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ABSTRACT: This paper compares the performance of HLA time management algorithms across three computing
architectures: 1) a shared memory multiprocessor (SGI Origin), 2) a cluster of workstations interconnected via a
low latency, high-speed switched network (Myricomm’s Myrinet), and 3) a traditional LAN using TCP/IP.  This work
is based on the RTI-Kit software package described in a paper presented at the Fall 1998 SIW.  This software
implements group communication and time management functions on the platforms described above.  A time
management algorithm designed to efficiently compute LBTS values on shared memory multiprocessors is
described.  This algorithm exploits sequentially consistent shared memory to achieve very efficient time
management.  We present results comparing the performance of this time management algorithm with a message-
passing algorithm implemented over shared memory.

1. Introduction

The U.S. Department of Defense (DoD) mandated that
the High Level Architecture (HLA) be the standard
architecture for DoD modeling and simulation
programs [1].  This requires that the HLA span a wide
range of applications, computing architectures, and
communication paradigms.

Previously most implementations of the High Level
Architecture (HLA) Run Time Infrastructures (RTIs)
have been implemented on a Network of Workstations
(NOWs).  Typically these workstations are connected
via TCP/IP networks or other high speed interconnects
such as Myricomm’s Myrinet [2].

Recently Shared Memory Multiprocessors (SMPs)
have been considered as a platform for HLA RTIs.
SMPs offer a different communication paradigm.  An
HLA RTI implemented over a NOW must use message
passing to transfer information between workstations,
e.g., using UDP or TCP packets over a TCP/IP
network or Fast Messages (FM) [3] over a Myrinet
network.  In SMPs communication between processors
is realized through the use of shared memory.  For
example, to transfer information from one processor to

a second, the first processor writes to a memory
location in shared memory and signals the second
processor to read from the same location.

In this paper a shared memory time management
algorithm is presented.  This algorithm has been
implemented as an RTI-Kit [4] library and its
performance is compared to an existing message
passing time management algorithm.

2. RTI-Kit

RTI-Kit is a set of libraries designed to support the
development of Run Time Infrastructures (RTIs) for
parallel and distributed simulation systems.  Each
library is designed so that it can be used separately or
together with other RTI-Kit libraries.

RTI-Kit consists of three main libraries, see Figure 1.
FM-Lib implements communication over the computer
platform.  TM-Kit implements time management
functions.  MCAST implements group
communication.  Both TM-Kit and MCAST use FM-
Lib to carry out their respective functionality.  By
using a structure such as this it makes it possible to
develop RTIs that are independent of the computer



platform.  To implement an existing RTI on a new
computer platform it only becomes necessary to build
the appropriate FM-Lib library for that computer
platform.  To take full advantage of the properties of a
particular architecture it is possible for MCAST or
TM-Kit to bypass FM-Lib.

The libraries in RTI-Kit are self-contained i.e., the
internal structure of one library has no dependence on
the internal structure of another.  The only dependence
between libraries is the interface presented by one
library to another.  This makes it straightforward to
develop a new library with the same functionality as
an existing library.  As long as the interface between
libraries is maintained no changes to other libraries
will have to be made.

For the experiments performed for this paper several
variations of RTI-Kit were developed to operate on
different computer platforms.  Each of the variations
differs only in the version of FM-Lib and TM-Kit
used.
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Figure 1 Architecture of an RTI using RTI-Kit

3. TM-Kit

TM-Kit is a library that implements time management
functions.  The primary purpose of TM-Kit is to
compute the Lowest Bound Time Stamp (LBTS);
LBTS is the lowest time stamp of a message that a

processor can expect to receive from another processor
in the future.

When calculating LBTS a mechanism is needed to
determine the global minimum time.  In order to
determine the global minimum time each processor
needs some way to communicate its local minimum
time to the other processors.  Here we present two
algorithms that use different communication
paradigms to calculate LBTS.  The first algorithm uses
message passing to communicate, and the second
algorithm uses shared memory.

Each of these algorithms is implemented as a TM-Kit
library.  The message passing algorithm will be
referred to as Message Passing TM-Kit (MP TM-Kit),
and the shared memory algorithm will be referred to
as Shared Memory TM-Kit (SHM TM-Kit).  The
architecture of RTI-Kit using MP TM-Kit is exactly
the same as that shown in Figure 1.  However, SHM
TM-Kit does not use FM-Lib, instead it is directly
linked to the computer platform.  In Figure 1 this
would be seen as a double arrow between the TM-Kit
box and Computer Platform box and no double arrow
between the TM-Kit box and FM-Lib box.

3.1 Message Passing TM-Kit (MP TM-Kit)

When an LBTS computation is started using MP TM-
Kit the processors have to send their local minimum
time to the other processors by using communication
primitives defined by FM-Lib.  This algorithm works
by having a processor send its local minimum time to
another processor at each step of the LBTS
computation.  When a processor receives a message
containing the local minimum time of another
processor it computes the pair wise minimum between
its local minimum time and the local minimum time
contained in the message received.  This continues for
log N steps, where N is the number of processors.  The
computation is completed when a processor has
received a message containing the local minimum
time from log N other processors.  The LBTS is the
result of the final pair wise minimum operation
performed.  A more complete description of this
algorithm can be found in [4].

3.2 Shared Memory TM-Kit (SHM TM-Kit)

Unlike the previous version of TM-Kit, SHM TM-Kit
does not use the FM-Lib library to send messages
between processors to calculate LBTS; all
communication is done implicitly through the use of



variables in shared memory.  As stated earlier,  SHM
TM-Kit communicates directly with the computer
platform and not through FM-Lib.

This algorithm assumes a sequentially consistent
memory model for memory access [5].  A sequentially
consistent memory model is one in which memory
accesses by a processor to memory appear to occur in
some global ordering and the references by each
processor appear to occur in the order specified by that
processor.  For example, if processor 1 issues memory
references M1, M2, M3 and processor 2 issues memory
references Ma, Mb, Mc then M1, Ma, M2, Mb, Mc, M3,
is a sequentially consistent ordering of the memory
references.  However, Ma, Mc, M1, M2, Mb, M3 is not
because memory reference Mc appears before Mb, and
this is not the order specified by the program.  This
memory model allows the development of simpler
more efficient shared memory algorithms than would
be possible using a message passing algorithm.

The computation of the LBTS is separated into three
stages corresponding to the three critical procedures
needed to implement the algorithm.  They are 1)
starting an LBTS computation, 2) sending messages,
3) reporting local minimum time and calculating
LBTS. This algorithm is based on the Global Virtual
Time algorithm presented in [6].

Required Variables
All of the communication required to compute the
LBTS between the processors is done through three
variables in shared memory: GVTFlag (an integer),
PEMin (an array to store the local minimum time of
each processor), and GVT (stores the newly computed
LBTS).  In addition to the variables in shared memory
each processor needs two variables in local memory
SendMin and LocalGVTFlag.  Their use will be
explained shortly.

Stage 1: Starting an LBTS Computation
To start an LBTS computation a processor first tests if
GVTFlag is equal to zero.  If GVTFlag is equal to zero
it indicates that no other LBTS computation is in
progress and therefore it is safe to start a new LBTS
computation by setting GVTFlag equal to N, where N
is the number of processors.  The process of testing
and setting GVTFlag is a critical section, i.e., only one
processor is allowed to test and set GVTFlag at a time
to eliminate the possibility that two processors can set
GVTFlag equal to N simultaneously.

Stage 2: Sending Messages
In order to calculate the LBTS a processor keeps track
of the minimum time stamp of sent messages; this
value is stored in SendMin.  Though SHM TM-Kit
does not use FM to send any messages other libraries
of RTI-Kit may use FM so it is vital that SHM TM-Kit
be aware of these out going messages to accurately
compute the new LBTS.  Recording the minimum
time stamp of out going messages is only done when
an LBTS computation is in progress, GVTFlag is
greater than zero, and the processor has not yet
reported its local minimum time.

Stage 3: Reporting the Local Minimum Time and
calculating the LBTS
Periodically each processor has to give time to TM-Kit
to test GVTFlag to determine if an LBTS computation
is in progress.  The most natural location to place this
test is in the main event scheduling loop of the
simulation.  If the processor does not perform this test
often the completion of an LBTS computation will be
delayed degrading performance.

Each processor first saves a local copy of GVTFlag by
setting LocalGVTFlag equal to GVTFlag.  The
processor then processes any pending incoming
messages.  Despite the fact that SHM TM-Kit does not
use FM-Lib for communication the other libraries of
RTI-Kit may be using FM.  It is important to allow the
processor to process any messages that have arrived
via FM as these messages may affect the local
minimum time of the simulation.  Then if
LocalGVTFlag is greater than zero and if this
processor has not yet reported its local minimum time
it reports the local minimum time as the minimum of
SendMin and the time reported by the RTI.  The
minimum time reported by the RTI is obtained via a
call back into the RTI.  The local minimum time is
placed in the processor’s entry in PEMin.

Next, GVTFlag is decremented and the processor to
decrement GVTFlag to zero is responsible for
computing the new LBTS.  The new LBTS is the
minimum of all the entries in PEMin and this value is
placed in GVT.  This process of reporting the local
minimum time and calculating the new LBTS is a
critical section so only one processor can perform this
operation at any given time.  Once the new LBTS
value is computed each RTI is notified through a call
back into the RTI.



Constants
     int N;     /* number of processors */
     int Pid;   /* processor id number   */

Global Variables
     int GVTFlag;
     TM_Time  PEMin[N];  /* local minimum of each
                                               processor */
     TM_Time GVT;            /* computed LBTS */

Local Variables
    TM_Time SendMin;
     int LocalGVTFlag;

Procedure to start an LBTS computation
   StartLBTS()
     begin critical section
           if (GVTFlag =  0) then
                GVTFlag = N;
           end if
     end critical section

Procedure to be called when sending a message. TS
is the time stamp of the message being sent.
   TM_Out(TS)
       if ((GVTFlag > 0) and
          (haven’t already computed local min)) then
                SendMin = min(SendMin,TS);
       end if

Procedure to be called in the main event processing
loop.  RTIMinTime is the minimum time reported
by the RTI.
   TM_Tick()
       LocalGVTFlag = GVTFlag;
       Process any pending incoming messages
       if ((LocalGVTFlag > 0) and
           (haven’t already computed local min)) then
            begin critical section
                 GVTFlag = GVTFlag – 1;
                 PEMin[Pid] = min(SendMin,
                                                RTIMinTime);
                 if (LocalGVTFlag = 0) then
                     GVT = min(PEMin[0] … PEMin[N]);
                 endif
             end critical section
        endif

Figure 2 Implementation of LBTS algorithm in
SHM TM-Kit

4. FM-Lib Library

The FM-Lib library provides the means to allow
federates to communicate with each other.  Different
versions of FM-Lib have been implemented to operate
on different computing platforms and communication
networks.    An RTI can be made to run on a different
platform with no change to the RTI by simply
plugging in the appropriate FM-Lib for the platform in
use.

Three version of FM-Lib have been implemented
Myrinet FM-Lib (MYR FM), TCP FM-Lib (TCP FM),
and Shared Memory FM-Lib (SHM FM).  All three
versions of FM-Lib implement the FM interface.

MYR FM uses FM written for Myrinet.  Myrinet is a
high speed, low latency switched interconnect network
with a bandwidth of 640 Mbits/sec.  TCP FM uses a
traditional TCP/IP network for communication.

Unlike the previous two versions of FM-Lib SHM FM
does not use a network to communicate instead
communication is achieved through the use of shared
memory.  An SMP is a computer with N (>1)
processors and a pool of memory that each processor
has access.  Each processor that is participating in the
simulation allocates memory from the shared memory
to act as a message in buffer.  When processor a wants
to send a message to processor b, processor a writes to
processor b’s in buffer.  When processor b detects a
message in its in buffer it reads the message.   By
using this recipe SHM FM achieves the same behavior
inherent to MYR FM and TCP FM.

5. RTI Implementations

Using the two TM-Kit and three FM-Lib libraries four
implementation of an RTI were developed to gather
performance results.  The RTI used, called DRTI,
implements a subset of the HLA Interface
Specification services.  For example, Time Advance
Request, Time Advance Grant, Next Event Request,
Update Attribute Values, Reflect Attribute Values are
implemented in DRTI.

DRTI also implements the use of Attribute Handle
Value Pair Sets as the mechanism to the Update
Attribute Values service.  Attribute Handle Value Pair
Sets are simply a container to hold the attribute’s
handle (its name) and the attribute’s value.  The
container holding this information is what is
transmitted when performing attribute updates.



The four implementations implemented differ only in
the FM-Lib and TM-Kit used.  Figure 3 shows each of
the four implementations.

Implementation FM-Lib TM-Kit
MYR DRTI MYR FM MP TM-Kit
TCP DRTI TCP FM MP TM-Kit
MP DRTI SHM FM MP TM-Kit
SHM DRTI SHM FM SHM TM-Kit

Figure 3 Various implementations of DRTI

MYR DRTI was executed on a network of eight Ultra
Sparc workstations connected via Myricomm’s
Myrinet network. Myricomm’s Myrinet network is a
high speed, low latency switched interconnect network
with a bandwidth of 640 Mbits/sec.  TCP DRTI was
executed on a network of eight Ultra Sparc
workstations connected via TCP/IP network.  The
TCP/IP network is a standard 10BaseT Ethernet with a
bandwidth of 100 Mbits/sec.  Both MP DRTI and
SHM DRTI were executed on an SGI Origin 2000
Symmetric Multiprocessor [7].  The SGI Origin 2000
used is configured with sixteen 195MHz R10000
processors with 4Mbytes of secondary cache and
4Gbytes of shared memory and provides a sequentially
consistent model for memory access.

6. Performance Measurements

Three benchmarks are used to evaluate the
performance of the various implementations of DRTI.
The first benchmark established the performance of
the underlying communication medium used.  The
other two benchmarks, [8], directly compare the
performance of the different implementations of DRTI.
The Latency benchmark measures the performance of
the communication services of an RTI.  The Time
Advance Grant benchmark measures the performance
of the time management services of an RTI.

6.1 Underlying Communication Performance

The FM-Lib library used makes a significant impact
on RTI performance.  To better understand RTI
performance a comparison of the three FM-Lib
libraries is in order.  Figure 4 shows the one-way
latency of sending a message of size N.  The one-way
latency is obtained by measuring the round-trip latency
of sending a message of size N between two nodes and

dividing by two.  SHM FM achieves the lowest latency
for sending a message followed by MYR FM and then
TCP FM.

Figure 4 Latency measurements 
for three FM-Lib implementations
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6.2 The Latency Benchmark

The latency benchmark measures the latency for best
effort, receive ordered communications.  This program
uses two federates, and round-trip latency was
measured.  Specifically, latency times report federate-
to-federate delay from when the
UpdateAttributeValues service is invoked to send a
message containing a wallclock time value and a
payload of N bytes until the same federate receives an
acknowledgement message from the second federate
via a ReflectAttributeValues callback.  The
acknowledgement message has a payload of zero bytes.
The one-way latency time is reported as the round trip
time divided by two.   

Figure 5 shows the results for the two implementations
running on the network of Ultra Sparc workstations.
As expected the performance of MYR DRTI is an
order of magnitude better than is TCP DRTI.  Myrinet
achieves this speed up by avoiding the cost of having
to marshal data through a protocol stack.



Figure 5 Latency measurements 
for Myrinet DRTI and TCP DRTI
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The results for the two implementations running on
the Origin 2000 are shown in Figure 6.  The
performance of the two implementations is nearly
identical.  Since the time required to send attribute
updates is being measured and both versions are using
SHM FM latency times are expected to be the same.

DRTI implements Attribute Handle Value Pair Sets as
the mechanism to perform the Update Attribute Values
service.  It is required to first copy the attribute value
into an Attribute Handle Value Pair Set and then
calling the Update Attribute Values service.  Copying
this data incurs some overhead and can make a
significant impact on performance depending on
which FM Lib is in use and the size of the attribute.
Figure 6 shows the overhead of copying one N byte
block of data into an attribute handle value pair set.
Figure 7 shows the overhead of copying M eight byte
attributes.

Figure 6 Time to copy one N byte 
attribute into an Attribute Handle 
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Figure 7 Time to copy M 8 byte 
attributes into an Attribute Handle 
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6.3 The Time Advance Request Benchmark

The TAR benchmark measures the performance of the
time management services, and in particular, the time
required to perform LBTS computations.  This
benchmark contains N federates, each repeatedly
performing TimeAdvanceRequest calls with the same
time parameter, as would occur in a time stepped
execution.  The number of time advance grants
observed by each federate, per second of wallclock
time is measured for up to eight processors.

Figure 8 shows the number of TAGs per second
achieved by MYR DRTI and TCP DRTI.  Again the



performance of MYR DRTI is orders of magnitude
better than TCP DRTI and as before is due to the
Myrinet’s low communication overhead.

Figure 8  Time Advance 
Request measurements for 
Myrinet DRTI and TCP DRTI
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Figure 9 shows the number of TAGS per second
achieved by MP DRTI and SHM DRTI.  In both
implementations SHM FM is used yet SHM DRTI
achieves higher performance.  The difference between
the two implementations is the time management
algorithm, SHM TM-Kit as opposed to MP TM-Kit.
By using a time management algorithm tailored to
take advantage of shared memory SHM DRTI is able
to achieve higher performance.  However, when run
on eight processors SHM DRTI does not perform as
well as MP DRTI.

7. Conclusions

The experiments here show that it is possible to
implement RTIs on SMPs using time management
algorithms specifically designed to take advantage of
sequentially consistent shared memory.  For less than
eight processors, the performance of an RTI using the
shared memory time management algorithm when
compared to a message passing time management
algorithm is better.  However, on eight processors the
shared memory algorithm does not perform as well.

Figure 9 Time Advance Grant 
measurements for MP DRTI and 
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We believe the decrease in performance for SHM TM-
Kit on eight processors is due to contention for locks
used in the critical sections of the shared memory
algorithm.  The more processors that participate in an
LBTS computation increase the likelihood that there
will be contention for the lock.  Another cause for the
degradation in performance as the number of
processors is increased is traffic between the
processors and memory.  More processors mean more
information will be transferred between the shared
memory and the individual processors.  Just as in a
traditional network the more entities that try to send
and receive information degrades overall system
performance.

However, the use of SMPs to run HLA RTIs is
promising.  With more efficient implementations of
time management algorithms (and efficient group
communication algorithms,) SMPs will offer an
efficient platform on which to execute RTIs.
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