K,V> subMap(K fromKey, K toKey) {
2855            return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
2856                                             keyType, valueType);
2857        }
2858
2859        public SortedMap<K,V> headMap(K toKey) {
2860            return new CheckedSortedMap<K,V>(sm.headMap(toKey),
2861                                             keyType, valueType);
2862        }
2863
2864        public SortedMap<K,V> tailMap(K fromKey) {
2865            return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
2866                                             keyType, valueType);
2867        }
2868    }
2869
2870    // Miscellaneous
2871
2872    /**
2873     * The empty set (immutable).  This set is serializable.
2874     *
2875     * @see #emptySet()
2876     */
2877    public static final Set EMPTY_SET = new EmptySet();
2878
2879    /**
2880     * Returns the empty set (immutable).  This set is serializable.
2881     * Unlike the like-named field, this method is parameterized.
2882     *
2883     * <p>This example illustrates the type-safe way to obtain an empty set:
2884     * <pre>
2885     *     Set&lt;String&gt; s = Collections.emptySet();
2886     * </pre>
2887     * Implementation note:  Implementations of this method need not
2888     * create a separate <tt>Set</tt> object for each call.   Using this
2889     * method is likely to have comparable cost to using the like-named
2890     * field.  (Unlike this method, the field does not provide type safety.)
2891     *
2892     * @see #EMPTY_SET
2893     * @since 1.5
2894     */
2895    public static final <T> Set<T> emptySet() {
2896    return (Set<T>) EMPTY_SET;
2897    }
2898
2899    /**
2900     * @serial include
2901     */
2902    private static class EmptySet extends AbstractSet<Object> implements Serializable {
2903    // use serialVersionUID from JDK 1.2.2 for interoperability
2904    private static final long serialVersionUID = 1582296315990362920L;
2905
2906        public Iterator<Object> iterator() {
2907            return new Iterator<Object>() {
2908                public boolean hasNext() {
2909                    return false;
2910                }
2911                public Object next() {
2912                    throw new NoSuchElementException();
2913                }
2914                public void remove() {
2915                    throw new UnsupportedOperationException();
2916                }
2917            };
2918        }
2919
2920        public int size() {return 0;}
2921
2922        public boolean contains(Object obj) {return false;}
2923
2924        // Preserves singleton property
2925        private Object readResolve() {
2926            return EMPTY_SET;
2927        }
2928    }
2929
2930    /**
2931     * The empty list (immutable).  This list is serializable.
2932     *
2933     * @see #emptyList()
2934     */
2935    public static final List EMPTY_LIST = new EmptyList();
2936
2937    /**
2938     * Returns the empty list (immutable).  This list is serializable.
2939     *
2940     * <p>This example illustrates the type-safe way to obtain an empty list:
2941     * <pre>
2942     *     List&lt;String&gt; s = Collections.emptyList();
2943     * </pre>
2944     * Implementation note:  Implementations of this method need not
2945     * create a separate <tt>List</tt> object for each call.   Using this
2946     * method is likely to have comparable cost to using the like-named
2947     * field.  (Unlike this method, the field does not provide type safety.)
2948     *
2949     * @see #EMPTY_LIST
2950     * @since 1.5
2951     */
2952    public static final <T> List<T> emptyList() {
2953    return (List<T>) EMPTY_LIST;
2954    }
2955
2956    /**
2957     * @serial include
2958     */
2959    private static class EmptyList
2960    extends AbstractList<Object>
2961    implements RandomAccess, Serializable {
2962    // use serialVersionUID from JDK 1.2.2 for interoperability
2963    private static final long serialVersionUID = 8842843931221139166L;
2964
2965        public int size() {return 0;}
2966
2967        public boolean contains(Object obj) {return false;}
2968
2969        public Object get(int index) {
2970            throw new IndexOutOfBoundsException("Index: "+index);
2971        }
2972
2973        // Preserves singleton property
2974        private Object readResolve() {
2975            return EMPTY_LIST;
2976        }
2977    }
2978
2979    /**
2980     * The empty map (immutable).  This map is serializable.
2981     *
2982     * @see #emptyMap()
2983     * @since 1.3
2984     */
2985    public static final Map EMPTY_MAP = new EmptyMap();
2986
2987    /**
2988     * Returns the empty map (immutable).  This map is serializable.
2989     *
2990     * <p>This example illustrates the type-safe way to obtain an empty set:
2991     * <pre>
2992     *     Map&lt;String, Date&gt; s = Collections.emptyMap();
2993     * </pre>
2994     * Implementation note:  Implementations of this method need not
2995     * create a separate <tt>Map</tt> object for each call.   Using this
2996     * method is likely to have comparable cost to using the like-named
2997     * field.  (Unlike this method, the field does not provide type safety.)
2998     *
2999     * @see #EMPTY_MAP
3000     * @since 1.5
3001     */
3002    public static final <K,V> Map<K,V> emptyMap() {
3003    return (Map<K,V>) EMPTY_MAP;
3004    }
3005
3006    private static class EmptyMap
3007    extends AbstractMap<Object,Object>
3008    implements Serializable {
3009
3010        private static final long serialVersionUID = 6428348081105594320L;
3011
3012        public int size()                          {return 0;}
3013
3014        public boolean isEmpty()                   {return true;}
3015
3016        public boolean containsKey(Object key)     {return false;}
3017
3018        public boolean containsValue(Object value) {return false;}
3019
3020    public Object get(Object key)              {return null;}
3021
3022        public Set<Object> keySet()                {return Collections.<Object>emptySet();}
3023
3024        public Collection<Object> values()         {return Collections.<Object>emptySet();}
3025
3026        public Set<Map.Entry<Object,Object>> entrySet() {
3027        return Collections.emptySet();
3028    }
3029
3030        public boolean equals(Object o) {
3031            return (o instanceof Map) && ((Map)o).size()==0;
3032        }
3033
3034        public int hashCode()                      {return 0;}
3035
3036        // Preserves singleton property
3037        private Object readResolve() {
3038            return EMPTY_MAP;
3039        }
3040    }
3041
3042    /**
3043     * Returns an immutable set containing only the specified object.
3044     * The returned set is serializable.
3045     *
3046     * @param o the sole object to be stored in the returned set.
3047     * @return an immutable set containing only the specified object.
3048     */
3049    public static <T> Set<T> singleton(T o) {
3050    return new SingletonSet<T>(o);
3051    }
3052
3053    /**
3054     * @serial include
3055     */
3056    private static class SingletonSet<E>
3057    extends AbstractSet<E>
3058    implements Serializable
3059    {
3060    // use serialVersionUID from JDK 1.2.2 for interoperability
3061    private static final long serialVersionUID = 3193687207550431679L;
3062
3063        final private E element;
3064
3065        SingletonSet(E e) {element = e;}
3066
3067        public Iterator<E> iterator() {
3068            return new Iterator<E>() {
3069                private boolean hasNext = true;
3070                public boolean hasNext() {
3071                    return hasNext;
3072                }
3073                public E next() {
3074                    if (hasNext) {
3075                        hasNext = false;
3076                        return element;
3077                    }
3078                    throw new NoSuchElementException();
3079                }
3080                public void remove() {
3081                    throw new UnsupportedOperationException();
3082                }
3083            };
3084        }
3085
3086        public int size() {return 1;}
3087
3088        public boolean contains(Object o) {return eq(o, element);}
3089    }
3090
3091    /**
3092     * Returns an immutable list containing only the specified object.
3093     * The returned list is serializable.
3094     *
3095     * @param o the sole object to be stored in the returned list.
3096     * @return an immutable list containing only the specified object.
3097     * @since 1.3
3098     */
3099    public static <T> List<T> singletonList(T o) {
3100    return new SingletonList<T>(o);
3101    }
3102
3103    private static class SingletonList<E>
3104    extends AbstractList<E>
3105    implements RandomAccess, Serializable {
3106
3107        static final long serialVersionUID = 3093736618740652951L;
3108
3109        private final E element;
3110
3111        SingletonList(E obj)                {element = obj;}
3112
3113        public int size()                   {return 1;}
3114
3115        public boolean contains(Object obj) {return eq(obj, element);}
3116
3117        public E get(int index) {
3118            if (index != 0)
3119              throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3120            return element;
3121        }
3122    }
3123
3124    /**
3125     * Returns an immutable map, mapping only the specified key to the
3126     * specified value.  The returned map is serializable.
3127     *
3128     * @param key the sole key to be stored in the returned map.
3129     * @param value the value to which the returned map maps <tt>key</tt>.
3130     * @return an immutable map containing only the specified key-value
3131     *         mapping.
3132     * @since 1.3
3133     */
3134    public static <K,V> Map<K,V> singletonMap(K key, V value) {
3135    return new SingletonMap<K,V>(key, value);
3136    }
3137
3138    private static class SingletonMap<K,V>
3139      extends AbstractMap<K,V>
3140      implements Serializable {
3141    private static final long serialVersionUID = -6979724477215052911L;
3142
3143        private final K k;
3144    private final V v;
3145
3146        SingletonMap(K key, V value) {
3147            k = key;
3148            v = value;
3149        }
3150
3151        public int size()                          {return 1;}
3152
3153        public boolean isEmpty()                   {return false;}
3154
3155        public boolean containsKey(Object key)     {return eq(key, k);}
3156
3157        public boolean containsValue(Object value) {return eq(value, v);}
3158
3159        public V get(Object key)                   {return (eq(key, k) ? v : null);}
3160
3161        private transient Set<K> keySet = null;
3162        private transient Set<Map.Entry<K,V>> entrySet = null;
3163        private transient Collection<V> values = null;
3164
3165    public Set<K> keySet() {
3166        if (keySet==null)
3167        keySet = singleton(k);
3168        return keySet;
3169    }
3170
3171    public Set<Map.Entry<K,V>> entrySet() {
3172        if (entrySet==null)
3173        entrySet = Collections.<Map.Entry<K,V>>singleton(
3174            new SimpleImmutableEntry<K,V>(k, v));
3175        return entrySet;
3176    }
3177
3178    public Collection<V> values() {
3179        if (values==null)
3180        values = singleton(v);
3181        return values;
3182    }
3183
3184    }
3185
3186    /**
3187     * Returns an immutable list consisting of <tt>n</tt> copies of the
3188     * specified object.  The newly allocated data object is tiny (it contains
3189     * a single reference to the data object).  This method is useful in
3190     * combination with the <tt>List.addAll</tt> method to grow lists.
3191     * The returned list is serializable.
3192     *
3193     * @param  n the number of elements in the returned list.
3194     * @param  o the element to appear repeatedly in the returned list.
3195     * @return an immutable list consisting of <tt>n</tt> copies of the
3196     *         specified object.
3197     * @throws IllegalArgumentException if n &lt; 0.
3198     * @see    List#addAll(Collection)
3199     * @see    List#addAll(int, Collection)
3200     */
3201    public static <T> List<T> nCopies(int n, T o) {
3202    if (n < 0)
3203        throw new IllegalArgumentException("List length = " + n);
3204        return new CopiesList<T>(n, o);
3205    }
3206
3207    /**
3208     * @serial include
3209     */
3210    private static class CopiesList<E>
3211    extends AbstractList<E>
3212    implements RandomAccess, Serializable
3213    {
3214        static final long serialVersionUID = 2739099268398711800L;
3215
3216        final int n;
3217        final E element;
3218
3219        CopiesList(int n, E e) {
3220        assert n >= 0;
3221            this.n = n;
3222            element = e;
3223        }
3224
3225        public int size() {
3226            return n;
3227        }
3228
3229        public boolean contains(Object obj) {
3230            return n != 0 && eq(obj, element);
3231        }
3232
3233    public int indexOf(Object o) {
3234        return contains(o) ? 0 : -1;
3235    }
3236
3237    public int lastIndexOf(Object o) {
3238        return contains(o) ? n - 1 : -1;
3239    }
3240
3241        public E get(int index) {
3242            if (index < 0 || index >= n)
3243                throw new IndexOutOfBoundsException("Index: "+index+
3244                                                    ", Size: "+n);
3245            return element;
3246        }
3247
3248    public Object[] toArray() {
3249        final Object[] a = new Object[n];
3250        if (element != null)
3251        Arrays.fill(a, 0, n, element);
3252        return a;
3253    }
3254
3255    public <T> T[] toArray(T[] a) {
3256        final int n = this.n;
3257        if (a.length < n) {
3258        a = (T[])java.lang.reflect.Array
3259            .newInstance(a.getClass().getComponentType(), n);
3260        if (element != null)
3261            Arrays.fill(a, 0, n, element);
3262        } else {
3263        Arrays.fill(a, 0, n, element);
3264        if (a.length > n)
3265            a[n] = null;
3266        }
3267        return a;
3268    }
3269
3270    public List<E> subList(int fromIndex, int toIndex) {
3271        if (fromIndex < 0)
3272        throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3273        if (toIndex > n)
3274        throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3275        if (fromIndex > toIndex)
3276        throw new IllegalArgumentException("fromIndex(" + fromIndex +
3277                           ") > toIndex(" + toIndex + ")");
3278        return new CopiesList(toIndex - fromIndex, element);
3279    }
3280    }
3281
3282    /**
3283     * Returns a comparator that imposes the reverse of the <i>natural
3284     * ordering</i> on a collection of objects that implement the
3285     * <tt>Comparable</tt> interface.  (The natural ordering is the ordering
3286     * imposed by the objects' own <tt>compareTo</tt> method.)  This enables a
3287     * simple idiom for sorting (or maintaining) collections (or arrays) of
3288     * objects that implement the <tt>Comparable</tt> interface in
3289     * reverse-natural-order.  For example, suppose a is an array of
3290     * strings. Then: <pre>
3291     *      Arrays.sort(a, Collections.reverseOrder());
3292     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3293     *
3294     * The returned comparator is serializable.
3295     *
3296     * @return a comparator that imposes the reverse of the <i>natural
3297     *         ordering</i> on a collection of objects that implement
3298     *         the <tt>Comparable</tt> interface.
3299     * @see Comparable
3300     */
3301    public static <T> Comparator<T> reverseOrder() {
3302        return (Comparator<T>) REVERSE_ORDER;
3303    }
3304
3305    private static final Comparator REVERSE_ORDER = new ReverseComparator();
3306
3307    /**
3308     * @serial include
3309     */
3310    private static class ReverseComparator<T>
3311    implements Comparator<Comparable<Object>>, Serializable {
3312
3313    // use serialVersionUID from JDK 1.2.2 for interoperability
3314    private static final long serialVersionUID = 7207038068494060240L;
3315
3316        public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3317            return c2.compareTo(c1);
3318        }
3319
3320        private Object readResolve() { return reverseOrder(); }
3321    }
3322
3323    /**
3324     * Returns a comparator that imposes the reverse ordering of the specified
3325     * comparator.  If the specified comparator is null, this method is
3326     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3327     * comparator that imposes the reverse of the <i>natural ordering</i> on a
3328     * collection of objects that implement the Comparable interface).
3329     *
3330     * <p>The returned comparator is serializable (assuming the specified
3331     * comparator is also serializable or null).
3332     *
3333     * @return a comparator that imposes the reverse ordering of the
3334     *     specified comparator.
3335     * @since 1.5
3336     */
3337    public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3338        if (cmp == null)
3339            return reverseOrder();
3340
3341        return new ReverseComparator2<T>(cmp);
3342    }
3343
3344    /**
3345     * @serial include
3346     */
3347    private static class ReverseComparator2<T> implements Comparator<T>,
3348        Serializable
3349    {
3350        private static final long serialVersionUID = 4374092139857L;
3351
3352        /**
3353         * The comparator specified in the static factory.  This will never
3354         * be null, as the static factory returns a ReverseComparator
3355         * instance if its argument is null.
3356         *
3357         * @serial
3358         */
3359        private Comparator<T> cmp;
3360
3361        ReverseComparator2(Comparator<T> cmp) {
3362            assert cmp != null;
3363            this.cmp = cmp;
3364        }
3365
3366        public int compare(T t1, T t2) {
3367            return cmp.compare(t2, t1);
3368        }
3369    }
3370
3371    /**
3372     * Returns an enumeration over the specified collection.  This provides
3373     * interoperability with legacy APIs that require an enumeration
3374     * as input.
3375     *
3376     * @param c the collection for which an enumeration is to be returned.
3377     * @return an enumeration over the specified collection.
3378     * @see Enumeration
3379     */
3380    public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3381    return new Enumeration<T>() {
3382        Iterator<T> i = c.iterator();
3383
3384        public boolean hasMoreElements() {
3385        return i.hasNext();
3386        }
3387
3388        public T nextElement() {
3389        return i.next();
3390        }
3391        };
3392    }
3393
3394    /**
3395     * Returns an array list containing the elements returned by the
3396     * specified enumeration in the order they are returned by the
3397     * enumeration.  This method provides interoperability between
3398     * legacy APIs that return enumerations and new APIs that require
3399     * collections.
3400     *
3401     * @param e enumeration providing elements for the returned
3402     *          array list
3403     * @return an array list containing the elements returned
3404     *         by the specified enumeration.
3405     * @since 1.4
3406     * @see Enumeration
3407     * @see ArrayList
3408     */
3409    public static <T> ArrayList<T> list(Enumeration<T> e) {
3410        ArrayList<T> l = new ArrayList<T>();
3411        while (e.hasMoreElements())
3412            l.add(e.nextElement());
3413        return l;
3414    }
3415
3416    /**
3417     * Returns true if the specified arguments are equal, or both null.
3418     */
3419    private static boolean eq(Object o1, Object o2) {
3420        return (o1==null ? o2==null : o1.equals(o2));
3421    }
3422
3423    /**
3424     * Returns the number of elements in the specified collection equal to the
3425     * specified object.  More formally, returns the number of elements
3426     * <tt>e</tt> in the collection such that
3427     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3428     *
3429     * @param c the collection in which to determine the frequency
3430     *     of <tt>o</tt>
3431     * @param o the object whose frequency is to be determined
3432     * @throws NullPointerException if <tt>c</tt> is null
3433     * @since 1.5
3434     */
3435    public static int frequency(Collection<?> c, Object o) {
3436        int result = 0;
3437        if (o == null) {
3438            for (Object e : c)
3439                if (e == null)
3440                    result++;
3441        } else {
3442            for (Object e : c)
3443                if (o.equals(e))
3444                    result++;
3445        }
3446        return result;
3447    }
3448
3449    /**
3450     * Returns <tt>true</tt> if the two specified collections have no
3451     * elements in common.
3452     *
3453     * <p>Care must be exercised if this method is used on collections that
3454     * do not comply with the general contract for <tt>Collection</tt>.
3455     * Implementations may elect to iterate over either collection and test
3456     * for containment in the other collection (or to perform any equivalent
3457     * computation).  If either collection uses a nonstandard equality test
3458     * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3459     * equals</i>, or the key set of an {@link IdentityHashMap}), both
3460     * collections must use the same nonstandard equality test, or the
3461     * result of this method is undefined.
3462     *
3463     * <p>Note that it is permissible to pass the same collection in both
3464     * parameters, in which case the method will return true if and only if
3465     * the collection is empty.
3466     *
3467     * @param c1 a collection
3468     * @param c2 a collection
3469     * @throws NullPointerException if either collection is null
3470     * @since 1.5
3471     */
3472    public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3473        /*
3474         * We're going to iterate through c1 and test for inclusion in c2.
3475         * If c1 is a Set and c2 isn't, swap the collections.  Otherwise,
3476         * place the shorter collection in c1.  Hopefully this heuristic
3477         * will minimize the cost of the operation.
3478         */
3479        if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3480            (c1.size() > c2.size())) {
3481            Collection<?> tmp = c1;
3482            c1 = c2;
3483            c2 = tmp;
3484        }
3485
3486        for (Object e : c1)
3487            if (c2.contains(e))
3488                return false;
3489        return true;
3490    }
3491
3492    /**
3493     * Adds all of the specified elements to the specified collection.
3494     * Elements to be added may be specified individually or as an array.
3495     * The behavior of this convenience method is identical to that of
3496     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3497     * to run significantly faster under most implementations.
3498     *
3499     * <p>When elements are specified individually, this method provides a
3500     * convenient way to add a few elements to an existing collection:
3501     * <pre>
3502     *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3503     * </pre>
3504     *
3505     * @param c the collection into which <tt>elements</tt> are to be inserted
3506     * @param elements the elements to insert into <tt>c</tt>
3507     * @return <tt>true</tt> if the collection changed as a result of the call
3508     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3509     *         the <tt>add</tt> operation
3510     * @throws NullPointerException if <tt>elements</tt> contains one or more
3511     *         null values and <tt>c</tt> does not permit null elements, or
3512     *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3513     * @throws IllegalArgumentException if some property of a value in
3514     *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
3515     * @see Collection#addAll(Collection)
3516     * @since 1.5
3517     */
3518    public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3519        boolean result = false;
3520        for (T element : elements)
3521            result |= c.add(element);
3522        return result;
3523    }
3524
3525    /**
3526     * Returns a set backed by the specified map.  The resulting set displays
3527     * the same ordering, concurrency, and performance characteristics as the
3528     * backing map.  In essence, this factory method provides a {@link Set}
3529     * implementation corresponding to any {@link Map} implementation.  There
3530     * is no need to use this method on a {@link Map} implementation that
3531     * already has a corresponding {@link Set} implementation (such as {@link
3532     * HashMap} or {@link TreeMap}).
3533     *
3534     * <p>Each method invocation on the set returned by this method results in
3535     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3536     * view, with one exception.  The <tt>addAll</tt> method is implemented
3537     * as a sequence of <tt>put</tt> invocations on the backing map.
3538     *
3539     * <p>The specified map must be empty at the time this method is invoked,
3540     * and should not be accessed directly after this method returns.  These
3541     * conditions are ensured if the map is created empty, passed directly
3542     * to this method, and no reference to the map is retained, as illustrated
3543     * in the following code fragment:
3544     * <pre>
3545     *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
3546     *        new WeakHashMap&lt;Object, Boolean&gt;());
3547     * </pre>
3548     *
3549     * @param map the backing map
3550     * @return the set backed by the map
3551     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3552     * @since 1.6
3553     */
3554    public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3555        return new SetFromMap<E>(map);
3556    }
3557
3558    private static class SetFromMap<E> extends AbstractSet<E>
3559        implements Set<E>, Serializable
3560    {
3561        private final Map<E, Boolean> m;  // The backing map
3562        private transient Set<E> s;       // Its keySet
3563
3564        SetFromMap(Map<E, Boolean> map) {
3565            if (!map.isEmpty())
3566                throw new IllegalArgumentException("Map is non-empty");
3567            m = map;
3568            s = map.keySet();
3569        }
3570
3571        public void clear()               {        m.clear(); }
3572        public int size()                 { return m.size(); }
3573        public boolean isEmpty()          { return m.isEmpty(); }
3574        public boolean contains(Object o) { return m.containsKey(o); }
3575        public boolean remove(Object o)   { return m.remove(o) != null; }
3576        public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3577        public Iterator<E> iterator()     { return s.iterator(); }
3578        public Object[] toArray()         { return s.toArray(); }
3579        public <T> T[] toArray(T[] a)     { return s.toArray(a); }
3580        public String toString()          { return s.toString(); }
3581        public int hashCode()             { return s.hashCode(); }
3582        public boolean equals(Object o)   { return o == this || s.equals(o); }
3583        public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3584        public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
3585        public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
3586    // addAll is the only inherited implementation
3587
3588        private static final long serialVersionUID = 2454657854757543876L;
3589
3590        private void readObject(java.io.ObjectInputStream stream)
3591            throws IOException, ClassNotFoundException
3592        {
3593            stream.defaultReadObject();
3594            s = m.keySet();
3595        }
3596    }
3597
3598    /**
3599     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3600     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3601     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3602     * view can be useful when you would like to use a method
3603     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3604     *
3605     * <p>Each method invocation on the queue returned by this method
3606     * results in exactly one method invocation on the backing deque, with
3607     * one exception.  The {@link Queue#addAll addAll} method is
3608     * implemented as a sequence of {@link Deque#addFirst addFirst}
3609     * invocations on the backing deque.
3610     *
3611     * @param deque the deque
3612     * @return the queue
3613     * @since  1.6
3614     */
3615    public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3616        return new AsLIFOQueue<T>(deque);
3617    }
3618
3619    static class AsLIFOQueue<E> extends AbstractQueue<E>
3620        implements Queue<E>, Serializable {
3621    private static final long serialVersionUID = 1802017725587941708L;
3622        private final Deque<E> q;
3623        AsLIFOQueue(Deque<E> q)           { this.q = q; }
3624        public boolean add(E e)           { q.addFirst(e); return true; }
3625        public boolean offer(E e)         { return q.offerFirst(e); }
3626        public E poll()                   { return q.pollFirst(); }
3627        public E remove()                 { return q.removeFirst(); }
3628        public E peek()                   { return q.peekFirst(); }
3629        public E element()                { return q.getFirst(); }
3630        public void clear()               {        q.clear(); }
3631        public int size()                 { return q.size(); }
3632        public boolean isEmpty()          { return q.isEmpty(); }
3633        public boolean contains(Object o) { return q.contains(o); }
3634        public boolean remove(Object o)   { return q.remove(o); }
3635        public Iterator<E> iterator()     { return q.iterator(); }
3636        public Object[] toArray()         { return q.toArray(); }
3637        public <T> T[] toArray(T[] a)     { return q.toArray(a); }
3638        public String toString()          { return q.toString(); }
3639    public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3640    public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
3641    public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
3642    // We use inherited addAll; forwarding addAll would be wrong
3643    }
3644}
3645