
Efficient Optimistic Parallel Simulations using Reverse Computation

Christopher D. Carothers
Department of Computer Science
Rensselaer Polytechnic Institute

110 8th Street
Troy, New York U.S.A. 12180-3590

chrisc@cs.rpi.edu

Kalyan S. Perumalla
and

Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

fkalyan,fujimoto g@cc.gatech.edu

Abstract

In optimistic parallel simulations, state-saving techniques have
been traditionally used to realize rollback. In this article,
we proposereverse computationas an alternative approach,
and compare its execution performance against that of state-
saving. Using compiler techniques, we describe an approach
to automatically generate reversible computations, and to op-
timize them to transparently reap the performance benefits of
reverse computation. For certain fine-grain models, such as
queuing network models, we show that reverse computation
can yield significant improvement in execution speed coupled
with significant reduction in memory utilization, as compared
to traditional state-saving. On sample models using reverse
computation, we observe as much as three-fold improvement
in execution speed over traditional state-saving.

1 Introduction

Parallel simulation approaches can be broadly categorized as
optimistic or conservative, depending on whether (transient)
incorrect computation is ever permitted to occur during the
execution. Optimistic parallel simulations permit potentially
incorrect computation to occur, but undo orroll back such
computation after realizing that it was in fact incorrect. The
“computation” in simulation applications is one in which a set
of operations, called theevent computation, modifies a set of
memory items, called thestate. Hence, in order to roll back
a computation, it is sufficient to restore the modified memory
items to their values before the computation.

The most common technique for realizing rollback isstate-
saving. In this technique, the original value of the state is saved
before it is modified by the event computation. Upon rollback,
the state is restored by copying back the saved value. An al-
ternative technique for realizing rollback isreverse computa-
tion. In this technique, rollback is realized by performing the
inverses of the individual operations that are executed in the
event computation. The system guarantees that the inverse op-
erations recreate the application’s state to the same value as
before the computation.

To our knowledge, reverse computation has not been pre-
viously explored as a viable alternative to traditional state-
saving. In this paper, we demonstrate that using reverse com-
putation for realizing rollback can lead to much more efficient
executions compared to state-saving. Fine-grain applications
(i.e., those with very small amount of computation per event)
are examples in which the performance improvement can be
most pronounced. This is due to the fact that traditional state-
saving operations constitute significant overheads in fine-grain

simulations. Also, by reduced memory requirements of the
execution, reverse computation leads to more efficient use of
storage hierarchies. Reverse computation can greatly reduce
the forward computation overheads by transferring most of the
traditional overheads to the reverse computation path.

Here, we demonstrate that the reverse computation ap-
proach has insignificant forward computation overheads and
low state memory requirements in fine-grain models. The
parallel simulation performance of reverse-computation is ob-
served to achieve better caching effects, with as much as two to
three-fold improvement in several model configurations, com-
pared to copy state-saving. Finally, we demonstrate that this
approach can be automated using compiler-based techniques
that can automatically generate both a reversible version of the
event computation code and its reverse, from a model’s high-
level description.

When reverse computation is used to simulate coarse-grain
models, it is unclear if the improvement in execution speed
can be as pronounced, because state-saving overheads are not
so high in coarse-grain models. However, coarse-grain models
do stand to benefit from reduction in state memory utilization
when reverse computation is used.

The reverse computation approach presented here is not
meant as a blanket replacement for classic state-saving ap-
proaches, but instead to complement or supplement them. Our
view is that for many complex applications, no single rollback
solution will suffice and that a marriage of this technique and
others will be required to yield the most efficient execution of
the simulation model.

In Section 2, we present the details of the reverse com-
putation technique using a simple illustrative application, fol-
lowed in Section 3 by the automation techniques for apply-
ing to more complex applications. In Section 4, we present
the performance comparison between reverse computation and
state-saving. To place our work in context, in Section 5, we
identify the work related to general reverse computing in the-
ory and practice. This work opens several interesting chal-
lenges and questions, which we identify in Section 6.

2 Reverse Computation

In this section, we illustrate the reverse computation approach
with a simple example. For simplicity, we postpone the gener-
alized treatment of more complex models to Section 3.

2.1 Motivating Example: ATM Multiplexor

Consider a simple model in Figure 1 of a non-preemptive ATM
multiplexor, containing a buffer of size B. Suppose we are in-

terested in measuring the cell loss probability, and the delay
distributions on the queue [3].

int qlen;
int sent;
int lost;
int delays[B];

if(qlen < B)
{
delays[qlen]++;
qlen++;
}

else
{
lost++;
}

if(qlen > 0)
{
qlen--;
sent++;
}

(a) state (b) cell arrival (c) cell transfer

Figure 1: A simple ATM multiplexor model.

Then the state of the system might be as shown in Fig-
ure 1 (a). Theqlen variable is used to keep track of the
current buffer occupancy;sent and lost are variables that
accumulate the statistics respectively of the total number of
cells transferred to the output link and the total number of cells
dropped because of a full buffer. The arraydelays mea-
sures the number of cells experiencing a given amount of de-
lay, which in combination with thesent counter gives the cell
delay distribution.

In order to model the behavior of the ATM multiplexor,
two types of event handlers are used in the model. The cell
arrival event handler, processes newly arriving cells, as shown
in Figure 1 (b). Upon a cell arrival, if the queue has no more
room, then the counterlost is incremented representing that
the cell has been dropped. Otherwise, the array elementde-
lay[qlen] is incremented representing that one more cell
experienced a delay ofqlen emission time units followed by
an increment toqlen which represents that a cell has been
added to the queue. The cell transfer event handler processes
cell departure events, as shown in Figure 1 (c). Here, if the
queue is not empty, then a cell is dequeued (i.e.,qlen is
decremented) and sent over the output link (i.e.,sent is in-
cremented).

Note that for both event handlers, the code to schedule the
cell arrival and cell departure events is not shown.

2.2 Approach

int qlen;
int sent;
int lost;
int delays[B];

bit b1;
bit b2;

if(qlen < B)
{
b1 = 1;
delays[qlen]++;
qlen++;
}

else
{
b1 = 0;
lost++;
}

if(qlen > 0)
{
b2 = 1;
qlen--;
sent++;
}

else
{
b2 = 0;
}

(a) state (b) cell arrival (c) cell transfer

Figure 2: Modified ATM multiplexor model.

Now consider the model shown in Figure 2, which is ob-
tained by slightly modifying the original model of Figure 1.
The difference between the two models is that two additional
bit variables have been added to the state of the original model,

and these variables are used to note whether theif statements
were executed or not. The two bit-variables correspond to the
two if statements in the model, such thatb1 = 1 if qlen
< B and 0 otherwise. Likewise,b2 = 1 if qlen > 0 and 0
otherwise1.

If we look carefully at the model, we can see that thestate
of the original model is fully captured by the bit variablesb1
andb2 . In other words, the state-trajectory of the setS of
the variablesfqlen; sent; lost; delaysg has a one-to-one cor-
respondence with that of the setS0 = fb1; b2g. The point
here is that the values of the variables inS can be easily re-
covered based only on the values ofS0. To recover, we can
run the event computations backwards, which will restore the
variables ofS to their before-computation values. More ab-
stractly, the bit variablesb1 andb2 are used to make the orig-
inal modelreversible. Indeed, it is easy to find the reverse code
for each of the event handlers of the modified model, which is
shown in Figure 3. For example, the reverse code shown in
Figure 3 (a) performs a perfect undo of the operations of the
cell arrival event handler given in Figure 1 (b). Thus, it is suf-
ficient to maintain the history of the bitsb1 andb2 , instead of
the whole set of state variablesS of the original model.

if(b1 == 1)
{
qlen--;
delays[qlen]--;
}

else
{
lost--;
}

if(b2 == 1)
{
sent--;
qlen++;
}

(a) Reverse cell arrival (b) Reverse cell transfer

Figure 3: Reverse code for ATM multiplexor model.

It is clear that the size of the state to be saved is dra-
matically reduced, from several hundreds of bytes (for S) to
just 2 bits (for S’), which can be saved with negligible over-
head in the forward computation. As an example, assum-
ing one full word is needed to represent 2 bits on most ma-
chines, and ifB = 100, then the state is reduced by a factor
of (100 + 3)=1 = 103 when compared to copy state-saving.
Even if incremental state-saving techniques are applied to this
model, several bytes are needed for saving the changed data
values, whereas two bits are sufficient for reverse computa-
tion.

2.3 Application Properties

We can make some observations to understand some of the
properties of the model that allowed us to reduce the state so
dramatically.

� Property 1 The majority of the operations that modify
the state variables are “constructive” in nature. That is,
the undo operation for such operations requires no his-
tory. Only the most current values of the variables are
required to undo the operation. For example, operators
such as++,��, + =,� =, � = and= = belong to this
category2. More complex operations such ascircular

1In fact, only one bit variable would be sufficient in this model, since the event han-
dlers are mutually exclusive; but we shall use two variables for clarity in the discussion.

2The � = and= = operators require special treatment in the case of multiply or
divide by zero, and overflow/underflow conditions.

shift (swapbeing a special case), and random number
generation also belong here.
In the multiplexor model, all the assignment opera-
tions are constructive. Hence, little extra information
is needed to reverse those operations.

� Property 2 The complexity of the code is such that the
“control state” of the code occupies less memory than
the “data state” of the variables.
In the multiplexor model, only two bits were necessary
to record the control flow information. In contrast, the
data state that is modified is much larger.

If property 1 is not satisfied in the model because of the
presence of non-constructive operations such as plain assign-
ment or modulo computation, the reverse computation method
can in fact degenerate to the conventional state-saving opera-
tions. We call such non-constructive operations asdestructive
assignments. A straight-forward method to reverse a destruc-
tive assignment is to save the old contents of the left-hand-side
as a record of the “control information” for that assignment
statement, which makes it degenerate to state-saving. How-
ever, later in the discussion, we shall present optimizations that
are possible to prevent the degeneration of destructive assign-
ments to traditional state-saving.

If property 2 is not satisfied because the code is “too com-
plex” (i.e., the amount of control state is more than the data
state), we can fall back to traditional state-saving techniques.
On the other hand, property 2 suggests that this mechanism is
well-suited for simulation models in which the event compu-
tations are small.

Queuing network models are an excellent example of the
domain of models in which the preceding two properties are
satisfied to a large extent. Consequently, we believe that re-
verse computation is well suited for the optimistic simulation
of queuing network models.

3 Automation

In the case of the multiplexor example, the code is small
enough for us to come up with its reverse code by inspec-
tion. We will now consider the more general case in which
the code is complex, requiring a methodical, automated solu-
tion for generating the reverse code and for reducing the state
size.

3.1 Code Generation

We propose compiler-based techniques to be used to generate
the reverse computation code for the simulation model. In our
approach, the source code of the original model is fed through
a special compiler. From the input model, the compiler gener-
ates two separate outputs. The first output is an instrumented
version of the input model, which contains the necessary code
to make the input code reversible (e.g., the code in Figure 2).
The second output is the reversing code that serves to undo
the effects of the input model (e.g., the code in Figure 3). In
the actual simulation, the instrumented code is used in place
of the original code. The reversing code is invoked to rollback
an event. The goal of the compiler is to generate the most ef-
ficient versions of both the instrumented code and the reverse
code such that the state size is minimized while simultaneously
reducing the runtime execution overhead.

A simple set of translation rules that can be used by the
compiler are shown in Table 1. We list the most common
types of statements used in high-level languages, and their cor-
responding instrumented and reverse code outputs. Against
each of the statements, we list the state size achievable for that

statement type. Since not all operations of the input model are
perfectly reversible, it is necessary to add control state infor-
mation to be able to reverse them. However, as we shall see
in Section 3.3, the better the understanding of the semantics of
the code, the better the ability to reduce the state size. Hence,
the reduction in state size can vary depending on the sophis-
tication of the compiler. The translation rules of Table 1 thus
place anupper boundon the state size, which could potentially
be improved via optimizations.

The instrumented forward computation code, as well as
reverse code, are generated by recursively applying the rules
of Table 1 on the input model. The significant parts of these
rules are their state bit size requirements, and the reuse of the
state bits for mutually exclusive code segments. We explain
each of the rules in detail next.

� T0: The if statement can be reversed by keeping note
of which branch is executed in the forward computation.
This is done using a single bit variableb, which is set
to 1 or 0 depending on whether the predicate evaluated
to true or false in the forward computation. The reverse
code can then use the value ofb to decide whether to
reverse theif part or theelse part when trying to re-
verse theif statement.
Since the bodies of theif part and theelse part are
executed mutually exclusively, the state bits used for one
part can also be used for the other part. Hence, the state
bit size required for theif statement is one plus the
larger of the state bit sizes,x1, of theif part andx2 of
theelse part, i.e.,1 +max(x1; x2).

� T1: Similar to the simpleif statement (T0), an n-
way if statement can be handled using a variableb
of size lg(n) bits. Thus, the state size of the entire
if statement islg(n) for b, plus the largest of the
state bit sizes,x1 : : : xn, of the component bodies, i.e.,
lg(n)+max(x1 : : : xn) (since the component bodies are
mutually exclusive).

� T2: Consider ann iteration loop, such as afor state-
ment, whose body requiresx state bits for reversibility.
Thenn instances of thex bits can be used to keep track
of then instances of invocations of the body, giving a
total ofn�x bit requirement for the loop statement. The
inverse of the body is invokedn times in order to reverse
the loop statement.

� T3: A loop with variable number of iterations, such as a
while statement, can be treated the same as a fixed iter-
ation loop, but the actual number of iterations executed
can be noted at runtime in a variableb. The state bits for
the body can be allocated based on an upper limitn on
the number of iterations. Thus, the total state size added
for this statement islg(n) + n � x.

� T4: For a function call, no instrumentation is added. For
reversing it, its inverse is invoked. The inverse is easily
generated using the rules forT7 described later. The
state bit size,x, is the same as forT7. Treatment of
recursive functions is discussed later in this section.

� T5: Constructive assignments, such as++, -- , += and
so on, do not need any instrumentation. The reverse
code uses the inverse operator, such as-- , ++, -= re-
spectively. These constructive statements do not require
any state bits for reversibility.

� T6: Each destructive assignment, such as=, %=and so
on, can be instrumented to save a copy of its left hand
side into a variableb before the assignment takes place.

The size ofb is 8k bits for assignment to ak-byte left
hand side variable (lvalue). This is similar to Steiman’s
incremental state-saving technique [13].

� T7: In a sequence of statements, each statement is in-
strumented depending on its type, using the previous
rules. For the reverse code, the sequence is reversed, and
each statement is replaced by its inverse, again using the
corresponding generation rules from the preceding list.
The state bit size for the entire sequence is the sum of
the bit sizes of each statement in the sequence.

� T8: Jump instructions are discussed later in this section.

� T9: Any legal nesting of the previous types of state-
ments can be treated by recursively applying the corre-
sponding generation rules. The state bit size is also ob-
tained by the corresponding state-bit composition rule.

Jump Instructions

Jump instructions (such asgoto , break and continue)
require more complex treatment, especially in the presence of
inter-dependent jumps. As a simple example, consider the case
in which no goto label in the model is reached more than
once during an event computation. Such use of jump instruc-
tions occurs, for example, to jump out of a deeply nestedif
statement, or as convenient error handling code at the end of
a function. Such models are easy to reverse, as follows: for
every label that is the target of one or moregoto statements,
its goto statements are indexed. The forward code is instru-
mented to record the index of agoto statement whenever that
goto statement is executed. In the reverse code, each of the
goto statements is replaced by agoto label. The original
(forward)goto label is replaced with a switch statement that
uses the index saved in forward computation to jump back to
the corresponding new (reverse) goto label. Since at most one
index pergoto label is stored, the bit size requirement of this
scheme islg(n) wheren is the number ofgoto statements
that are the sources of that single target label. Note that even
if a label is the target of only one jump instruction, at least one
bit is required, to distinguish between reaching the label nor-
mally (falling-through) and reaching the label as a result of the
jump instruction.

In the most general case of models containing arbitrarily
complex use of jump instructions, we believe it is difficult to
fully optimize the state requirements automatically. Hence,
they are beyond the scope of this initial research in the area of
reverse computation and will require further investigation.

Functions and Recursion

Function calls also need complex treatment, especially in the
presence of reuse and/or recursion. The complexity is due to
the overriding concern of minimizing the forward computation
and memory overhead while trying to maintain reversibility.
In the simple case in which the function call graph is a tree,
the state bit sizes can be completely determinedstatically, and
hence the state bits can bestaticallyallocated to the statements
in all the functions. This can result in efficient references to
the state bits with minimal indirection. In the case of mod-
els in which the function call graph is a directed acyclic graph
(DAG), the (maximum) state bit size requirements can still be
statically determined, but the references to the state bits, both
in the forward and reverse event computation, need indirec-
tion via aframe offsetvariable generated by the compiler. The
frame offsetdenotes the position in the bit vector from where a
forward function can begin storing its own reversibility state.
This variable is analogous to a frame pointer in a function call
stack. In the more general case of an arbitrary function call

graph (implying the presence of direct and/or indirect recur-
sion), it is difficult to statically determine the maximum state
bit sizes. However, theframe offsetapproach of DAGs can still
be used to refer to the state bits corresponding to the currently
active function invocation. The actual run-time performance
implications of these techniques is unclear, and requires de-
tailed study. The analogy to function call stack also points to
potential relationship of this approach to process-oriented sim-
ulations, which requires further investigation as well.

State Size Determination

To determine the amount of state needed to reverse an event
computation, the following procedure is used. Since the model
code is a sequence of statements, start with T7 (or, alterna-
tively, T4), and recursively apply the rules of Table 1. This
is done while reusing the bits on code segments that are mu-
tually exclusive (as indicated by the MAX() operation in the
table). The analogy ofregister allocationis applicable here.
The state can be seen as a sequence of bits, which correspond
to registers of a computer. The bits are allocated to the state
that is required to record control-flow information. Just like
registers, these bits can be allocated in an intelligent manner
so that mutually exclusive statements can reuse the same bits.
For registers in general computing, the savings are in computa-
tion time; for control bits in optimistic simulations, the savings
are in state copying operations and in state size reduction.

It is easily observed that the statements with potentially
higher state bit sizes are destructive assignments, nestings of
conditional statements within loops, nested loops inside loops,
and destructive operations among inter-dependent jump in-
structions. In fine-grain models, it is unlikely that complex
code involving nested or complex loops will arise. Hence, the
higher state requirements of such complex code is not a serious
problem for these models. However, destructive assignments
are not uncommon. The most common occurrence of destruc-
tive assignments is in random number generation, which is ad-
dressed in the next section, followed by a discussion on other
efficiency issues in achieving reversibility.

3.2 Reversible Random Number Generation

Random number generation is central to all simulations mod-
els. Several random number streams may be used in the same
simulation, to model various phenomena. A random number
stream is generated by repeatedly invoking a specified func-
tion on aseedvariable. The function modifies the value of the
seed every time the function is invoked. Thus, a seed variable
is needed for every random number stream used in the simula-
tion model. The size of the seed variable varies with the type
and quality of the random number generator (RNG).

In optimistic simulations, if an event computation invokes
an RNG, and eventually the event is rolled back, it is necessary
to roll back the random number generation. Otherwise, the
simulation results can be unpredictable and unrepeatable. In
order to be able to roll back the random number generation,
traditionally, the seed value is state-saved. Incremental state-
saving techniques are used in case the model contains many
seeds.

However, if the reverse computation approach is used in
order to avoid state-saving, we quickly encounter the fol-
lowing problem — RNGs rely on lossy/destructive assign-
ments such as modulo operations. This implies that a straight-
forward application of reverse computation techniques can de-
generate to incremental state-saving, as the generation rule for
typeT6 in Table 1 suggests. To get around this problem, we
essentially need RNGs which do not rely on state-saving to re-
verse. On an abstract level, we can reasonably expect RNGs
to bereversiblewithout the need for state-saving, since, after
all, random number streams are nothing but statically laid out

Table 1: Summary of treatment of various statement types
Generation rules and upper bounds on state size requirements for supporting reverse computation.s, or s1::sn are any of the statements of types T0..T7. inv(s)
is the corresponding reverse code of the statement s. b is the corresponding state-saved bits “belonging” to the given statement. The operator= @ is the inverse
operator of a constructive operator@ =, (e.g.,� = for + =).

Type Description Application Code Bit Requirements
Original Instrumented Reverse Self Child Total

T0 simple choice if() s1;
elses2;

if() fs1 ; b=1;g
elsefs2 ; b=0;g

if(b==1)finv(s1);g
elsefinv(s2);g

1 x1; x2 1 +

max(x1; x2)

T1 compound choice
(n-way)

if() s1;
elsif()s2 ;
elsif()s3 ;
else()sn;

if() fs1 ; b=1;g
elsif() fs2; b=2;g
elsif() fs3; b=3;g
elsefsn; b=n;g

if(b==1)finv(s1);g
elsif(b==2)finv(s2);g
elsif(b==3)finv(s3);g
elsefinv(sn);g

lg(n) x1; x2;

:::; xn

lg(n)+

max(x1; :::

xn)

T2 fixed iterations (n) for(n) s; for(n) s; for(n) inv(s); 0 x n � x

T3 variable iterations
(maximumn)

while() s; b=0;
while()fs; b++;g

for(b) inv(s); lg(n) x lg(n)+n�x

T4 function call foo(); foo(); inv(foo)(); 0 x x
T5 constructive

assignment
v@ = w; v@ = w; v = @w; 0 0 0

T6 k-byte destructive
assignment

v = w; fb = v; v = w; g v = b; 8k 0 8k

T7 sequence s1;
s2;
sn;

s1 ;
s2 ;
sn;

inv(sn);
inv(s2);
inv(s1);

0 x1+
::: +
xn

x1 + ::: +xn

T8 simple case of jumps
(label lbl as target of
n goto’s)

goto lbl;s1;
goto lbl;sn;
lbl: s;

b=1; goto lbl;s1 ;
b=n; goto lbl;sn;
b=0; label:s;

inv(s);
switch(b)f
case 1: gotolabel1 ;

case n: gotolabeln; g
inv(sn); labeln:
inv(s1); label1:

lg(n) 0 lg(n)

T9 Nestings of T0-T8 Apply the above recursively Apply the above recursively

cyclic sequences of numbers. It should be possible to traverse
forward and backward along the cycles with the same ease.

More concretely, consider the code to generate a uniform
random number using L’Ecuyer’s Combined Linear Congru-
ential RNG [9]. This RNG is based on a combination of
four linear congruential generators (LCGs) and has a period of
2121. This generator produces a uniform[0; 1] double . Here,
s represents the seed of an LCG. When trying to “undo” or
reverse this computation as suggested in Section 3, we imme-
diately run into several destructive assignments. In particular,
this generator performs the following assignment:

s = 45991 � (s� k � 46693)� k � 25884

wherek = s=46693. Because integer division is being used
(and in fact the algorithm depends on the semantics of inte-
ger division),k does not accurately represents=46693 which
means that one cannot determine the original value ofs from
the new value ofs. Essentially, there is loss of information,
making it irreversible. Using the step-wise technique of re-
versing a computation, the only way one could reproduce the
original value ofs from the previous value is to store the loss
of information due to the integer division (and due to other
operations like it) and use that information in the reverse com-
putation. However, this degenerates to state-saving, which is
exactly what we are trying to avoid.

Now, let us examine the mathematics behind this RNG
from a higher level. This RNG is based on the following re-
currence:

xi;n = aixi;n�1 mod mi

wherexi;nj1 � i � 4 is nth set of four seed values computed
from then � 1 set of four seed values,mij1 � i � 4 are the
primes numbers231 � 2; 231 � 106; 231 � 226; 231 � 326 re-
spectively, andaij1 � i � 4 is a primitive root formi. Based
on well-known number theory, the above recurrence form is
in fact reversible. First, the inverse ofai of modulomi, bi is
defined to be:

bi = ami�2

i mod mi

where calculation ofbi is accomplished using the method for
computing large powers [17]. Using thebi, we can generate
the reverse sequence of seed values as follows:

xi;n�1 = bixi;n mod mi

which has the same computational requirements as the forward
execution of the RNG.

Significance of Reversible RNG

The reversibility of RNGs is not new. However, when applied
to the context of parallel simulation, the work described here
is the first to exploit this property. As the gap between mem-
ory latency and processor speed increases, we believe this ap-
proach will be of greater benefit, as faster processors will result
in larger, more complex simulation applications. These sim-
ulation applications will in turn require RNGs with stronger
statistical properties and longer periods, which will increase
the seed size of the RNG. For example, in [10], the “Mersenne
Twister” (MT19937) RNG is presented. This RNG is of the
twisted feedback shift-register class and has an extremely long
period of219937 � 1. However, it requires 624 words of space
for seeds. For a classical Time Warp system using this gen-
erator, 2496 bytes of state would need to be saved per event
just to support the “undo” operation for the RNG. This as-
sumes MT19937 would be called at least once per event. One
might think that incremental state-saving could be employed
here, but the way this RNG is structured, some bits from each
word are subject to change every time a random number is gen-
erated, thus making it difficult to optimize using incremental
state-saving techniques. Assuming the reverse recurrence can
be found for MT19937, which its creators believe is possible,
the amount of memory saved using reversing computation is
even much greater than previously discussed. Because of the
reduction in state-saving overheads, system performance will
improve as well.

3.3 Reverse Code Efficiency

The reversibility of random number generators, even though
they contain destructive assignments, leads to the following
third property of the models that can help prevent reverse com-
putation from degenerating to state-saving:

� Property 3: The non-reversibility of the individual
steps that compose a computation do not necessarily im-
ply that the computation, when taken as a whole, is not
reversible.

Property 3 suggests that even if the individual steps of a
computation are not efficiently reversible (i.e., either property
1 or 2 is violated), then one should look to a higher-level to
see if the computation is not reversible from that level. An in-
teresting question we plan to consider in the future is defining
an automatic mechanism for identifying code sequences which
are individually not reversible, but for which a reversible code
sequence can be determined when considered in a larger con-
text.

This observation holds for several other common opera-
tions that contain destructive assignments. For example, a
shift operation on an array ofn elements can requiren state-
saving operations using incremental state-saving techniques.
The same operation requires saving only one element using
reverse computation. In fact, a circular shift requires no state
when reverse computation is used, whereas incremental state
saving can requiren state-saving operations3. Similarly, in-
sertion or deletion operations (which contain destructive as-
signments such as pointer assignments) into tree data struc-
tures (e.g., priority queues) can require several state-saving
operations using incremental state-saving, whereas, no state
is needed when reverse computation is used. This is because
those operations naturally possess perfect inverses (e.g.,delete
andinsertare inverses of each other).

An important outcome of this work is the recognition that
reverse computation is well-suited for queuing network mod-
els. Many of the operations in queuing network models are
either constructive operations (increment, decrement, etc.), or
reversible groups of destructive assignments (random number
generators, queue operations, etc.). Also, the event compu-
tations in these models tend to be of fine-granularity. This
implies that reverse computation is an excellent approach for
optimistic parallel simulation of queuing network models.

4 Performance Evaluation

We shall now discuss the implementation details of reverse
computation, followed by our performance study that com-
pares reverse computation against state-saving.

4.1 Implementation

To experiment with reversing computation, we have imple-
mented the reverse computation in the Georgia Tech Time
Warp (GTW) optimistic parallel simulator for shared memory
multiprocessors. GTW is originally based on state-saving to
realize rollback. To use reverse computation for rollback, three
significant modifications were made to the GTW kernel.

First, we extended the GTW application programmer inter-
face to support a method for reversing the forward processing
of an event. In GTW, the applications programmer must spec-
ify methods (i.e., pointer to a function) for each logical process
(LP) to (i) initialize an LP (TWLP[i].IProc) (ii) primary
event handler for an LP (TWLP[i].Proc), (iii) a “wrap-up”
method for an LP that collects application-specific statistics

3The commonly used swap operation is only a special case of circular shift.

(TWLP[i].FProc). Note that theTWLParray is indexed
by the LP number. We added support for reversing compu-
tation by introducing a new method,TWLP[i].RevProc ,
which performs the precise reverse computation of the event
handler procedure,TWLP[i].Proc . Currently, the spec-
ification of TWLP[i].RevProc must be done by the ap-
plications programmer. (In the future, we plan to support
the automatic generation ofTWLP[i].RevProc based on
TWLP[i].Proc , as described in Section 3). The arguments
to TWLP[i].RevProc include the current state of the LP,
and any events sent during the forward computation.

Next, GTW’s core rollback mechanism required some sig-
nificant changes as well. GTW uses a technique calleddi-
rect cancellation[6] to support the “de-scheduling” of previ-
ously scheduled events by an event that was rolled back. This
technique allows one to keep a direct pointer to the event that
needs to be canceled. Because of this, an optimized rollback
mechanism can be supported that doesn’t require one to search
though the processed event-list of an LP. Instead, if the event
that is to be canceled has been processed, the rollback mech-
anism simply restores the version of LP state that was made
prior to processing this event. The other processed events that
come after the canceled event are marked as unprocessed and
placed back into pending event-list. For supporting reversing
computations caused by secondary rollbacks (i.e., rollbacks
caused by event cancellations), this optimized technique is un-
suitable. To “undo” a sequence of event computations using
reverse computation requires that each event be “unprocessed”
in the precise reverse order in which it was processed. Con-
sequently, we modified the direct cancellation mechanism so
that it starts with the last event processed by the LP and moves
through the LP’s processed event-list in reverse time stamp or-
der, invoking theTWLP[i].RevProc method for each event
to undo its changes to state. The changes to the primary roll-
back mechanism (i.e., rollbacks caused by straggler events) to
incorporate reverse computation were straight-forward, since
the processed event list for an LP is scanned in reverse time
stamp order.

The last major change to the GTW system was that all
memory allocation for saving state (both copy state and in-
cremental state-saving) was turned off. Also, the copy-state
operation during forward event processing was turned off as
well. Instead, a small bit vector (currently, a 32-bit integer
variable) was added to every event. These bits serve as the
working bits needed for saving the state information created
by the instrumented model code, as described in Section 3. For
example, the two bits,b1 andb2 of the multiplexor model in
Section 2.2 are in fact mapped to the lower order bits of this
event bit vector. To support more complex code, the size of the
bit vector can be appropriately increased.

4.2 Experiment Configuration

For the performance study, we use two applications: (i) a net-
work of Asynchronous Transfer Mode (ATM) multiplexors (ii)
a Personal Communications Services (PCS) network.

The first application consists of a 3-level cascade of ATM
multiplexors, as described in [11]. The model is parameterized
by a factorn, such thatn3 cell sources feed inton2 multiplex-
ors which in turn feed inton multiplexors, which finally feed
into one multiplexor. The factorn is the number of inputs of
each multiplexor. The GTW source code for the ATM multi-
plexor model was obtained from the Northern Parallel Simula-
tor (Nops) group at Dartmouth [11]. Their implementation on
GTW realizes each network element as an LP. The state size of
each LP is 112 bytes. The data contain within each message is
8 bytes. The event granularity of this application is very low:
approximately 3 microseconds.

In the second application, a PCS network is simulated as
described in [4]. The service area of the network is populated

with a set of geographically distributed transmitters and re-
ceivers calledradio ports. A set of radio channels are assigned
to each radio port, and the user in thecoverage areasends and
receives phone calls using the radio channels. When a user
moves from one cell to another during a phone call ahand-off
is said to occur. In this case the PCS network attempts to al-
locate a radio channel in the new cell to allow the phone call
connection to continue. If all channels in the new cell are busy,
then the phone call is forced to terminate. For all experiments
here, theportable-initiatedPCS model was used, which dis-
countsbusy-linesin the overall call blocking statistics. Here,
cellsare modeled as LPs and PCS subscribers are modeled as
messages that travel among LPs. PCS subscribers can travel in
one of 4 directions: north, south, east or west. The selection of
direction is based on a uniform distribution. The state size for
this application is 80 bytes with a message size of 40 bytes and
the minimum lookahead for this model iszerodue to the ex-
ponential distribution being used to compute call inter-arrivals,
call completion and mobility.

The computation granularity of ATM multiplexor model is
very small, but, the communication among the LPs is feed-
forward in nature, yielding excellent lookahead properties.
The PCS network, on the other hand, possesses more com-
plex communication patterns with much larger message sizes
and azerolookahead. Consequently, PCS is a more represen-
tative example of how a “real-world” simulation model would
exercise the rollback dynamics of reverse computation.

To adapt the models to use our reversing computation
methodology, we manually generated4 the reverse event pro-
cessing code according to the rules discussed in Section 3 (por-
tions of the code are discussed in Section 2.2).

All the experiments were performed on a 16 processor,
SGI Origin2000, shared-memory multiprocessor, with 8 MB
of level-two cache per processor, and 4 GB of total mem-
ory. In all cases, the total number of events committed using
reverse computation were deterministic and consistent with
state-saving and sequential runs.

To study various performance effects, we used four differ-
ent versions of GTW as described below:

1. GTW-SS– parallel version of GTW, using state-saving

2. GTW-RC – parallel version of GTW, using reverse
computation

3. GTW-NONE – parallel version of GTW, with rollback
support turned off (i.e., with neither state-saving nor re-
verse computation)

4. GTW-SEQ – optimized sequential simulator with GTW
interface.

4.3 Forward computation

In practice, one would like the serial performance of the par-
allel simulator to be as close to the optimized sequential as
possible. With that in mind, our first set of experiments uses
the ATM multiplexor model and compares the serial perfor-
mance of GTW-NONE5, GTW-RC, and GTW-SS (using copy
state-saving) against GTW-SEQ on this model to determine
the impact these different approaches have on forward com-
putation rates. We did not use incremental state-saving in this
comparison since it resulted in slower performance than full
copy saving-saving. The cause of low performance of incre-
mental state-saving was a consequence of the LP state being
so small (only 112 bytes)[7]. We did not use the PCS network

4 In the future, we plan to automate this process by modifying the TeD compiler [15] to
generate the reverse event handler methods based on the original forward event handler.

5GTW-NONE is very much like a conservative parallel simulator being run serially.

model, since it is of a higher granularity than the ATM mul-
tiplexor model, and hence less stringent than the ATM multi-
plexor model on the forward computation overheads.

0

50000

100000

150000

200000

250000

300000

0 10 20 30 40 50 60 70

E
ve

nt
 R

at
e

(e
ve

nt
s

pe
r

se
c)

Fanin

Comparing Forward Computation Costs of Reverse Computation and State Saving

GTW-SEQ
GTW-NONE on 1 PE

GTW-RC on 1 PE
NOPS on 1 PE

GTW-SS on 1 PE

Figure 4: Comparison of forward computation performance to
determine overheads in state-saving and reverse-computation
approaches using the ATM multiplexor.

Figure 4 shows the event rate as a function of fan-in for
the four simulators. There are several key observations based
on this performance data. First, we observe that the perfor-
mance of GTW-RC is equal to GTW-NONE. The reason these
two systems perform equivalently is because the few extra bits
stored in the forward computation to support reverse compu-
tation has negligible impact on the overall event granularity
of the ATM Multiplexor application. However, if we compare
GTW-RC with GTW-SS, a much different picture emerges —
GTW-RC is consistently faster than GTW-SS, the primary rea-
son being that we have completely eliminated the overhead of
state-saving.

If one were to eliminate state-saving overheads in an opti-
mistic simulator, as we achieved in GTW-RC, we may expect
to observe performance that is about equal to that of the opti-
mized sequential simulator. But, clearly that is not the case
here — across all fan-in values, the sequential simulator is
faster, and, in one case, as much as 30% faster. To investigate
this phenomenon, we profiled GTW-RC and GTW-SEQ to see
where these two systems were spending most of their CPU cy-
cles. Profiling revealed that the memory footprint of GTW-RC
is much larger than that of GTW-SEQ. This is because the se-
quential simulator commits and immediately reuses an event
memory buffer upon processing that event. But, GTW-RC
(and GTW-SS) only commits an event memory buffer when
global virtual time (GVT) sweeps past the event time-stamp,
which is approximately once every 1000 events. The conse-
quence of waiting for GVT is that GTW-RC “touches” more
pages of memory than GTW-SEQ, which results in more first
and secondary data cache misses, as well as translation look-
aside buffer (TLB) misses and page faults.

Finally, we observe that as the fan-in increases, the perfor-
mance of the different simulators begins to converge. To ex-
plain this phenomenon, we need to understand how an increase
in fan-in effects the system. Recall, there aren3 sources in the
multiplexor network. Each source generates two messages —
one for self rescheduling, and the other when a cell is gen-
erated to send to the target multiplexor. Consequently, there

are at anyone instance in time at leastn3 events in the sys-
tem. Thus, the event population grows as the cube of the fan-
in, n. As we approach fan-ins of 48 and above, the event-list
management overheads begin to dominate, which decreases
the impact state-saving overheads has on overall system per-
formance.

To illustrate that the performance of GTW-RC is compa-
rable to that of an optimized conservative simulator which is
supplied with sufficient lookahead, in Figure 4 we list the per-
formance of the Nops[11] conservative parallel simulator on
the same model on a similar SGI Origin2000 (fan-in beyond
48 are not listed in [11]). We notice that GTW-RC achieves
similar or better performance compared to the conservative
simulator.

In summary, in the fine-grained multiplexor model, we ob-
serve that reverse computation almost completely eliminates
the state-saving overheads from the forward computation.

4.4 ATM Multiplexor Parallel Performance

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

1 2 3 4 5 6 7 8 9 10 11 12

E
ve

nt
 R

at
e

of
 R

C
 /

E
ve

nt
 R

at
e

of
 S

S

Number of Processors

Factor of speed improvement of Reverse Computation over State Saving

Fanin 4
Fanin 12
Fanin 32
Fanin 48

Figure 5: Improvement in parallel simulation performance us-
ing reverse-computation as compared to state-saving.

In this next series of experiments, we compare theparal-
lel simulation performance achieved by reversing computation
and state-saving using the ATM multiplexor model. For these
experiments we varied both the fan-in (fan-ins of 4, 12, 32,
and 48) and the number of processors (2, 4, 8, and 12). Given
the modest, nevertheless good, improvement in serial perfor-
mance when using reverse computation (around 25%), we ex-
pected to see a similar modest enhancement with respect to
parallel simulation performance. However, we were surprised
to see that reverse computation improved GTW’s performance
by up to 300% as compared to state-staving. Figure 5 shows
the factor of improvement (the event-rate of reverse compu-
tation divided by the event-rate of state-saving). We observe
that in the 12 processor, 12 fan-in case, GTW-RC increased
the event-rate by a factor of 3.1 compared to GTW-SS6. All
the performance data were obtained by repeating the simula-
tion runs several times. The performance results were found
to be repeatable, with negligible variance.

6The raw event-rate using reverse computation for that case was over 1.2 million
events per second!

Table 2: ATM Multiplexor Model, Fan-in 12
Memory Subsystem Performance for Reverse Computation and State-Saving

on 12 Processors. Numbers representmissesincurred by different parts of the

memory hierarchy.

TLB PD-Cache SD-Cache

SS 43966018 1283032615 162449694
RC 11595326 590555715 94771426

These observations raised the next question, namely, why
does reverse computation improve performance by such a
large factor? We hypothesized that it is memory system re-
lated, assuming that reverse computation has a smaller mem-
ory footprint than state-saving and hence requires less re-
sources to be expended by the memory subsystem. To ver-
ify our hypothesis and to precisely identify the source of the
performance variation, we used thespeedshop performance
tool. Here, we configuredspeedshop to make use of the
hardware counters internal to the MIPS R10000 processor to
obtain extremely accurate performance statistics. We note that
because the hardware counters were used, we observe neither
slow down in performance, nor perturbation in the model per-
formance due to thespeedshop monitoring software.

Table 2 shows the number of TLB, primary data cache
(PD-Cache), and secondary data cache (SD-Cache) misses for
GTW with state-saving and GTW with reverse computation.
These measures were obtained for the 12 processor, 12 fan-in
case. Here, we observe GTW-RC only incurs 26% of the TLB
misses incurred by GTW-SS. This accounts for much of the
performance gains of reverse computation, since TLB misses
are expensive to service, as they are typically done in soft-
ware. In addition to the TLB miss statistics, we observed that
reverse computation has 50% less primary data cache misses
and 40% less secondary data cache misses than state-saving,
which further explains the large increase in performance ob-
tained by reverse computation. As future generations of pro-
cessors become faster and the performance gap between mem-
ory and processors widens, we anticipate reverse computa-
tion can achieve even higher performance compared to state-
saving.

Last, we observe a significant degree of variation among
some of the performance results. The largest amount of varia-
tion occurs in the cases corresponding to a fan-in of 12 . Here,
we see that on 8 processors, reverse computation achieves an
event rate that is only 20% faster than that of state-saving. Yet,
on 12 processors, we observe an astonishing 300% increase in
the event-rate when using reverse computation. We attribute
these variations to load imbalance and dramatic changes in
inter–processor communication that are inherent in mapping
the ATM multiplexor model to different processors.

4.5 PCS Network Parallel Performance

We also simulated the PCS model in parallel, and compared
the parallel performance of GTW-SS and GTW-RC. For these
experiments the following configurations were used. The PCS
model was configured with a 64 x 64 LP grid for 8 processors,
a 72 x 72 LP grid for 12 processors, and a 60 x 60 LP grid on
15 processors. For all LP configurations, the number of ini-
tial events per LP was 25. These LP configurations were cho-
sen because they allowed an even number of LPs to mapped
to each processor to preclude introducing a unbalanced work-
load.

The performance results for this set of experiments are
summarized in Table 3. Here, we observe that GTW-RC is

Table 3: PCS Network Model
Parallel Performance for Reverse Computation and State-Saving. Perfor-

mance is measured in terms of event rate.

PEs GTW-SS GTW-RC % Improvement

8 222507 336869 151%
12 199084 510772 256%
15 183292 678380 370%

consistently faster than GTW-SS. The peak performance im-
provement by GTW-RC is 370% over that of GTW-SS. We
believe that, for processor configurations above eight, GTW’s
state-saving mechanism is being subjected to high TLB miss
rates and other memory performance effects, probably related
related to the Origin 2000’s unique CCNUMA architecture.
Further investigation is needed to determine the precise cause.
Accordingly, we conservatively believe that the 150% im-
provement, as reported in the 8 processor case, is more in line
with what can be expected for large processor configurations in
practice, since some optimizations could potentially be made
in GTW-SS for better state-memory and event-memory man-
agement in such large processor configurations.

Performance Summary

The results presented here when considered in their total in-
dicate that the performance of optimistic parallel simulation
has reached an acceptable level for this class of extremely low
event granularity applications. Previously, researchers in the
area of parallel and distributed simulation have indicated dif-
ficulty in achieving acceptable levels of performances from
Time Warp systems with small event-granularity. They ob-
served that state-saving costs were dominating and stifling per-
formance. Now, with reverse computation it appears that ar-
guments against using optimistic approaches on such applica-
tions are ebbing away.

5 Related Work

Reverse computation has been previously studied in various
contexts. Research intoreversible computingis aimed at real-
izing reversible versions of conventional computations in or-
der to reduce the power consumption [1, 14]. TheR lan-
guage is a high-level language with special constructs to en-
force reversibility so that programs written in that language
can be translated to machine code of reversible computers
[5]. Another interesting application of reversible computation
is in garbage collection. The Psi-Lisp language presented in
[2] uses reversible constructs to efficiently implement garbage
collection. Other applications for reversible execution are in
the areas of database transaction support, debugging support
and checkpointing for high-availability software [12, 8]. More
recent work is concerned with source to source translation of
popular high-level languages, such as C, to realize reversible
programs. However, almost all of the solutions suggested in
these application areas translate either to constraints on lan-
guage semantics to disallow irreversible computations, or to
techniques analogous to state-saving techniques (specifically,
copy-on-write techniques) of optimistic parallel simulations.
Some of them operate at a coarse level of virtual memory
pages. The optimizations are roughly analogous to those used
in incremental state-saving approaches in parallel simulations.
Moreover, since these solutions are not specifically geared to-
wards parallel simulations, they are not optimized for mini-

mizing the state size, and do not adequately exploit the seman-
tics of constructive operations. The state-saving techniques
presented in [7] utilize a limited form of optimization using
the reverse computation approach and is the first work we are
aware of to specifically discuss reverse computation, but no
performance results are provided. Our work starts where [7]
ends and is concerned with techniques for minimizing the state
size for realizing reversibility, and simultaneously minimiz-
ing the runtime execution overheads. Finally, in [16], aroll-
back relaxationscheme is presented that automatically identi-
fies certain types of history-independent logical processes and
optimizes the performance of rollback activity for those pro-
cesses. Our approach is different in that it addresses logical
processes which are not necessarily stateless, and seeks to op-
timize run-time performance and memory utilization by mini-
mizing the essential state required by such processes.

6 Remarks and Conclusions

Reverse computation is well suited for models containing con-
structive assignments. However, it can degenerate to tradi-
tional state-saving if sufficiently large number of destructive
assignments which are hard to reverse are present in the model.
In fact, in certain cases, it can perform worse than incremen-
tal state-saving, due to the fact that optimizations, such as the
merging of multiple writes to the same variable into a sin-
gle save operation, are possible using incremental state-saving
techniques, but not readily possible with reverse computation.

An optimization that is commonly implemented in copy
state-saving is that, when a rollback spans several processed
events, it is sufficient to merely switch a few pointers in or-
der to restore the entire state to its value corresponding to the
earliest rolled back event. This helps in considerably reduc-
ing the rollback cost. In contrast, when reverse computation
is used, each one of the rolled back events must be reversed
one at at time, in the reverse order of processing. This can po-
tentially make the rollback cost much higher than that of copy
state-saving.

On the other hand, previously, optimistic simulations were
considered to be unsuitable for fine-grain applications because
of the high state saving overheads. We have shown that reverse
computation is an appealing alternative approach that makes
efficient optimistic simulation of fine-grain applications feasi-
ble.

We also identify some classes of applications in which ap-
plication of reverse computation is natural, for which auto-
matic techniques are easily found, which essentially exploit
the source code as state. Examples include quantum computer
simulation, and queuing network simulation. In the case of
queuing network models, we identify that a majority of the
common operations are indeed reversible. In particular, we
have addressed the reversibility of the most common oper-
ation, namely, random number generation. In addition, we
make the observation that other queue manipulation opera-
tions, such as insert, delete and shift, are in fact more memory
efficient with reverse computation than with state-saving.

In other classes of applications, this approach also serves
as an automatic compiler-based state-compression technique.
State compression is useful for enhancing the performance of
optimistic simulations in limited memory environments. Con-
sidering that CPU resources are cheaper and more abundant
than memory resources, we can hope to execute certain impor-
tant classes of applications (such as queuing networks) using
optimistic parallel simulation on a network of, say, palm-top
computers. The state-compression is useful even in the context
of state-logging conservative parallel simulations and sequen-
tial simulations. For interactive (play-log-replay) applications,
there can be significant benefits in terms of reduction in mem-
ory requirements of the state log. Since the applications tend

to be simulated for long times, an order of magnitude differ-
ence in the size can be quite significant. (In this case, we are
still investigating the gains of state-compression as opposed to
using standard compression programs, such asgzip , on the
log of regular uncompressed state.)

Most importantly, the reduced memory requirements due
to state-compression allow us to explore new applications that
were considered too expensive to simulate using state-saving-
based optimistic simulations. However, several open issues
remain to be explored. We discuss a few of them next.

Open Issues

In general, reverse computation reduces the overhead in the
forward computation path, but increases the rollback cost. Ad-
ditional work is needed to better understand the rollback dy-
namics of reverse computation on a wider range of applica-
tions.

Algorithms to automatically identify the naturally re-
versible patterns in the model code are important to prevent
reverse computation from degenerating to state-saving. Per-
haps a library of forward–inverse pairs of functions can help
in this direction.

Since floating point arithmetic is subject to roundoff, arith-
metic operations can result in roundoff errors during the re-
verse execution. Solution approaches exist (for example, by
emulating a precision that is higher than the highest precision
supported by the modeling language), but the performance im-
plications are unclear.

An interesting theoretical problem is to find whether there
exist data types, for which the state-saving cost for their opera-
tions widely differs when reverse computation is used instead
of state-saving. To illustrate, consider a circular shift oper-
ation on an array ofn elements. This operation requires no
state for reverse computation. But it appears to requireO(n)
state size using state-saving, if afor loop is used for shifting.
However, by using a pointer–based implementation for the ar-
ray, and shifting the “start” and “end” pointers of the array
instead of the actual elements, the pointers can be state-saved
instead of the entire array of elements, reducing the size of
saved state to the size of two pointers. This implies that for cir-
cular shift, the memory requirement for state-saving is only a
constant factor away from reverse computation. It is unclear if
this is true in general. For example, an interesting sub-problem
concerns theinsert anddelete-min operations on a pri-
ority queue. We are not aware of any theoretical result that
proves or disproves that only a constant number ofstate mod-
ifications is sufficient for arbitrary combination ofinsert
anddelete-min operations on the queue, without sacrific-
ing the asymptotic average time complexity ofO(logn) for in-
sertion and deletion. Reverse computation, on the other hand,
requires no state history despite state modifications, because,
insert can be reversed usingdelete , and vice versa.

Acknowledgments

This work was supported in part by U.S. Army Contract
DASG60-95-C-0103 funded by the Ballistic Missile Defense
Organization, and in part by DARPA Contract N66001-96-
C-8530. Additionally, the authors would like to thank P.
L’Ecuyer for his insights on the reversibility of random num-
ber generators as well as David Nicol and the Nops group at
Dartmouth for providing us with the source code for the ATM
Multiplexor model specifically written for GTW. And finally,
we would like to thank the anonymous reviewers and shep-
herds for their insightful suggestions.

References

[1] Charles Bennett. Thermodynamics of Computation. In-
ternational Journal of Physics, pages 905–940, volume
21, 1982.

[2] H. Baker. NReversal of Fortune—The Thermodynamics
of Garbage Collection. InProceedings of the Interna-
tional Workshop on Memory Management, Springer Ver-
lag Lecture Notes in Computer Science 637, 1992.

[3] K. S. Perumalla, C. A. Cooper, R. M. Fujimoto. An Effi-
ciency Prediction Method for ATM Multiplexers. InPro-
ceedings of Broadband Communications, April 1996.

[4] C. D. Carothers, R. M. Fujimoto, and Y-B. Lin. A Case
Study in Simulating PCS Networks Using Time Warp.
In Proceedings of the 9th Workshop on Parallel and Dis-
tributed Simulation (PADS’95, June 1995, pages 87–94.

[5] Michael Frank. The R Language Programming Language
and Compiler,
http://www.ai.mit.edu/˜mpf/rc/home.html

[6] R. M. Fujimoto. Time Warp on a shared memory multi-
processor. InProceedings of the 1989 International Con-
ference on Parallel Processing, volume 3, pages 242–
249, August 1989.

[7] Fabian Gomes. Optimizing Incremental State-Saving
and Restoration. Ph.D. thesis, Dept. of Computer Sci-
ence, University of Calgary, 1996.

[8] G. Leeman. A Formal Approach to Undo Operations in
Programming Languages. ACM TOPLAS, pages 50–87,
volume 8(1), Jan 1986.

[9] P. L’Ecuyer and T. H. Andres A Random Number Gen-
erator Based on the Combination of Four LCGsMathe-
matics and Computers in Simulation, 44:99–107, 1997.

[10] M. Matsumoto and T. Nishimura Mersenne twister:
a 623-dimensionally equidistributed uniform pseudo-
random number generatorACM Transactions on Mod-
eling and Computer Simulation (TOMACS), volume 8,
Number 1, pages 3–30, January 1998.

[11] A. Poplawski and D. M. Nicol Nops: A Conservative
Parallel Simulation Engine for TeDIn Proceedings of the
12th Workshop on Parallel and Distributed Simulation,
volume 23, pages 180–187, May 1998.

[12] R. Sosic. History Cache: Hardware Support for Reverse
Execution. Computer Architecture News, pages 11–18,
volume 22,5, December 1994.

[13] Jeff S. Steinman. Incremental state saving in SPEEDES
using C++.In Proceedings of the 1993 Winter Simulation
Conference, December 1993, pages 687–696.

[14] The Reversible Computing Home Page at MIT,
http://www.ai.mit.edu/˜cvieri/reversible.html

[15] The TeD Language — Home page.
http://www.cc.gatech.edu/computing/pads/ted.html

[16] K. Umamageswaran, K. Subramani, P. A. Wilsey, P.
Alexander. Formal Verification and Empirical Analysis
of Rollback Relaxation. The Elsevier ScienceJournal of
Systems Architecture, number 44, pages 473–495, 1998.p

[17] C. Vanden Eynden Elementary Number Theory page
141, Random House, New York, 1987.

