THE EFFECT OF STATE-SAVING IN OPTIMISTIC SIMULATION ON A
CACHE-COHERENT NON-UNIFORM MEMORY ACCESS ARCHITECTURE

Christopher D. Carothers

Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street

Troy, New York U.S.A. 12180-3590

ABSTRACT

State-saving and reverse computation are two differ-
ent approaches by which rollback is realized in Time
Warp-based parallel simulation systems. Of the two
approaches, state-saving is, in general, more memory-
intensive than reverse computation. When executed
on a state-of-the-art commercial CC-NUMA (Cache
Coherent Non-Uniform Memory Architecture) multi-
processor, our Time Warp system runs almost 6 times
slower if state-saving is used than if reverse computa-
tion is used. The focus of this paper is to understand
why state-saving yields such poor performance when
compared to reverse computation on a CC-NUMA
multiprocessor.

To address this question, we examined the low
level machine performance statistics, especially those
that relate to memory system performance, such as

caching, and translation look-aside buffer (TLB) misses.

The outcome of the performance study suggests that
TLB misses are the primary culprit for state-saving’s
performance degradation.

1 INTRODUCTION

Today, Cache-Coherent Non-Uniform Memory Access
(CC-NUMA) multiprocessors represent the state-of-
the-art in shared memory architectures. These ma-
chines have been shown to deliver excellent perfor-
mance on a variety of applications (Jiang and J. P.
Singh 1998). However, to date, no study exists which
considers the performance implications of Time Warp
simulation systems on this latest generation of mul-
tiprocessors.

Time Warp is a synchronization protocol that al-

lows incorrect event computations in a parallel discrete-

event simulation to occur, but undoes or rolls back
such computations after detecting an error with re-
spect to event causality (Jefferson 1985). The most

common technique for realizing rollback is state-saving.

Here, the original value of the state is saved before it
is modified by the event computation. Upon rolling
back, the state is restored by copying back the stored
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value.

Of critical concern are the performance implica-
tions of state-saving on CC-NUMA architectures. We
have observed first hand that even on a highly op-
timized Time Warp system, state-saving appears to
result in little or no increase in speedup as the num-
ber of processors is increased for applications with
a small event granularity (Carothers, Perumalla and
Fujimoto 1999), even when the applications had very
few rollbacks. This interesting phenomenon served
as initial motivation for the work described here. As
additional evidence, it was reported in Poplawski and
Nicol (1998) that a conservative simulator resulted in
significantly faster performance than a Time Warp
simulator when run on a CC-NUMA architecture for
small event granularity applications. By its very na-
ture, a conservative simulator does not save state.
Thus, the culprit for this degradation in performance
of the Time Warp system seems to point to state-
saving. However, the open question is “why”?

The focus of this paper is to answer that ques-
tion by quantifying and understanding the implica-
tions of state-saving in Time Warp systems as it re-
lates to an underlying CC-NUMA architecture. In
particular, we will examine the low level machine
performance statistics, especially those that relate to
memory system performance, such as caching, and
translation look-aside buffer (TLB) misses. For this
study, we will use the SGI Origin2000 to perform all
experiments. Qur reason for choosing this particu-
lar CC-NUMA machine is because of it popularity
and technical advancements, when compared to other
commercial CC-NUMA architectures, such as Convex
Exemplar, Data General NUMALiiNE, Hal S1, and
Sequent NUMAQ.

To serve as a basis for comparing results, we use
an idealized Time Warp simulator that incurs negligi-
ble overhead in the forward computation to support
the undo operation. This idealized Time Warp simu-
lator avoids state-saving by using the reverse compu-
tation approach in which rollback is realized by per-
forming the inverse of individual operations that are
executed in the event computation.



In the next section, we present an overview of the
Origin2000’s architecture. In Section 3 we describe
the personal communication services (PCS) network
simulation model that we use in our performance study.
This model was chosen because it is a real world ap-
plication that has a small event granularity relative
to state-saving overheads, making it difficult for Time
Warp systems to achieve acceptable levels of perfor-
mance in practice. Section 4 describes the implemen-
tation of our Time Warp system. Section 5 presents
the results of our performance study and we describe
our final findings and conclusions in Section 6.

2 SGI ORIGIN2000 CCNUMA ARCHITEC-
TURE

When SGI was re-designing the follow-on system to
the PowerChallenge, it had three goals, as described
by Laudon and Lenoski (1996):

e the system must scale beyond 36 processors,
which was an inherent limitation of the bus-
based PowerChallenge architecture,

e must retain the cache-coherent shared memory
model of the PowerChallenge, and

e entry level systems and incremental cost of the
system should be low.

To achieve these goals, the next generation Origin
system uses distributed shared memory (DSM) with
a directory-based, cache-coherent protocol. It was
viewed that a DSM style architecture would allow for
scalability, ease of programming and low cost, while
the directory-based cache-coherent protocol would re-
move the performance bottleneck that occurs in snoopy
bus-based protocols.

The core component of this architecture is a dual-
processor node. Connected to this node is a hub chip
that mediates local and remote memory accesses be-
tween the local main memory, which contains a di-
rectory used to maintain memory consistency, and
the scalable interconnect network which routes re-
mote memory accesses. The interconnect network is
made of SPIDER routers. Each two-processor node
is connected to a SPIDER router. The routers are
then connected to form what SGI calls a bristled fat
hypercube.

Because of the hypercube routing, the ratio be-
tween local to remote memory access times is kept
low. SGI reports local memory references costing 310
ns (Laudon and Lenoski 1996). However, in prac-
tice memory references average around 470 ns, as
reported by Jiang and J. P. Singh (1998). A typi-
cal personal computer will have local memory access
times of around 120 ns, assuming 60 ns SIMMs are
used. Consequently, applications pay a heavy price

for accessing local memory. To avoid these long ac-
cess times, the Origin relies heavily on a large level-2
cache, which can be up to 8 MB per processor. How-
ever, for memory intensive Time Warp systems, this
amount of cache is easily exhausted, and, as we show
later, results in a large number of data cache misses
per processed event.

Other features of the Origin2000 include hard-
ware and software for effective page migration, high-
performance synchronization primitives, such as fetch-
and-® and load-linked/store-conditional (LL/SC) in-
structions, and support for large page sizes (up to 16
MB). The default page size of the machine is 16 KB.

3 PCS MODEL
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Figure 1: Portable-Initiated Model: flowchart for call
processing within a single cell. A “Portable Arrival”
denotes a portable entering a cell’s area.

For this experimental study, we use the portable-
initiated PCS model. This simulation model is or-
ganized around two object types: Cell and Portable.
The Cell represents a cellular receiver /transmitter that
has some fixed number of channels allocated to it.
The Portable represents a mobile phone unit that re-
sides within the Cell for a period of time and then
moves to one of the four neighboring Cells. As shown
in Figure 1, when a new call arrives at a Cell, the Cell
first determines the status of the destination Portable.
If the destination Portable is busy with another call,



this call is counted as a busy line. A busy line occurs
when a Portable is currently connected in a phone
call and another phone call arrives for that portable.

3.1 Implementation

We realized Cells as logical processes (LPs), and Calls

/ Portables as time-stamped messages that travel among

the Cell LPs; this avoids state sharing between LPs.
Mapping Cells to LPs is a standard technique used
in other applications (Wieland et al. 1989). Mapping
Call and Portables to time-stamped messages is a rea-
sonable approach from a modeling perspective when
viewed from the model flowchart found in Figure 1.
In this model when a call (portable) arrives, channel
availability must be determined. Since the message
denoting the call arrival is sent to the Cell LP in
which the call will be processed, the channel avail-
ability information is accessible by the Call/Portable
contained within the call arrival message. Moreover,
Portable availability (is the Portable engaged in a
phone call?) must also be determined by the Cell.
Since the call arrival message carries the Portable’s
state information, Portable availability is known to
the Cell. Using this mapping, a hand-off is realized
as a message sent between two Cell LPs. The desti-
nation Cell LP views the hand-off as a call/portable
arrival. Accordingly, during all phases of call process-
ing, this logical mapping guarantees that the neces-
sary state information is available without the ad-
ditional overhead of exchanging time-stamped mes-
sages.

3.2 Model Parameters

This PCS model has the following application param-
eters: (i) Call/Portable mobility, (ii) call inter-arrival
time, (iii) number of Cells, and (iv) number of Porta-
bles. Each of these parameters is discussed below.
Mobility of Calls/Portables determines how fre-
quently Calls/Portables move to a different Cell. This,
in turn, determines how frequently LPs communi-
cate. Recall from the previous discussion that the
only time Cell LPs communicate is in the hand-off of
a Portable/Call. Here, mobility was set low to reduce
any perturbing effects of remote communications on
the parallel simulation performance. Again, the goal
of this study is to look at the effects of state-saving.
Frequent remote messages would perturb our results.
The call interarrival time determines the amount
of work available to the simulator over a given pe-
riod of simulated time. For modest size PCS net-
works, the call interarrival time has a significant im-
pact on the “rate” at which the simulation progresses
through simulated time, which will determine how
likely a simulation will roll back for a fixed amount of
lookahead. The faster the progress, the more likely
the simulation will roll back. Lookahead is defined as

the amount of simulated time an LP can “see” into
the future and will be discussed in more detail later.
For this experimental study, we configured the call
rate to be high to induce a large amount of work per
unit of simulation time. This was done to further re-
duce the rate of remote communications. When the
low mobility rate is combined with the high call rate,
the total number of remote messages is less than total
events processed.

The number of Cells determines the number of
LP’s in the Time Warp simulation. 14400 LPs were
used for all experiments presented in this study. We
choose this number since it provided an even mapping
among all processor configurations tested.

Finally, the number of Portables in the portable-
initiated model determines the number of pending
events. For experiments presented in this study, N,
the number of Portables per Cell, is fixed at N = 25.
Accordingly, the total number of pending events in
the simulation is 360000.

In terms of state and computation overheads, this
model requires 40 bytes for message data and 104
bytes for LP state data. Because the state size of an
LP is relatively small, using incremental state sav-
ing techniques, such as those discussed in Steinman
(1993) and Gomes (1996) do not offer any perfor-
mance benefit when compared with full copy state-
saving after each event. Consequently, this study only
considers the performance implications of copy state-
saving.

4 IMPLEMENTATION OF TIME WARP

We now shift attention to the implementation of the
Time Warp executive, called Georgia Tech Time Warp
(GTW). In the following, certain data structures are
said to be “owned” or “residing” on a specific pro-
cessor. In principle, no such specification is required
because all memory can be accessed by any processor
in the system. However, the GTW design assumes
each data structure has a unique “owner” (in some
cases, the owner may change during execution) in or-
der to ensure that synchronization (e.g., locking) is
not used where it is not needed, and memory ref-
erences are localized as much as possible. Because
synchronization and non-local memory references are
usually very expensive relative to local memory ref-
erences on most existing multiprocessor platforms,
considerations such as this are important in order to
achieve acceptable performance. For instance, on the
KSR-2, hundreds or even thousands of machine in-
structions can be executed in the time required for a
single lock operation.



4.1 The Main Scheduler Loop

Time Warp, as originally proposed by Jefferson (1985),
uses three distinct data structures: the input queue
that holds processed and unprocessed events, the out-
put queue that holds anti-messages, and the state
queue that holds state history information (e.g., snap-
shots of the LP’s state). GTW wuses a single data
structure, called the event queue, that combines the
functions of these three queues. Direct cancellation is
used, meaning whenever an event computation sched-
ules (sends) a new event, a pointer to the new event
is left behind in the sending event’s data structure
(Fujimoto, July 1989). This eliminates the need for
explicit anti-messages and the output queue. Each
event also contains a pointer to state vector informa-
tion, i.e., a snapshot of the portion of the LP’s state
that is automatically checkpointed, and pointers used
by the incremental checkpointing mechanism. Please
recall, that incremental state-saving is not used in the
PCS simulation model.

In addition to an event queue, each processor main-
tains two additional queues to hold incoming mes-
sages from other processors. Thus, each processor
owns three distinct data structures:

e The message queue (Msg(@) holds incoming pos-
itive messages that are sent to an LP residing
on this processor. Messages are placed into this
queue by the TWSend primitive, which is called
during event processing (i.e., Proc procedure)
to schedule future events to other LPs. The
queue is implemented as a linear, linked list.
Access to this queue is synchronized with locks.

e The message cancellation queue (Can@Q)) is sim-
ilar to the MsgQ except it holds messages that
have been cancelled. When a processor wishes
to cancel a message, it enqueues the message
being cancelled into the CanQ of the processor
to which the message was originally sent. Logi-
cally, each message enqueued in the CanQ can
be viewed as an anti-message, however, it is
the message itself rather than an explicit anti-
message that is enqueued. This queue is also
implemented as a linear, linked list. Access to
this queue is synchronized with locks.

e The event queue (Ev@Q) holds processed and un-
processed events for LPs mapped to this pro-
cessor. As noted above, each processed event
contains pointers to messages scheduled by the

computation associated with this event, and point-

ers to state vector information to allow the event
computation to be rolled back. The data struc-
tures used to implement the event queue will be
discussed later. The EvQ may only be directly
accessed by the processor owning the queue, so
no locks are required to access it. In the current

implementation of GTW, a number of priority
queue algorithms are supported to realize the
EvQ including Calendar Queue (Brown 1988),
Skew Heap (Ronngren and Ayani 1997) and In-
place Heap. For a complete survey of current
priority queue algorithms for parallel and se-
quential simulation, see Ronngren and Ayani
(1997).

After the simulator is initialized, each processor
enters a loop that repeatedly performs the following
steps:

1. All incoming messages are removed from the
MsgQ data structure, and the messages are filed,
one at a time, into the EvQ data structure. If
a message has a timestamp smaller than the
last event processed by the LP, the LP is rolled
back. Messages sent by rolled back events are
enqueued into the CanQ of the processor holding
the event.

2. All incoming cancelled messages are removed
from the CanQ data structure, and are processed
one at a time. Storage used by cancelled mes-
sages is returned to the free memory pool. Roll-
backs may also occur here, and are handled in
essentially the same manner as rollbacks caused
by straggler positive messages, as described above.

3. A single unprocessed event is selected from the
EvQ, and processed by calling the LP’s event
handler (Proc procedure). A smallest times-
tamp first scheduling algorithm is used, i.e., the
unprocessed event containing the smallest times-
tamp is selected as the next one to be processed.

4.2 Buffer Management

The principal atomic unit of memory in the GTW
executive is a buffer. Each buffer contains the stor-
age for a single event, a copy of the automatically
checkpointed state, pointers for the direct cancella-
tion mechanism and incremental state-saving, and
miscellaneous status flags and other information. In
the current implementation, each buffer utilizes a fixed
amount of storage.

Each processor maintains a list of free buffers, i.e.,
memory buffers that are not in use. A memory buffer
is allocated by the TWGetMsg routine, and storage for
buffers is reclaimed during message cancellation and
fossil collection.

In cache-coherent multiprocessor systems, such as
the Origin2000, the act of scheduling messages be-
tween processors using shared memory can result in
what has been called the page miss problem (Fu-
jimoto and Panesar 1995). Here, a single memory
buffer is migrated among the different processors. Each



of these processors has a copy of the buffer in its local
cache. Consequently, when a processor writes into a
shared event memory buffer, it causes the other copies
to be invalidated on the other processors. These in-
validations are in a sense “false”, since GTW will
only allow a single processor to be writing into an
event memory buffer. This results in “false sharing”
of memory pages among processors, thus degrading
performance. This performance degradation was par-
ticularly noticed on the KSR-I, which employed an
ALL-CACHE architecture, which treated all memory
as cache-memory (Fujimoto and Panesar 1995).

To overcome this performance bottleneck, the par-
titioned buffer pool scheme was developed (Fujimoto
and Panesar 1995). Here, each processor’s free pool
of buffers is divided into subpools, one for each pro-
cessor to which it sends messages. Let B;; refer to
the buffer pool on processor ¢ that is used to send
messages to processor j. Processor i must allocate its
buffer from B; ; whenever it wishes to send a message
to j. The buffer will subsequently be returned to pro-
cessor i either when j sends a message to 4 that reuses
this buffer, or if the buffer is returned via the buffer
redistribution mechanism. The primary advantage
with this scheme is that a buffer may only reside in
one of two pools throughout the lifetime of the simu-
lation: either B;; or Bj;. This approach ultimately
reduces the working set of buffers for processor i to
B; ; for all j. The page miss problem will be avoided
so long as these pages can all reside in the processor’s
local memory/cache.

An event buffer may be reused for future events
once it has been determined that the virtual time
of the event is less than global virtual time (GVT).
Jefferson (1985) defines GVT(T) as the “minimum
of (1) all virtual times in all virtual clocks at time
T, and (2) of the virtual send times of all messages
that have been sent but have not yet been processed
...7. Extreme care must be taken when computing
GVT so as to not introduce any additional system
overheads. GTW makes use of a highly efficient GVT
(Global Virtual Time) algorithm that relies on the
performance of shared memory. The details of this
algorithm can be found in Fujimoto and Hybinette
(1997).

In addition to the GVT algorithm, GTW also em-
ploys on-the-fly fossil collection that enables efficient
storage reclamation for simulations containing large
numbers, e.g., hundreds of thousand or even millions,
of simulator objects. The details of this algorithm
can be found in Fujimoto and Hybinette (1997).

4.3 Realization on Origin2000

In porting GTW to the Origin2000, GTW uses the
following systems primitives:

e usinit to create a shared arena from which syn-
chronization structures are allocated.

e usnewlock to allocate a new lock from the shared
arena.

e ussetlock to acquire a spin lock. These spin
locks are use in the GVT algorithm as well as
to provide exclusive access to MsgQ and CanQ for
each operating system process running GTW.

e usunsetlock to release a spin lock.

e m fork to create the process that run GTW’s
kernel on each processor. These processes are
arranged such that they shared a common ad-
dress space in addition to the shared arena. It
should be noted that all locks must be allocated
through the shared arena to function correctly.

e barrier used to synchronize GTW’s start-up
procedure across all processors.

4.4 Reverse Computation

In contrast to state-saving, reverse computation is a
different technique in which rollback is realized by
performing the inverse of individual operations that
are executed in the event computation. This ap-
proach to rollback guarantees that the inverse opera-
tions recreate the simulation model’s state as it was
just prior to the event computation. The primary
advantage of this approach is that it only requires a
small amount of control information (i.e., bits) to be
saved as opposed to 10s or 100s of bytes in regular
copy state-saving.

We use the reverse computation technique to com-
pare the performance of state-saving for Time Warp
on the CC-NUMA architecture. Reverse computa-
tion is useful to compare with state-saving since the
two techniques possess contrasting properties. Re-
verse computation typically requires much less mem-
ory for rollback support, and pushes a lot of the roll-
back overheads to the rollback stage. This in contrast
to state-saving in which rollback overheads manifest
themselves both in terms of memory copying costs
during the forward event computation, as well as in
terms of memory size requirements. For a more thor-
ough discussion of reverse computation we refer the
reader to Carothers, Perumalla and Fujimoto (1999).

5 PERFORMANCE RESULTS

For this performance study, we used two versions of
GTW - one configured to use state-saving (SS) and
the other using reverse computation (RC), for roll-
back support. PCS is the driving application, con-
figured with 120x120 cells and 25 portables per cell,
yielding 14400 LPs and 360000 initial events. This



particular PCS configuration was chosen because it
allowed an even mapping across a wide range of pro-
cessor configurations. Because of the large size of the
simulation model, 64-bit compilation was required.
The experiments were run on 1, 2, 3, 4, 5, 6, 8, 10,
12 and 15 processors.

For each data point, a single long run was made.
Here, a run of the PCS model processes 450 million
events. Because dedicated computing time was ob-
tained, less than 1% variation in execution time was
observed, making a single run statistically accept-
able. We used the perfex monitoring tool to obtain
machine performance statistics. Our reason for the
long runs is because perfex multiplexes the hard-
ware counters over different low level statistics. Our
observation is that with long runs, perfex estima-
tions are very accurate as each hardware counter is
only responsible for two different low level statistics.

In terms of memory use, the amount of memory
was held constant across all processors at 360 MB
total for events and 360 MB for state saving. RC did
not allocate any memory for state-saving, but instead
stored control information that is required to invert
an event computation directly into the event buffer.
A single word of storage was reserved for this purpose.
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Figure 2: Event rate as a function of the number of
processors.

5.1 Performance Data

In terms of absolute performance, RC yields 730K
events / sec, while SS at 115K events / sec when run
on 15 processors, as shown in Figure 2. This is a
much bigger difference than reported in Carothers,
Perumalla and Fujimoto (1999). Apparently, 64-bit
object code speeds up RC but slows SS down due
to an increase in state-saving overheads. In terms of
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Figure 3: Speedup as a function of the number of
Processors.

overall speedup, RC achieves a speedup of 13.8 on
15 processors. Calculation of speedup is based on an
optimized sequential simulator. The number of roll-
backs was extremely small as simulator efficiency was
above 99.6% for both RC and SS across all processor
configurations, indicating there is ample amount of
available parallelism.

One interesting point to be made here is that our
ideal Time Warp simulator, RC, did not achieve lin-
ear speedup, but does come very close. One would
expect an ideal parallel simulator to achieve linear or
even super-linear speedup given high simulator effi-
ciency and a increase in the total amount of cache
memory as the number of processors increase. While
this increase in cache memory does offer some benefit
to Time Warp simulators, it does not overcome the
overheads incurred due to FIFO event memory reuse.
Recall, that since a processed event memory buffer is
not available for reuse until GVT sweeps past, event
memory buffers must be consumed in FIFO order.
The consequence of FIFO order is that there is no
or little locality of reference, which results in higher
data cache miss rates. All memory buffers are being
accessed uniformly. On the other hand, a sequential
simulator can commit an event and reuse its memory
buffer immediately after processing. Thus, sequential
simulators allow memory to be consumed in LIFO
order, which affords the simulator greater locality of
reference and better use of cache memory. It should
be noted that FIFO buffer consumption is a conse-
quence of any optimistic synchronization mechanism
and not solely an artifact of RC.

Now, the primary question we are addressing is
why do we see the performance disparity between SS
and RC. One would expect that the numerous per-



formance optimizations made to GTW for the shared
memory machine would be sufficient to yield accept-
able levels of performance even with state-saving. How-
ever, this appears not to be the case.

To address this question, we examined the low-
level machine statistics. The idea here is to analyze
the per-event overheads from the machine’s point of
view. In particular, we computed the following statis-
tics:

e total number of issued instructions per event
committed (PEC)

e total number of issued loads PEC
e total number of issued stores PEC
e total number of TLB misses PEC
e total number of primary data cache misses PEC

e total number of secondary data cache misses
PEC

¢ total number of secondary instruction cache misses
PEC

e total number of primary instruction cache misses
PEC

The instruction, cache and TLB statistics were col-
lected using the perfex monitoring tool as previously
discussed.
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Figure 4: Primary data cache misses per event as a
function of the number of processors.

We observe in Figures 4, 5, and 6 that primary /
secondary data cache misses and TLB misses respec-
tively for RC remain relatively constant or decrease
slightly as the number of processors increases. How-
ever, for SS, the cache misses increase as the number
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Figure 5: Secondary data cache misses per event as a
function of the number of processors.
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Figure 6: TLB misses as a function of the number of
Processors.

of processors increases. For TLB misses, there is a
decrease but rises sharply as the number processors
increases beyond 8.

To explain this behavior, we have to consider the
number of instructions per committed event, as shown
in Figure 7. Here, we observe that the number of
instructions per event for RC decreases as the num-
ber of processors are added. This reduction is due
to a decrease in the aggregate number of GVT cal-
culations. We also observe that SS has about 20%
more instructions per event than RC and almost 30%
or higher when the processor count is 10 or greater.
This trend of SS issuing more instructions per event
than RC is not only due to more stores as a conse-
quence of state-saving but also due to issuing many
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Figure 7: Number of instructions (all kinds) issued
per event as a function of the number of processors.
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Figure 8: Number of store instructions issued per
event as a function of the number of processors.

more loads per event, as shown in Figures 8 and 9
respectively. Like RC, the initial decrease in instruc-
tions per event is attributed to a decrease in the total
number of GVT computations. However, when the
processor count raises to 10 and above, it increases
again. We attribute this increase to a sharp increase
in TLB misses.

TLB Behavior

The SGI Origin2000 uses the MIPS R10K processor,
which has software managed TLBs (R10000 Micro-
processor User Manual 1996). The implications of
this is that when a TLB miss does occur, it traps to
a handler internal to the operating system. The op-
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Figure 9: Number of load instructions issued per
event as a function of the number of processors.

erating system then executes handler code to locate
the page table in memory and update the TLB. The
processing of the TLB handler code can cause addi-
tional data cache misses due to referencing the page
table hierarchy, thus explaining the sharp increase in
data cache misses, both primary and secondary, as
shown in Figures 4 and 5. Primary and secondary in-
struction caches exhibited few misses per event across
all processors for both RC and SS and do not factor
into the overall performance picture as data cache
and TLB misses do. For detailed performance stud-
ies on TLBs and the virtual memory hierarchy, refer
to Jacob and Mudge (1998), and Uhlig et al. (1994).

To summarize the performance data, the cause
and effect relationship appears to be as follows. The
act of state-saving to memory causes more store in-
structions. In GTW, recall that the store instruc-
tions (as part of state-saving) are writing to a page of
memory that is different than the event buffer. Con-
sequently, store instructions result in a TLB miss,
which causes an increase in the number of load in-
structions incurred due to accesses to the page ta-
ble hierarchy. The combined increase in loads and
stores results in more primary and secondary data
cache misses. Also, another factor here is that as the
number of processors increase, so does the number of
remote messages, which is not that high, but every
remote message is on a different page of memory that
is likely to be unmapped. These unmapped pages of
memory only exacerbates the TLB miss problem for
SS. For RC, because there is no state-saving, TLB ca-
pacity is not exhausted and this phenomenon is not
observed.



5.2 TUnexplained Phenomenon

A missing piece of the performance puzzle concerns
the knee of the speedup curve for SS at 8 proces-
sors when in fact there is plenty available parallelism.
If we look at the number of TLB misses, as shown
in Figure 6, we see a sharp rise in TLB misses per
event for processor configurations above 8. Because
the simulation is slowing down and the number of
TLB misses per event is rising, the TLB miss rate is
rising very sharply.

Of interest is exactly how the page table hierarchy
is stored and manipulated on the Origin2000. What
is unknown at this time is the Origin’s ability to han-
dle TLB misses in parallel. Our conjecture is that
under certain circumstances, TLB misses occurring
on separate processors cannot be serviced in paral-
lel. This conjecture is based on the fact that the
virtual memory page tables can be shared among the
GTW processes. Because of this sharing, a coarse-
grain locking mechanism may be used to synchronize
updates to the page tables. Also, the page table read
requests themselves may become serialized. The con-
sequence of this serialization is that it results in a
performance degradation as the number of proces-
sors increases. We attribute this serialization of TLB
misses to SS’s knee of the speedup curve.

6 CONCLUSIONS

The focus of this paper is to understand why state-
saving yields poor performance in comparison to an
“idealized” Time Warp system as observed on a CC-
NUMA multiprocessor. To address this question, we
examined the low level machine performance statis-
tics, especially those related to the memory system
performance. The outcome of this performance study
suggests that TLB misses are the primary culprit for
SS’s performance degradation.

So, given these performance results, what can be
done to improve state-saving performance? First, we
plan to experiment with the Origin’s ability to sup-
port very large page sizes. Currently, GTW assumes
the page size is 16 KB. With 4, 8 or even a 16 MB
page size, TLB misses should drastically decrease,
which will reduce the number of load and store in-
structions, leading to lower primary and secondary
data cache misses rates, and can ultimately lead to
improved performance.

Moreover, we plan to experiment with allocating
the event memory buffer and state memory buffer in
a contiguous block of memory. Currently in GTW,
state and event buffers are partitioned into separate
pools of memory. By allocating buffers as a contigu-
ous block, state and event data is co-located on the
same page of memory, thus reducing the number of
pages a TLB must support per unit of virtual time.

This assumes however, that the combined amount of
memory to hold state and event data is less than a
page. Given that the Origin2000 can support very
large page sizes (upto 16 MB), we believe this will
not be a problem. However, the performance con-
sequences of this solution on remote messages is un-
clear, as it results in the flow of additional state mem-
ory between processors. This additional memory may
increase primary and secondary data cache misses.

Other potential improvements include making use
of the Origin2000’s prefetching capabilities. However,
it should be noted that more experimentation is re-
quired to fully understand the tradeoffs associated
with each of these improvements.
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