Efficient Optimistic Parallel Simulations using Reverse Computation

Kalyan S. Perumalla
and
Richard M. Fujimoto
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0280
{kalyan,fujimoto }@cc.gatech.edu

Christopher D. Carothers
Department of Computer Science
Rensselaer Polytechnic Institute
110 8th Street
Troy, New York U.S.A. 12180-3590
chrisc@cs.rpi.edu

Abstract simulations. Also, by reduced memory requirements of the
executloR_, reve;]s_e computation leads to more eff|C|er|1t usaa of
In optimistic parallel simulations, state-saving techniques haj}@rage hierarchies. Reverse computation can greatly reduce
been traditiopnally Used to realize rollback. In this artic@'{‘ge forward computation overheads by transferring most of the
; i raditional overheads to the reverse computation path.
we proposaeverse computatioas an alternative approachi@qt L er m i
and compare its execution performance against that of state-Hére, we demonstrate that the reverse computation ap-
saving. Using compiler techniques, we describe an approREpach has insignificant forward computation overheads and
to automatically generate reversible computations, and to 6§Y SIae memory requirements in fine-grain models. . Thbe
timize them to transparently reap the performance benefitfgfa/lé! sSimulation performance of reverse-computation Is ob-
reverse computation. For certain fine-grain models, suchS&sved to achieve better caching effects, with as much as two to
queuing network models, we show that reverse computatfpfee;fold improvement in several model configurations, com-
can yield significant improvement in execution speed couplegred tOhCOPV Etate—savmg. dFm.ally. we d_(lam%nstr%te thﬁt.th's
with significant reduction in memory utilization, as compar%’proaC can be automated using compiler-based techniques
to traditional state-saving. On sample models using reve}d@t can automatically generate both a reversible version of the
computation, we observe as much as three-fold improvemﬁé\\ﬁ/@”t computation code and its reverse, from a model's high-

in execution speed over traditional state-saving. el description. o , .
When reverse computation is used to simulate coarse-grain

models, it is unclear if the improvement in execution speed
. can be as pronounced, because state-saving overheads are not
1 Introduction so high in coarse-grain models. However, coarse-grain models
_ _ _do stand to benefit from reduction in state memory utilization
Parallel simulation approaches can be broadly categorizeavign reverse computation is used.
optimistic or conservative, depending on whether (transient) The reverse computation approach presented here is not
incorrect computation is ever permitted to occur during timeant as a blanket replacement for classic state-saving ap-
execution. Optimistic parallel simulations permit potentiallyroaches, but instead to complement or supplement them. Our
incorrect computation to occur, but undo @il back such view is that for many complex applications, no single rollback
computation after realizing that it was in fact incorrect. Theblution will suffice and that a marriage of this technique and
“computation” in simulation applications is one in which a seithers will be required to yield the most efficient execution of
of operations, called thevent computatiomrmodifies a set of the simulation model.
memory items, called thstate Hence, in order to roll back  In Section 2, we present the details of the reverse com-
a computation, it is sufficient to restore the modified memopyitation technique usin%a simple illustrative application, fol-
items to their values before the computation. . owed in Section 3 by the automation techniques for apply-
The most common technique for realizing rollbacktste- ing to more complex applications. In Section 4, we present
saving In this technique, the original value of the state is savétke performance comparison between reverse computation and
before it is modified by the event computation. Upon rollbacktate-saving. To place our work in context, in Section 5, we
the state is restored by coFymg back the saved value. Anidentify the work related to general reverse computing in the-
ternative technique for realizing rollbackrnsverse computa- ory and practice. This work opens several interesting chal-
tion. In this technique, rollback is realized by performing thienges and questions, which we identify in Section 6.
inverses of the individual operations that are executed In the
event computation. The system guarantees that the inverse op-
erations recreate the application’s state to the same valu®asReverse Computation
before the computation.

To our knowledge, reverse computation has not been ; ; ; ;
viously explored as a viable alternative to traditional staﬁg{h's section, we illustrate the reverse computation approach

: h 1th a simple example. For simplicity, we postpone the gener-
saving. In this paper, we demonstrate that using reverse cQfl. ;
putation for realizﬁlg rollback can lead to much more efficie ed treatment of more complex models to Section 3.
executions compared to state-saving. Fine-grain applications
(i.e., those with very small amount of computation per ever%)l Motivating Example: ATM Multiplexor
are examples in which the performance improvement can be
most pronounced. This is due to the fact that traditional sta@snsider a simple model in Figure 1 of a non-preemptive ATM
saving operations constitute significant overheads in fine-grainltiplexor, containing a buffer of size B. Suppose we are in-




terested in measuring the cell loss probability, and the dekayd these variables are used to note whethdf thetatements
distributions on the queue [3].

int glen;
int sent;
int lost;
int delays[B];

ift glen < B )

delays[qglen]++;
glent++;

else

lost++;

}

if( glen > 0)
{

glen--;
sent++;

}

(a) state

(b) cell arrival

(c) cell transfer

were executed or not. The two bit-variables correspond to the
two if statements in the model, such thet = 1 if glen
< B and 0 otherwise. Likewishg2 = 1if glen > 0andO
otherwiseé.

If we look carefully at the model, we can see that skette
of the original model is fully captured by the bit variableb
andb2. In other words, the state-trajectory of the $ebf
the variableq qlen, sent, lost, delays} has a one-to-one cor-
respondence with that of the st = {b1,b62}. The point
here is that the values of the variablesSrcan be easily re-
covered based only on the values$f To recover, we can
run the event computations backwards, which will restore the
variables ofS to their before-computation values. More ab-

stractly, the bit variablelsl andb2 are used to make the orig-
inal modelreversible Indeed, itis easy to find the reverse code
for each of the event handlers of the modified model, which is
shown in Figure 3. For example, the reverse code shown in
. . _Figure 3 ﬁa) performs a perfect undo of the operations of the
Then the state of the system might be as shown in Figl| arrival event handler given in Figure 1 (b). Thus, it is suf-
ure 1 (a). Theglen variable is used to keep track of thejcient to maintain the history of the biksl andb2, instead of

current buffer occupancysent andlost are variables that the whole set of state variabl€sof the original model.
accumulate the statistics respectively of the total number 0?

cells transferred to the output link and the total number of cells
dropped because of a full buffer. The arrdglays mea-

Figure 1: A simple ATM multiplexor model.

sures the number of cells experiencing a given amount of de-

lay, which in combination with theent counter gives the cell or=1) =
delay distribution. ) . glen—: sent:
In order to model the behavior of the ATM multiplexor, delays[glen]--; glen++;

two types of event handlers are used in the model. The cell
arrival event handler, processes newly arriving cells, as shown
in Figure 1 (b). Upon a cell arrival, if the qgueue has no more
room, then the countéost is incremented representing that
the cell has been dropped. Otherwise, the array eledeent
lay[glen] is incremented representing that one more cell
experienced a delay aflen emission time units followed by

}

else

{

lost--;

}

}

(a) Reverse cell arrival

(b) Reverse cell transfer

an increment tajylen which represents that a cell has been

added to the queue. The cell transfer event handler processes
cell departure events, as shown in Figure 1 (c). Here, if the

gueue is not empty, then a cell is dequeued (¢en is
ecremented) and sent over the output link (sent is in-

cremented).

Note that for both event handlers, the code to schedule

cell arrival and cell departure events is not shown.

2.2 Approach

int glen; if( glen < B ) if( glen > 0)

int sent; {

int lost; bl = 1; b2 = 1;

int delays[B]; delays[glen]++; glen--;
glen++; sent++;

bit bl; }

bit b2; else else
{ {
bl = 0; b2 = 0;
lost++; }
}

(a) state (b) cell arrival (c) cell transfer

Figure 2: Modified ATM multiplexor model.

Figure 3: Reverse code for ATM multiplexor model.

It is clear that the size of the state to be saved is dra-
matically reduced, from several hundreds of bytes (for S) to
ﬁ:@t 2 bits (for S’), which can be saved with negligible over-
head in the forward computation. As an example, assum-
ing one full word is needed to represent 2 bits on most ma-
chines, and ifB = 100, then the state is reduced by a factor
of (100 + 3)/1 = 103 when compared to copy state-saving.
Even if incremental state-saving techniques are applied to this
model, several bytes are needed for saving the changed data
values, whereas two bits are sufficient for reverse computa-
tion.

2.3 Application Properties

We can make some observations to understand some of the
properties of the model that allowed us to reduce the state so
dramatically.

e Property 1 The majority of the operations that modify
the state variables are “constructive” in nature. Thatis,
the undo operation for such operations requires no his-
tory. Only the most current values of the variables are
required to undo the operation. For example, operators
such ast+, ——, + =, — =, x = and/ = belong to this

category. More complex operations such ascular

. Now COI’]_SIdeI’ the mo_del ShOWI’] I_I’] Flgure 21 Wh'.Ch is ob- !In fact, only one bit variable would be sufficient in this model, since the event han-
tameq by sllghtly modlfylng the orlglnal model of Flgur_e_ Ldlers are mutually exclusive; but we shall use two variables for clarity in the discussion.
The difference between the two models is that two additionabrhe« — and/ = operators require special treatment in the case of multiply or
bit variables have been added to the state of the original modkie by zero, and overflow/underflow conditions.



shift (swapbein
generation also belong here.
In the multiplexor model, all the assignment operﬁ

tions are constructive. Hence, little extra informatio
is needed to reverse those operations.

a special case), and random numbgiatement type. Since not all operations of the input model are
perfectly reversible, it is necessary to add control state infor-

ation to be able to reverse them. However, as we shall see
Section 3.3, the better the understanding of the semantics of
e code, the better the ability to reduce the state size. Hence,
the reduction in state size can vary depending on the sophis-

ce arupper bounan the state size, which could potentially

e Property 2 The complexity of the code is such that thgcgtion of the compiler. The translation rules of Table 1 thus

“control state” of the code occupies less memory th
the “data state” of the variables.

improved via optimizations.

) ) The instrumented forward computation code, as well as
In the multiplexor model, only two bits were necessargverse code, are generated by recursively applying the rules
to record the control flow information. In contrast, thef Table 1 on the input model. The significant parts of these

data state that is modified is much larger.

rules are their state bit size requirements, and the reuse of the

_ S state bits for mutually exclusive code segments. We explain
If property 1 is not satisfied in the model because of tieach of the rules in detail next.

presence of non-constructive operations such as plain assign-
ment or modulo computation, the reverse computation method e
can in fact degenerate to the conventional state-saving opera-
tions. We call such non-constructive operationglastructive
assignmentsA straight-forward method to reverse a destruc-
tive assignment is to save the old contents of the left-hand-side
as a record of the “control information” for that assignment
statement, which makes it degenerate to state-saving. How-
ever, later in the discussion, we shall present optimizations that
are possible to prevent the degeneration of destructive assign-
ments to traditional state-saving.

If property 2 is not satisfied because the code is “too com-
plex” (i.e., the amount of control state is more than the data
state), we can fall back to traditional state-saving techniques.
On the other hand, Froperty 2 suggests that this mechanism is
well-suited for simulation models in which the event compu-
tations are small.

Queuing network models are an excellent example of the ®
domain of models in which the preceding two properties are
satisfied to a large extent. Consequently, we believe that re-
verse computation is well suited for the optimistic simulation
of queuing network models.

3 Automation

[ ]
In the case of the multiplexor example, the code is small
enough for us to come up with its reverse code by inspec-
tion. We will now consider the more general case In which
the code is complex, requiring a methodical, automated solu-
tion for generating the reverse code and for reducing the state
size.

3.1 Code Generation

We propose compiler-based techniques to be used to generate
the reverse computation code for the simulation model. In our
approach, the source code of the original model is fed through
a special compiler. From the input model, the compiler gener-
ates two separate outputs. The first output is an instrumented
version of the input model, which contains the necessary codee
to make the input code reversible (e.g., the code in Figure 2).
The second output is the reversing code that serves to undo
the effects of the input model (e.g., the code in Figure 3). In
the actual simulation, the instrumented code is used in place
of the original code. The reversing code is invoked to rollback
an event. The goal of the compiler is to generate the most ef- o
ficient versions of both the instrumented code and the reverse
code such that the state size is minimized while simultaneously
reducing the runtime execution overhead.

A simple set of translation rules that can be used by the
compiler are shown in Table 1. We list the most common
types of statements used in h(ijgh-level languages, and their cor-e
responding instrumented and reverse code outputs. Against
each of the statements, we list the state size achievable for that

TO: Theif statement can be reversed by keeping note
of which branch is executed in the forward computation.
This is done using a single bit varialbe which Is set

to 1 or 0 depending on whether the predicate evaluated
to true or false in the forward computation. The reverse
code can then use the valuelofto decide whether to
reverse théf part or theelse part when trying to re-
verse thef statement.

Since the bodies of thi#é part and theelse part are
executed mutually exclusively, the state bits used for one
B_art can also be used for the other part. Hence, the state
it size required for thef statement is one plus the
larger of the state bit sizes;, of theif part andz, of

theelse part,i.e.l + max(z1,x2).

T1: Similar to the simpleif statement T0), an n-
way if statement can be handled using a variable

of sizelg(n) bits. Thus, the state size of the entire
if statement ig(n) for b, plus the largest of the
state bit sizesy; ... z,, of the component bodies, i.e.,
lg(n)+maz(z, ... z,) (since the componentbodies are
mutually exclusive).

T2: Consider am iteration loop, such as for state-
ment, whose body requirasstate bits for reversibility.
Thenn instances of the bits can be used to keep track
of the n instances of invocations of the body, giving a
total of nx x bit requirement for the loop statement. The
inverse of the body is invokedtimes in order to reverse
the loop statement.

T3: A loop with variable number of iterations, such as a
while statement, can be treated the same as a fixed iter-
ation loop, but the actual number of iterations executed
can be noted at runtime in a varialbleThe state bits for

the body can be allocated based on an upper lintih

the number of iterations. Thus, the total state size added
for this statement igg(n) + n * .

T4: For afunction call, no instrumentation is added. For
reversing it, its inverse is invoked. The inverse is easily
generated using the rules fai7 described later. The
state bit sizegx, Is the same as fof7. Treatment of
recursive functions is discussed later in this section.

T5: Constructive assignments, suchias -- , += and

so on, do not need any instrumentation. The reverse
code uses the inverse operator, such-as++, -= re-
spectively. These constructive statements do not require
any state bits for reversibility.

T6: Each destructive assignment, suctFa%o=and so
on, can be instrumented to save a copy of its left hand
side into a variablé before the assignment takes place.



The size ofb is 8k bits for assignment to &-byte left graph (implying the presence of direct and/or indirect recur-
hand side variabldyalue). This is similar to Steiman’s sion), it is difficult to statically determine the maximum state
incremental state-saving technique [13]. bit sizes. However, thigame offseapproach of DAGs can still
_ be used to refer to the state bits corresponding to the currently
e T7: In a sequence of statements, each statement isdotive function invocation. The actual run-time performance
strumented depending on its type, using the prewdnmhcations of these techniques is unclear, and requires de-
rules. For the reverse code, the sequence is reversed taited study. The analogy to function call stack also points to
each statement is replaced b?/ its inverse, again using plogential relationship of this approach to process-oriented sim-
corresponding generation rules from the preceding lislations, which requires further investigation as well.
The state bit size for the entire sequence is the sum of
the bit sizes of each statement in the sequence.
] ) ) o _ State Size Determination
e T8: Jump instructions are discussed later in this section. .
To determine the amount of state needed to reverse an event
e T9: Any Iegal nesting of the previous types of stateomputation, the following procedure is used. Since the model
ments can be treated b?/ recursively applying the cormmde is a sequence of statements, start with T7 (or, alterna-
sponding generation rules. The state bit size is also tigely, T4), and recursively apply the rules of Table 1. This
tained by the corresponding state-bit compaosition rulés done while reusing the bits on code segments that are mu-
tually exclusive (as indicated by the MAX() operation in the
) table). The analogy ofegister allocationis applicable here.
Jump Instructions The state can be seen as a sequence of bits, which correspond
. . . to registers of a computer. The bits are allocated to the state
Jump Instructions SSUCh aoto , break andcontinue ) that is required to record control-flow information. Just like
require more complex treatment, especially in the presenc%@iters, these bits can be allocated in an intelligent manner
inter-dependentjumps. As a simple example, consider the at mutually exclusive statements can reuse the same bits.
in which nogoto label in the model is reached more thaper registers in'general computing, the savings are in computa-
once during an event computation. Such use of Jlump.'nsmt'i@‘n time; for control bits in optimistic simulations, the savings
tions occurs, for example, to jump out of a deeply nested zre in state copying operations and in state size reduction.
statement, or as convenient error handling code at the end ofit js easil[\; observed that the statements with potentially
a function. Such models are easy to reverse, as follows: fi§her state bit sizes are destructive assignments, nestings of
every label that is the target of one or mgao statements, conditional statements within loops, nesteg loops inside loops,
Its gOtO statements a.re |ndexed. The forWard COde IS InStI‘éhd destructive operations among inter-dependent jum in-
mented to record the index ofyto statement whenevertha% ructions. In fine-grain models, it is unlikely that complex
goto statement is executed. In the reverse code, each of g3gle involving nested or complex loops will arise. Hence, the
oto statements is replaced %}’9@“0 label. The original higher state requirements of such complex code is not a serious
forward)goto label is replaced with a switch statement thajroplem for these models. However, destructive assignments
uses the index saved in forward computation to jump backggs not uncommon. The most common occurrence of destruc-
the corresponding new (reverse) goto label. Since at most §p& assignments is in random number generation, which is ad-
index pergoto label is stored, the bit size requirement of thigressed in the next section, followed by a discussion on other
scheme idg(n) wheren is the number ofjoto statements efficiency issues in achieving reversibility.
that are the sources of that single target label. Note that even
if a label is the target of only one jump Instruction, at least one ] )
bit is required, to distinguish between reaching the label n82 Reversible Random Number Generation

fﬂﬂg’iﬁg{rﬂgﬁgﬂ{?ugh) and reaching the label as a result of tIIgzeandom number generation is central to all simulations mod-

In the most general case of models containing arbitrarfilg: Several random number streams may be used in the same

complex use of jJump instructions, we believe it is difficult tgfmulation, to model various phenomena. A random number
fully optimize the state requirements automatically. Hencgréam is generated by repeatedly invoking a specified func-

they are beyond the scope of this initial research in'the are '@T‘don asee_dvariar\]bl?. The function &nodifiﬁs the value of t.hel
reverse computation and will require further investigation. Se€d every time the function is invoked. Thus, a seed variable

is needed for every random number stream used in the simula-

tion model. The size of the seed variable varies with the type
Functions and Recursion and quality of the random number generator (RNG).

In optimistic simulations, if an event computation invokes

Function calls also need complex treatment, especially in &i®RNG, and eventually the eventis rolled back, it is necessary
presence of reuse and/or recursion. The complexity is duédaoll back the random number generation. Otherwise, the
the overriding concern of minimizing the forward computaticggsimulation results can be unpredictable and unrepeatable. In
and memory overhead while trying to maintain reversibilitprder to be able to roll back the random number generation,
In the simple case in which the function call graph is a trewaditionally, the seed value is state-saved. Incremental state-
the state bit sizes can be completely determstatcally, and saving techniques are used in case the model contains many
hence the state bits can imticallyallocated to the statementseeds.
in all the functions. This can result in efficient references to However, if the reverse computation approach is used in
the state bits with minimal indirection. In the case of moa+rder to avoid state-saving, we quickly encounter the fol-
els in which the function call %raph is a directed acyclic grapowing problem — RNGs rely on lossy/destructive assign-
(DAG), the (maximum) state bit size requirements can still nts such as modulo operations. This implies that a straight-
statically determined, but the references to the state bits, bimttward application of reverse computation techniques can de-
in the forward and reverse event computation, need indirgenerate to incremental state-saving, as the %eneration rule for
tion via aframe offsevariable generated by the compiler. Theype T6 in Table 1 suggests. To get around this problem, we
frame offsetlenotes the position in the bit vector from whereessentially need RNGs which do not rely on state-saving to re-
forward function can begin storing its own reversibility statgerse. On an abstract level, we can reasonably expect RNGs
This variable is analogous to a frame pointer in a function c#dl bereversiblewithout the need for state-saving, since, after
stack. In the more general case of an arbitrary function call, random number streams are nothing but statically laid out



Table 1: Summary of treatment of various statement types
Generation rules and upper bounds on state size requirements for supporting reverse computations,, are any of the statements of types..TT. inv(s)
is the corresponding reverse code of the statement s. b is the corresponding state-saved bits “belonging” to the given statement. Eh@apéhatoverse

operator of a constructive operatar=, (e.g.,— = for 4+ =).
‘ Type ‘ Description [ Application Code Il Bit Requirements |
[ Original [ Tnstrumented [ Reverse [ Self [ Child T Total |
TO simple choice if() s1; if() {s1;b=1;} if(b==1) {inv(s1);} 1 r1,T0 1
elsess; else{so; b=0;} else{inv(s2);} max(z1,ra)
T1 compound  choice|| if() s1; if() {s1;b=1;} if(b==1) {inv(s1);} lg(n) z1,z2,| lg(n)+
(n-way) elsif() so; elsif() { s2; b=2;} elsif(b==2){inv(s2);} sy T max(zy,...
elsif() s3; elsif() { s3; b=3;} elsif(b==3){inv(s3);} Tn)
else()sy ; else{sn;b=n;} else{inv(s,);}
T2 fixed iterations ) for(n) s; for(n) s; for(n) inv(s); 0 X nox T
T3 variable iterations || while() s; b=0; for(b) inv(s); lg(n) X lg(n)+nxz
(maximumn) while() {s; b++}
T4 function call foo(); foo(); inv(foo)(); 0 X X
T5 constructive v@Q = w; vQ = w; v = Qu; 0 0 0
assignment
T6 k-byte  destructive || v = w; {b=v;v=w;} v = b; 8k 0 8k
assignment
T7 sequence S1; s1; inv(sp); 0 z1+ T1+...+xy
so; EPH inv(sa); e F
Sn; Sn; inv(sy); Ty
T8 simple case of jumps|| gotolbl;sq; b=1; goto Ibl;s 1 ; inv(s); lg(n) 0 lg(n)
(label Ibl as target of || goto Ibl; sy, ; b=n; goto Ibl;sy, ; switch(b){
n goto’s) Ibl: s; b=0; label:s; case 1: gotdabely ;
case n: gotdabel, ; }
inv(sp); labely:
inv(s1); label:
T9 Nestings of TO-T8 Apply the above recursively Apply the above recursively

cyclic sequences of numbers. It should be possible to travesdeere calculation ob; is accomplished using the method for

forward and backward along the cycles with the same easecomputing large powers [17]. Using tlhg we can generate
More concretely, consider the code to generate a unifotive reverse sequence of seed values as follows:

random number using L'Ecuyer’s Combined Linear Congru-

ential RNG [9]. This RNG is based on a combination of

four linear congruential generators (LCGs) and has a period of

2121 This generator produces a unifofd 1] double . Here,

s represents the seed of an LCG. When trying to “undo” @hich has the same computational requirements as the forward

reverse this computation as suggested in Section 3, we im@gecution of the RNG.

diately run into several destructive assignments. In particular,

this generator performs the following assignment:

45991 (s — k % 46693) — k * 25884 N .
Significance of Reversible RNG
wherek = s/46693. Because integer division is being used

(and in fact the algorithm depends on the semantics of infehe reversibility of RNGs is not new. However, when a%plied
ger division),k does not accurately represesftt6693 which to the context of parallel simulation, the work described here
means that one cannot determine the original valuefodm is the first to exploit this property. As the gap between mem-
the new value ok. Essentially, there is loss of information@ry latency and processor speed increases, we believe this ap-
making it irreversible. Using the step-wise technique of rgroach will be of greater benefit, as faster processors will result
versing a computation, the only way one could reproduce thdarger, more complex simulation applications. These sim-
original value ofs from the previous value is to store the losslation aPphcauons will in turn require RNGs with stronger
of information due to the Integer division (and due to oth&tatistical properties and longer periods, which will increase
operations like it) and use that information in the reverse cothe seed size of the RNG. For example, in [10], the “Mersenne
putation. However, this degenerates to state-saving, whicHWgster” (MT19937) RNG is presented. This RNG is of the
exactly what we are trying to avoid. twisted feedback shift-register class and has an extremely long
Now, let us examine the mathematics behind this RN§&riod of2!'9937 — 1. However, it requires 624 words of space
from a higher level. This RNG is based on the following rder seeds. For a classical Time Warp system using this gen-
currence: erator, 2496 bytes of state would need to be saved per event
just to support the “undo” operation for the RNG. This as-
sthes PMTklgh%?' would be clalled at least oncelzdpte):r evenlt. Orc\je
) Y ight think that incremental state-saving could be employe
wherer; |1 < i < 4isn' set of four seed values computeﬂ]ere, but the way this RNG is structured, some bits from each
from then — 1 set of four seed values;[1 < i < 4 are the word are subjectto change every time arandom number is gen-
primes numberg3! — 2,231 — 106, 23! — 226,23 — 326 re- erated, thus making it difficult to optimize using incremental
spectively, and;|1 < i < 4 is a primitive root form;. Based State-saving techniques. Assuming the reverse recurrence can
on well-known number theory, the above recurrence formb§ found for MT19937, which its creators believe is possible,

in fact reversible. First, the inverse of of modulom, b; is e amount of memory saved using reversing computation is
defined to be: even much greater than previously discussed. Because of the

reduction in state-saving overheads, system performance will
improve as well.

Tin-1 = bixin modmy;

S =

Tin = QiTinp—1 modm;

)

m;—2
bi = a;"" " modm;



3.3 Reverse Code Efficiency (TWLPI[i].FProc ). Note that theTWLParray is indexed
o by the LP number. We added support for reversing compu-
The reversibility of random number generators, even thou_dﬁon by introducing a new methodWLP[i].RevProc |,
they contain destructive assignments, leads to the followigdiich performs the precise reverse computation of the event
third property of the models that can help preventreverse cafandler procedureTWLP[i].Proc . Currently, the spec-
putation from degenerating to state-saving: ification of TWLP[i].RevProc  must be done by the ap-
e o plications programmer. (In the future, we plan to support
e Property 3: The non-reversibility of the individual the automatic generation @WLP[i].RevProc  based on
steps that compose a computation do not necessarily ffiyy| P[il.Proc ~, as described in Section 3). The arguments
ply that the computation, when taken as a whole, is n@ITWLP[i].RevProc include the current state of the LP,
reversible. and any events sent during the forward computation.
. s Next, GTW's core rollback mechanism required some sig-
Property 3 suggests that even if the individual steps ofgicant changes as well. GTW uses a technique calied
computation are not efficiently reversible (i.e., either propemy.¢ cancellation{6] to support the “de-scheduling” of previ-
1 or 2 is violated), then one should ||0?,k to %h' herilevell sly scheduled events by an event that was rolfed back. This
see if the computation is not reversible from that level. An ikschnigue allows one to keep a direct pointer to the event that
teresting question we plan to consider in the future is definifgads to be canceled. Because of this, an optimized rollback
an automatic mechanism for identifying code sequences Whighchanism can be supported that doesn’t require one to search
are individually not reversible, but for which a reversible codgogh the processed event-list of an LP. Instead, if the event
sequence can be determined when considered in a larger g§olts to be canceled has been processed, the rollback mech-
text. . anism simply restores the version of LP state that was made
__This observation holds for several other common opeigor to Processing this event. The other processed events that
tions that contain destructive assignments. For examplé&othe after the canceled event are marked as unprocessed and
shift operation on an array of elements can require state- p|aced back into pending event-list. For supporting reversing
saving operations using incremental state-saving techniq@snputations caused by secondary rollbacks (i.e., rollbacks
The same operation requires saving only one element usiBfised by event cancellations), this optimized technique is un-
when reverse computation is used, whereas incremental rse computation requires that each event be “unprocessed”
saving can require state-saving operatiofis Similarly, in- in the precise reverse order in which it was processed. Con-
sertion or deletion operations (which contain destructive agquently, we modified the direct cancellation mechanism so
signments such as pointer assignments) into tree data sttpat it starts with the last event processed by the LP and moves
tures (e.g., priority queues) can require several state-sawim@ugh the LP’s processed event-list in reverse time stamp or-
operations using incremental state-saving, whereas, no sgaiginvoking theTWLP[i].RevProc  method for each event
is needed when reverse computation is used. This is becagsthdo its changes to state. The changes to the primary roll-
those operations naturally possess perfectinversesdelgte back mechanism (i.e., rollbacks caused by straggler events) to
andinsertare inverses of each other). N incorporate reverse computation were straight-forward, since
An important outcome of this work is the recognition thahe processed event list for an LP is scanned in reverse time
reverse computation is well-suited for queuing network mosktamp order.
els. Many of the operations in queuing network models are The last major change to the GTW system was that all
either constructive operations (increment, decrement, etc.)y@mory allocation for saving state (both copy state and in-
reversible groups of destructive assignments (random numix@mental state-saving) was turned off. Also, the copy-state
generators, queue operations, etc.). Also, the event comgperation during forward event processing was turned off as
tations in these models tend to be of fine-granularity. Thigll. Instead, a small bit vector (currently, a 32-bit integer
implies that reverse computation is an excellent approach yariable) was added to every event. These bits serve as the
optimistic parallel simulation of queuing network models. working bits needed for saving the state information created
by the instrumented model code, as described in Section 3. For
example, the two bitd)1 andb2 of the multiplexor modelin
4 Performance Evaluation Section 2.2 are in fact mapped to the lower order bits of this
event bit vector. To support more complex code, the size of the

We shall now discuss the implementation details of revefdVvector can be appropriately increased.
computation, followed by our performance study that com-

pares reverse computation against state-saving. 4.2 Experiment Configuration

; For the performance study, we use two applications: (i) a net-
4.1 Implementation work of Asynchronous Transfer Mode (AT gmultiplexors (i)

To experiment with reversing computation, we have impla-Personal Communications Services (PCS) network.
mented the reverse computation in the Georgia Tech Time The first application consists of a 3-level cascade of ATM
Warp (GTW) optimistic parallel simulator for shared memorjultiplexors, as described in [11]. The model is parameterized
multiprocessors. GTW is originally based on state-savinglig a factom, such thai? cell sources feed inta? multiplex-
realize rollback. To use reverse computation for rollback, threes which in turn feed inte multiplexors, which finally feed
significant modifications were made to the GTW kernel.  into one multiplexor. The factas is the number of inputs of
First, we extended the GTW applicationgorogrammer intexach multg)lexor. The GTW source code for the ATM multi-
face to support a method for reversing the forward processjsigxor model was obtained from the Northern Parallel Simula-
of an event. In GTW, the applications Programmer must specr (Nops? group at Dartmouth [11]. Their implementation on
ify methods (i.e., pointer to a function) for each logical proce&TW realizes each network element as an LP. The state size of
(LP) to (i) initialize an LP TWLP[i].IProc ) (ii) primary each LP is 112 bytes. The data contain within each message is
event handler for an LPTWLP[i].Proc ), (iii) a “wrap-up” 8 bytes. The event granularity of this application is very low:
method for an LP that collects application-specific statistiapproximately 3 microseconds.
In the second application, a PCS network is simulated as
3The commonly used swap operation is only a special case of circular shift. described in [4] The service area of the network is populated




with a set of geographically distributed transmitters and neodel, since it is of a higher granularity than the ATM mul-
ceivers calledadio ports A set of radio channels are assignetiplexor model, and hence less stringent than the ATM multi-
to each radio port, and the user in twerage aregends and plexor model on the forward computation overheads.
receives phone calls using the radio channels. When a user

moves from one cell to another during a phone cdlhad-off

is said to occur. In this case the PCS network attempts to al- Compaing Forward Computation Gote of Reveree G 4 State S
locate a radio channel in the new cell to allow the phone callsoooo B o O e e Comp o o e o

connection to continue. If all channels in the new cell are busy, CTWNOEW-SEQ <
then the phone call is forced to terminate. For all experiments GTWRCON1PE -5~
here, theportable-initiatedPCS model was used, which dis- 200 5 GTW-SS 0n1PE - 7

countsbusy-linesn the overall call blocking statistics. Here, \

cellsare modeled as LPs and PCS subscribers are modeled as y

messages that travel among LPs. PCS subscribers can travélfi¥®e [+ 1
one of 4 directions: north, south, east or west. The selection®f LN

direction is based on a uniform distribution. The state size fdr (CRY

this application is 80 bytes with a message size of 40 bytes anf** 5

the minimum lookahead for this model zerodue to the ex- :

T
,.’ﬁé
.

Rat

ponential distribution being used to compute call inter-arrivals, | CL N ]
call completion and mobillt?/. = N e

The comgutation granularity of ATM multiplexor model is e s g
very small, but, the communication among the LPs is feed- ., | T e B

forward in nature, yielding excellent lookahead properties.
The PCS network, on the other hand, possesses more com-
plex communication patterns with much larger message sizes 1 1 s s s s
and azerolookahead. Consequently, PCS is a more represen- ° 1o 2 0 i 50 60 7
tative example of how a “real-world” simulation model would
exercise the rollback dynamics of reverse computation.

To adapt the models to use our reversing computatilg_)n ) . .
methodology, we manually generatetie reverse event pro-''9Ure 4: Comparison of forward computation performance to

cessing code according to the rules discussed in Section 3 (g6termine overheads in state-saving and reverse-computation
tions of the code are discussed in Section 2.2). approaches using the ATM multiplexor.

All the experiments were performed on a 16 processor,
SGI Origin2000, shared-memory multiprocessor, with 8 MB_ Figure 4 shows the event rate as a function of fan-in for

of level-two cache per processor, and 4 GB of total me:gg four simulators. There are several key observations based

ory. In all cases, the total number of events committed usi d ;
reverse computation were deterministic and consistent with this pferformance data. First, we observe that the perfor-
state-saving and sequential runs. nce of GTW-RC is equal to GTW-NONE. The reason these
To study various performance effects, we used four diff vo systems perform equivalently is because the few extra bits
ent versions of GTW as described below: ored in the forward computation to support reverse compu-
' taftlﬁn has neglllgllble |mpa?t on the overall e\?ent granularity
QQ_ ; ; _eavi the ATM Multiplexor application. However, if we compare
1. GTW-SS— parallel version of GTW, using state savm%.l.w_RC with GTW-SS, a much different picture emerges —
&HSTW-RC is consistently faster than GTW-SS, the primary rea-
son being that we have completely eliminated the overhead of
state-saving.

3. GTW-NONE - parallel version of GTW, with rollback _. |f one were to eliminate state-savin%vc?verheads in an opti-

support turned off (i.e., with neither state-saving nor r?]iStiC simulator, as we achieved in GTW-RC, we may expect
verse computation 0 observe performance that is about equal to that of the opti-

mized sequential simulator. But, clearly that is not the case
4. GTW-SEQ — optimized sequential simulator with GTwere — across all fan-in values, the sequential simulator is
interface. faster, and, in one case, as much as 30% faster. To investigate
this phenomenon, we profiled GTW-RC and GTW-SEQ to see
V\1here|13 th(]::g?e two sysltedmrs] Werr]e spendingf most of ﬂ}eci-rTC\:/\l?Lsz gy-
i cles. Profiling revealed that the memory footprint o -
4.3 Forward computation is much larger than that of GTW-SEQ. This is because the se-
In practice, one would like the serial performance of the pdential simulator commits and immediately reuses an event
allel simulator to be as close to the optimized sequential €mory buffer upon processing that event. But, GTW-RC
possible. With that in mind, our first set of experiments usé&nd GTW-SS) 0”'2’ commits an event memory buffer when
the ATM multiplexor model and compares the serial perfoglobal virtual time (GVT) sweeps past the event time-stamp,

mance of GTW-NONE, GTW-RC, and GTW-SS (using COm)/vhlch is approximately once every 1000 events. Thg conse-
state-saving) against GTW-SEQ on this model to determifig€nce ]9f waltlngtfk(])r Gé/:rrvl\/sgllzat GTr\]’.VfC t(?tuc_hes mofr_et
the impact these different approaches have on forward cdff€S © rr:jemo(rjyt an A Q, whic Elesu tS In rlntt)_re |Irs K
putation rates. We did not use incremental state-saving in dsic%” a'rlyLBa a cache mdlsses, ?S ‘f‘t’e as translation look-
comparison since it resulted in slower performance than fafide buffer (TLB) misses and page faults.
copy saving-saving. The cause of low performance of incre- Fmall%/, we observe that as the fan-in increases, the perfor-
mental state-saving was a consequence of the LP state b%ﬁ#}ce of the different simulators begins to converge. To ex-
so small (only 112 bytes)[7]. We did not use the PCS netwopkéh this phenomenon, we need to understand how an increase
in fan-in effects the system. Recall, there afesources in the
4In the future, we plan to automate this process by modifying the TeD compiler [15]mU|t|P|eX0r network. EaCh source generates two messages —
generate the reverse event handler methods based on the original forward event har@dide€ TOr self reschedullng, and the other when a cell is gen-
3GTW-NONE is very much like a conservative parallel simulator being run seriallyerated to send to the target multiplexor. Consequently, there

2. GTW-RC - parallel version of GTW, using revers
computation




are at anyone instance in time at leastevents in the sys- ] .

tem. Thus, the event population grows as the cube of the fan- Table 2: ATM Multiplexor Model, Fan-in 12

in, n. As we approach fan-ins of 48 and above, the event-ligtmory subsystem Performance for Reverse Computation and State-Saving
management overheads begin to dominate, which decreas&i% o .

the impact state-saving overheads has on overall system Blé .2 Processors. Numbers represaigsesncurred by different parts of the
formance. memory hierarchy.

To illustrate that the performance of GTW-RC is compa-
rablel_todthathof a]lrn thirplzidhcon;ervzétive siTuIatlpr V\rl1hiC is | | TLB || PD-Cache| SD-Cache]
supplied with sufficient lookahead, in Figure 4 we list the per-
formance of the Nops[11] conservative parallel simulator on SS || 43966018) 1283032615 162449694
the same model on a similar SGI Origin2000 (fan-in beyond RC || 11595326| 590555715 94771426
48 are not listed in [11]). We notice that GTW-RC achieves
similar or better performance compared to the conservative
simulator.

In summary, in the fine-grained multiplexor model, we ob- These observations raised the next question, namely, why
serve that reverse computation almost completely eliminagees reverse computation improve performance by such a
the state-saving overheads from the forward computation. large factor? We hypothesized that it is memory system re-

lated, assuming that reverse computation has a smaller mem-
ory footprint than state-saving and hence requires less re-
4.4 ATM Multiplexor Parallel Performance sources to be expended by the memory subsystem. To ver-
ify our hypothesis and to precisely identify the source of the
performance variation, we used thgeedshop performance
tool. Here, we configuredpeedshop to make use of the
hardware counters internal to the MIPS R10000 processor to

Factor of speed improvement of Reverse Computation over State Saving

32 — obtain extremely accurate performance statistics. We note that
.1 s 1 because the hardware counters were used, we observe neither
Fanin 12 /1 slow down in performance, nor perturbation in the model per-
28| Fann s > /] formance due to thepeedshop monitoring software.

26

S Table 2 shows the number of TLB, primary data cache
~1 (PD-Cache), and secondary data cache (%D-Cache) misses for
TW with state-saving and GTW with reverse computation.

These measures were obtained for the 12 processor, 12 fan-in

case. Here, we observe GTW-RC only incurs 26% of the TLB

misses incurred by GTW-SS. This accounts for much of the
performance gains of reverse computation, since TLB misses
are expensive to service, as they are typically done in soft-
ware. In addition to the TLB miss statistics, we observed that
reverse computation has 50% less primary data cache misses
and 40% less secondary data cache misses than state-saving,
which further explains the large increase in performance ob-
tained by reverse computation. As future generations of pro-
1 PR P R — s cessors become faster and the performance gap between mem-
S umbrofrocessors © 0 12 ory and processors widens, we anticipate reverse computa-
tion can achieve even higher performance compared to state-
saving.

. . . . Last, we observe a significant degree of variation among

Figure 5: Improvementin parallel simulation performance ugome of the performance results. The largest amount of varia-

ing reverse-computation as compared to state-saving. tion occurs in the cases corresponding to a fan-in of 12 . Here,

we see that on 8 processors, reverse computation achieves an
event rate that is only 20% faster than that of state-saving. Yet,

; ; ; - 0n 12 processors, we observe an astonishing 300% increase in
lel simulation performance achieved by reversing computat event-rate when using reverse computation. We attribute

and state-saving using the ATM multiplexor model. For thegtase variations to load imbalance and dramatic changes in

experiments we varied both the fan-in (fan-ins of 4, 12, 340" hrocessor communication that are inherent in mappin
and 48) and the number of processors (2, 4, 8, and 12?. Gi ?A‘IPM multiplexor model to different processors. ppINg

the modest, nevertheless good, improvement in serial per
mance when using reverse computation (around 25%), we ex-
pected to see a similar modest enhancement with respec

parallel simulation performance. However, we were surprisé$ PCS Network Parallel Performance

to see that reverse computation improved GTW's performangg also simulated the PCS model in parallel, and compared
by up to 300% as compared to state-staving. Figure 5 ShQWs parallel performance of GTW-SS and GTW-RC. For these
the factor of improvement (the event-rate of reverse complypneriments the following configurations were used. The PCS
tation divided by the event-rate of state-saving). We obsefgdel was configured with a 64 x 64 LP grid for 8 processors,
that in the 12 processor, 12 fan-in case, GTW-RC increasgés x 72 | p grid for 12 processors, and a 60 x 60 LP grid on
the event-rate by a factor of 3.1lcomgared to GTW-S8Il 15 processors. For all LP configurations, the number of ini-
the performance data were obtained by repeating the simti@-events per LP was 25. These LP configurations were cho-
tion runs several times. The performance results were fowah because they allowed an even number of LPs to mapped
to be repeatable, with negligible variance. Ito %ach processor to preclude introducing a unbalanced work-
oad.

5The raw event-rate using reverse computation for that case was over 1.2 million The PeFfO_rmance results for this set of experiments are

events per second! summarized in Table 3. Here, we observe that GTW-RC is

Event Rate of RC / Event Rate of SS

In this next series of experiments, we compareqheal-




mizing the state size, and do not adequately exploit the seman-
Table 3: PCS Network Model tics o codnstrl[Jc]tlveloperaltlons.d ]:rhe st?te—savmg techniques
; v osented in [7] utilize a limited form of optimization using
Parallel Performance for Reverse Computation and State-Saving. Pe?ég reverse comp_utation approach and is tﬁe first work we are

mance is measured in terms of event rate. aw?re of to speC|f|icaIIy d|scu%s (;evgrse corlpputationh but [r}?
performance results are provided. Our work starts where
| #PEs|| GTW-SS| GTW-RC | % Improvement ends and is concerned with techniques for minimizing the state
8 222507 | 336869 151% size for realizing reversibility, and simultaneously minimiz-
12 199084 | 510772 5560 ing the runtime execution overheads. Finally, in _E/16|‘robr )
0 back relaxatiorscheme is presented that automatically identi-
15 183292 | 678380 370% fies certain types of history-independent logical processes and

optimizes the performance of rollback activity for those pro-
cesses. Our approach is different in that it addresses logical
processes which are not necessarily stateless, and seeks to op-

consistently faster than GTW-SS. The peak performance i##fnize run-time performance and memory utilization by mini-
rovement by GTW-RC is 370% over that of GTW-SS. Walizing the essential state required by such processes.
Believe that, ¥or processor configurations above eight, GTW'’s
state-sa\éinghmechanism is ?eing subje&ted to hi% l;rILB rlnissd
rates and other memory performance effects, probably re i
related to the Origin 2000’s unique CCNUMA architecture: Remarks and Conclusions
Further investigation is needed to determine the precise cause. L . -
Accordingly, we conservatively believe that the 150% iniReverse computation is well suited for models containing con-
provement, as reported in the 8 processor case, is more in §igictive assignments. However, it can degenerate to tradi-
with what can be expected for large processor configurationg@al state-savm% if sufficiently large number of destructive
practice, since some optimizations could potentially be ma@gsignments which are hard to reverse are present in the model.
In GTW-SS for better state-memory and event-memory mdﬁ-faCt, In ce_rtaln cases, It can perform worse than incremen-
agement in such large processor configurations. tal state-saving, due to the fact that optimizations, such as the
merging of multiple writes to the same variable into a sin-
gle save operation, are possible using incremental state-saving
Performance Summary techniques, but not readily possible with reverse computation.
. . . _An optimization that is commonly implemented in copy
The results ﬁresented here when considered in their totaldtate-saving is that, when a rollback spans several processed
dicate that the performance of optimistic parallel simulatiagvents, it is sufficient to merely switch a few pointers in or-
has reached an acceptable level for this class of extremely Y to restore the entire state to its value corresponding to the
event ?ranulanty applications. Previously, researchers in $iliest rolled back event. This helps in considerably reduc-
area of parallel and distributed simulation have indicated difig the rollback cost. In contrast, when reverse computation
ficulty in achieving acceptable levels of performances frogiused, each one of the rolled back events must be reversed
Time Warp systems with small event-granularity. They obne at at time, in the reverse order of ﬂrocessing. This can po-
served that state-saving costs were dominating and stifling peftially make the rollback cost much higher than that of copy
formance. Now, with reverse computation it appears that gfate-saving.
guments against using optimistic approaches on such applica-on the other hand, previously, optimistic simulations were
tions are ebbing away. considered to be unsuitable for fine-grain applications because
of the high state saving overheads. We have shown that reverse
computation is an appealing alternative approach that makes
5 Related Work EFICIent optimistic simulation of fine-grain applications feasi-
e.
Reverse computation has been previously studied in variouysWe also identify some classes of applications in which ap-
contexts. Research inteversible computing aimed at real- plication of reverse computation is natural, for which auto-
izing reversible versions of conventional computations in gpatic techniques are easlléy found, which essentially exploit
derto reduce the power consumption [1, 14]. TRdan- the source code as state. Examples include quantum computer
?uage is a high-level language with special constructs to siulation, and queuing network simulation. In the case of
orce reversibility so that programs written in that languaggieuing network models, we identify that a majority of the
can be translated to machine code of reversible comput@@smon operations are indeed reversible. In particular, we
[5]. Another interesting application of reversible computatidrave addressed the reversibility of the most common oper-
Is in garbage collection. The Psi-Lisp language presentecaiipn, namely, random number generation. In addition, we
[2] uses reversible constructs to efficiently implement garbaigi@ke the observation that other queue manipulation opera-
collection. Other applications for reversible execution are fions, such as insert, delete and shift, are in fact more memory
the areas of database transaction support, debugging sugfbeient with reverse computation than with state-saving.
and checkpointing for high-availability software [12, 8]. More In other classes of applications, this approach also serves
recent work is concerned with source to source translationasfan automatic compiler-based state-compression technique.
popular high-level languages, such as C, to realize reversiBtate compression is useful for enhancing the performance of
programs. However, almost all of the solutions suggestedojptimistic simulations in limited memory environments. Con-
these application areas translate either to constraints on kdering that CPU resources are cheaper and more abundant
guage semantics to disallow irreversible computations, ortb@n memory resources, we can hope to execute certain impor-
techniques analo%ous to state-saving techni(?ues (specifictdlyt classes of applications (such as queuing networks) using
copy-on-write techniques) of optimistic parallel simulationsptimistic parallel simulation on a network of, say, palm-top
Some of them operate at a coarse level of virtual mem puters. The state-compression is useful even in the context
pages. The optimizations are roughly analogous to those uséstate-logging conservative parallel simulations and sequen-
in incremental state-saving approaches in parallel simulatioties. simulations. For interactive (play-log-replay) applications,
Moreover, since these solutions are not specifically gearedtteere can be significant benefits in terms of reduction in mem-
wards parallel simulations, they are not optimized for mindry requirements of the state log. Since the applications tend
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