
INTERACTIVE PARALLEL SIMULATIONS WITH THE JANE FRAMEWORK

Kalyan S. Perumalla
Richard M. Fujimoto

College of Computing
Georgia Institute of Technology

Atlanta, Georgia 30332-0280
Email: {kalyan,fujimoto}@cc.gatech.edu

KEYWORDS

Interactive parallel simulation, collaboration, remote
execution, graphical interface, client-server

ABSTRACT

Three important practical issues in fostering the
widespread use of parallel simulation technology are the
availability of graphical user interfaces, accessibility to
parallel computing resources, and facilities for
collaborating in the execution of simulations. First,
graphical user interfaces must be available to support
the various phases of the modeling and simulation
process. Secondly, potential users who may not have the
necessary parallel computing resources locally must be
able to remotely access those resources elsewhere.
Finally, collaborative simulations are important because
expert modelers are often not parallel simulation experts
(and vice versa), and they may be geographically
separated from one another. The availability of
sophisticated graphical interface development languages
and environments, coupled with the advent of universal
accessibility via the Internet, makes it easier to address
these issues. As part of our projects in high-performance
telecommunication network simulation and in distributed
federated simulations, we are developing a simulator-
neutral interactive simulation framework, called Jane.
Jane is intended to help users to remotely and
collaboratively interact with parallel simulations over
the Internet, and to help them view their own model-
specific run-time animations. We document
architectural details of the Jane framework, along with
the issues and challenges that we faced in designing and
implementing interactivity features in the framework,
specifically in the context of our optimistic parallel
simulator, GTW (Georgia Tech Time Warp), and the
telecommunication modeling language, TeD.

1. INTRODUCTION

In both sequential and parallel/distributed
simulations, visualization is an invaluable tool for the
modelers. In the case of parallel/distributed simulation,
additional motivation arises for supporting
visualizationÑmodel debugging (especially for
optimistic simulations) and performance enhancement
may become easier with the help of graphical
visualization.

Most current commercial sequential simulation
packages routinely support sophisticated graphical
interfaces for model development, debugging and
visualization. The same cannot be said to be true for
parallel simulation systems, most of which still are
primarily research-oriented. User-friendly graphical
interfaces could potentially help in the widespread
adoption of parallel simulation systems. Moreover,
remote access to parallel computing resources is
necessary to facilitate the execution of parallel
simulations by those users who do not have local access
to expensive parallel computers. However, important
issues have to be addressed to make these features
possible.

First, an approach is needed by which the interface
software must be clearly de-linked from the parallel
simulation software. This is because parallel simulation
kernels are inherently very complex, and hence it is
important to avoid additional complexity that can result
due to any tight coupling between the complex
kernel/model software and the graphical interface
software. Another reason to avoid tight integration is to
accommodate legacy simulation software systems, into
which it is difficult to incorporate graphical interactions.
Moreover, the programming language used for a
simulation kernel may not be the most appropriate one
for building powerful graphical interfaces. The client-
server approach appears to be most appropriate for
achieving all these goals.

Secondly, usability features have to be addressed
bearing in mind the simulation model developer and the
model user. Ideally, simulation models must be
independent of the particular views used to visualize and
control the models, since different users can develop
different visualizations of the same model. Also,
facilities for instrumenting the simulation models for
model-specific visualizations must be natural to use for
the modeler, without burdening him with the details of
the synchronization protocol (optimistic or conservative)
used underneath. Instrumentation and synchronization
issues must be carefully solved to adequately address
these concerns.

Thirdly, the nature of large-scale model
development has to be carefully considered. Many
successful modeling and simulation systems are built
using a layered approach. For example, a modeling
language is used as insulation from the simulatorÕs
primitives (e.g. Maisie). Domain-specific frameworks

are built using the modeling language, which are general
enough to describe a variety of models in a domain (e.g.
wireless networks). Actual user models could merely be
instantiations within such frameworks. It becomes
important to have an interactive system architecture that
ensures that the system continues to function in the
presence of errors in any of the layers.

Finally, it is important to recognize that successes
in the application of parallel simulation technology to
real-life applications requires close cooperation of
parallel simulation experts with the modelers who are
experts in the given application domain. Hence, it is
important for interactive systems to provide facilities for
geographically distributed users to collaborate during
model development and simulation execution.

These issues are in addition to performance issues
of interactive systems, such as maintaining adequate rate
of simulation time advance, state saving techniques for
interactive optimistic simulations, and the like.

As part of our parallel and distributed simulation
projects, we are addressing these issues in our
framework for interactive parallel simulations, called
Jane. Jane is intended mainly as a general simulator-
independent framework for interactive simulations. Into
this framework, we have integrated two different
simulation systems. The first simulation system is an
implementation of the High Level Architecture (HLA)
Run Time Infrastructure (RTI) interface (see HLA web
page). In fact this simulation system is a class of several
federated simulators that are developed using the tool kit
called the Run-time Infrastructure Kit (RTI-Kit), one of
which implements the HLA RTI. The second simulation
system is the Telecommunications Description Language
(TeD) for the parallel simulation of large-scale
telecommunication networks (the S3 project 1998). The
TeD modeling language (see TeD/Jane web page 1998)
is used to model the structure and behavior of large-scale
telecommunication networks. TeD models can be
compiled to any simulator (sequential, conservative or
optimistic). Currently we use the Georgia Tech Time
Warp (GTW) simulator, which is primarily a research-
oriented optimistic parallel simulator developed over the
last decade.

Related Work

Graphical interfaces and visualization for parallel
simulation models are being developed in some recent
efforts. Some parallel simulation systems have started
including support for graphical interfaces for model
development, debugging and performance visualization
(e.g. Maisie/PARSEC). Animations of processor
behavior and performance visualization are presented in
(Carothers et al. 1997)). Performance issues related to
interactive parallel simulation have been well studied
(Carothers et al. 1997; Graham et al. 1996; Franks et al.
1997). An empirical evaluation of the effectiveness of
performance visualization features is presented in
(Graham et al. 1998). The state saving and performance

issues have been studied in (Franks et al. 1997) in the
context of real-time interactive simulations.

In contrast, our work is focussed on developing an
interactive simulation framework that acts as the glue for
incorporating the various interactivity features, applying
them in real-life parallel simulation projects (e.g. large-
scale telecommunication), and testing and improving
them continually based on feedback from the users.

In section 2, we present an overview of the Jane
client-server architecture. In section 3, we introduce
some of the default views supported in Jane, including
the simulation and model display/control features. In
section 4, we list some practical issues and solutions that
arose in implementing the interactive framework of Jane.
Finally, we report the current status of Jane along with
intended future work. Throughout our discussion, we
illustrate the features of Jane with its use in the context
of the TeD/GTW system.

2. JANE OVERVIEW

Jane is primarily a graphical user interface system
to parallel and distributed simulations. In addition to
providing default graphical controls and displays for the
core simulation systems in a simulator-neutral fashion,
Jane provides robust and extensible mechanisms for
users to incorporate their own model-specific views to
override or supplement the default views.

Jane is based on the client-server architecture. The
server and the clients communicate over the Internet.
The server is written in C, while the clients are written in
Java (the architecture is capable of supporting others,
such as a Tcl/Tk or Visual Basic client). The client
supports a set of default graphical controls and views,
but also provides support for incorporating arbitrary
visualizations of models. For example, the TeD models
can be instrumented in a natural way, and the
instrumented information is automatically made
available to the controls and visualizations on the client
end using a service-user design pattern. Although we are
currently focusing on TeD and RTI-Kit specific controls
and displays, the architecture is sufficiently general to
incorporate any other application-specific interfaces.
Thus, Jane is simulator-neutral, making it reusable across
different simulators and models.

Some of the intended capabilities of Jane are:
• Remote control of parallel simulations over the

Internet (from a laptop, for example)
• Default graphical views and controls for parallel

simulations
• Default graphical views for runtime visualization of

modeling system (such as for TeD simulations)
• Easy development of application-specific

animations (such as for TeD models)
• Scripting for programmatic control of parallel

simulations
• Pre- and post-simulation analysis of multiple

simulations

• ÒSimulation gatewayÓ capability to interface with
larger design/decision tools.

Jane is written with the intent to be language
neutral, and to be easily extendable for model specific
animations. In addition, Jane supports the use of the
simulation in a larger design problem (for example,
Network Design and Optimization) in which simulation
is just a sub-component. It can also be used for
programmatic Òdesign of experimentsÓ, automatically
running multiple sequential or concurrent simulations
(for good confidence intervals), and for the analysis of
simulation results.

Client-Server Architecture

Jane is based on the client-server architecture,
supporting the independent operation of client, server,
and simulator processes. Figure 1 depicts a snapshot of a
sample configuration of the clients, servers and
simulations in operation.

Client 1 is connected to server 1 and server 2,
controlling simulation 1 and simulation 2 respectively.
Client 2 is also connected to server 1 to control
simulation 1 (clients 1 and 2 are collaborating in
interacting with simulation 1). Client 3 is controlling
simulation 3 via server 2. Users using their graphical
interfaces operate clients 1 and 2. Client 3 is in fact a
script that is controlling simulation 3.

Client
1

Client
2

Client
3

Server
1

Server
2

Internet

Script

GUI

GUI

Simulation 2

Simulation 3

Simulation 1

Figure 1: ClientÑServer Architecture for a simulation session in Jane.

In general, a client can simultaneously connect to
several servers, and a server can be actively servicing
multiple clients. Each server can spawn and control
several simulation runs at the same time. Several
collaborating clients may control a single simulation.

Software

The current Jane software consists of
• a server written in C
• a client written in Java
• a model-instrumentation API (Application Program

Interface) in C/C++, and
• simulation-control and model-specific visualization

API in Java.

Currently, the communication between clients and
servers is over the network using TCP/IP (Transmission
Control Protocol/Internet Protocol) sockets. The
communication between servers and simulations is via
Unix pipes Ð our current implementation hence requires

that a simulation be executed on the same machine as its
controlling server.

Simulation

The simulator communicates directly with the
server. This is done automatically and
transparentlyÑthe GTW and RTI-Kit applications are
unaware of this connection. The Jane client controls the
simulations, and the graphical feedback of simulation
performance can be monitored at the client. Any GTW
or RTI-Kit simulation application can be run in this
environment. In particular, since simulations of TeD
models are in fact GTW applications, any TeD
simulation can be run using Jane. Similarly, since HLA
RTI federates are in fact RTI-Kit applications, any HLA
federation can be run using Jane.

Models can be instrumented using the
instrumentation API, which includes natural primitives
for exposing certain constants and variables of the
model, and sending instrumentation events to the

environment in order to signal the actions of interest in
the model execution.

Server

The server is a daemon process that accepts
connection requests from clients and performs operations
such as spawning the simulation processes, conveying
information between the client and simulation, and
taking care of termination of simulations. Since the
server is a process separate from the client or simulation,
it can survive both simulation crashes as well as client
crashes. It can also help the client in terminating a
runaway simulation if necessary. The Jane software
includes a server written in C.

Client

The client provides a standard set of features to
allow for simulation control and monitoring. In addition,
the client has an API that allows customization through
user objects. The client performs three types of
functions:

1. Simulation display and control
2. TeD or RTI-Kit display and control
3. Model-specific display and control.

The client supports TeD-specific and RTI-Kit
specific default views, which are automatically generated
for any TeD model or RTI-Kit federation.

The Jane software includes a client written as a
stand-alone Java program, which supports a graphical
user interface and includes a scripting API. Graphical
interface is built using the Java Foundation Classes (JFC,
formerly known as Swing). The client in fact is a library
of Java packages, each of which defines an API for a set
of interaction operations. The client talks to the server
via a TCP/IP socket.

3. SAMPLE JANE SESSION

We give a brief introduction to the Jane
environment by illustrating a sample Jane simulation
session in the context of a TeD model. Before initiating
simulations in the Jane interactive system, the server
must be started on the parallel computer. The client is
run on the machine from which simulations are to be
controlled (say, from a laptop with connection to the
Internet). The main client window in a sample
simulation session is depicted in figure 2.

The client is connected to the server using the
Server-Connect dialog, and the simulation is spawned
and started using the Simulat ion-Star t dialog.
Simulation progress is controlled using the Pause,
Resume, Stop and Kill options. An identification area
displays the list of current participants (i.e., other clients)
that are collaborating in this session. A chat area allows
participants to communicate with one another by text
messages, which appear tagged with userÕs initials in all

client displays. Simulation time advances and
percentage of completion are displayed in a gauge.
Aggregate and individual processor event statistics are
automatically collected periodically and continuously
displayed in the corresponding windows. The frequency
with which statistics are collected can be increased or
decreased using the view options depending on user
requirement. In the case of distributed simulations (such
as RTI-Kit simulations), the output from each process is
displayed in a separate text area contained in a tabbed
pane that houses all the text areas, thus avoiding the
clutter of multiple windows.

Figure 2: Main Jane client window showing a
sample collaborative session

Figure 3: TeD entity hierarchy view

Graphical views of the entities in the TeD models
are automatically drawn in the entity hierarchy view that
is natural for TeD semantics (see figure 3). The nested
entity instances are depicted in the tree structure, while

their corresponding list of constants and variables are
displayed beside the tree. Drawing area for model-
specific animations is also included. Figure 3 illustrates
a model-specific animation, which is a visualization of
cell-loss rate in an ATM Multiplexer simulation.

A new client window can be spawned while
keeping the current session window, similar to the
capability of a web-browser to start a new web browser
window. The new copy of the client can establish and
maintain a separate connection to another server,
independent of any other active sessions.

4. IMPLEMENTATION ISSUES

Several important practical issues arise in supporting
remote graphical interaction to parallel simulations such
as in Jane. We document some of these issues and our
solution approaches below.

Instrumentation

Instrumentation is the process of augmenting the
otherwise pure model with additional statements to
instruct the runtime system to display model-specific
views. It is common to find systems where the model
developers themselves develop customized graphical
views of their models, thus making their instrumentation
view-dependent. On the other hand, it is preferable to
have the modelers expose the items and points of interest
in a general way, which are de-coupled from graphical
views. This makes the instrumentation animation-
independent, allowing other users to build different
views using the same instrumentation data. In TeD, for
example, instrumentation is supported naturally using the
same event-sending primitives as used to define the TeD
model behavior. While the normal events are sent by an
entity over its declared channels, the instrumentation
events are sent by the entity over a predefined stdout
channel (analogous to standard output stream of C/C++
programs). The events sent on stdout channels are
captured by the runtime system and submitted to the Jane
client. Using a simple API, the users can define their
own classes that receive the instrumentation events and
augment/override the Jane client display with customized
views. This permits the users to change the views at any
time without changing the instrumentation.

In figure 3, for example, the entity tree and the
table of variables is displayed by default for all TeD
models. However, as a customized display for the ATM
Multiplexer TeD model, the user adds the Multiplexer
image, with cell-loss performance statistics updated
continually at runtime. On the client end, this is
achieved by simply defining a sub-class of the TeD
model view class (class CTedModelView), and
overriding its cmd() and paint() methods. In the TeD
model, an event is sent on the stdout channel whenever
a cell is dropped by the Multiplexer.

Default Views and Controls

Even though it is desirable to provide the user with
the ability to incorporate customized views, it is
important to supply some default views, controls and
other features that are common across most simulations
and models. These features can be categorized into
several domains, such as debugging, progress and
performance monitoring, visualization of model
semantics and points of interesting behavior, and so on.
Determining the types of views that are most useful for
each category is a rich research area, especially in the
context of parallel simulation.

While supporting a set of simple views, Jane
provides the architecture to plug-in more sophisticated
views that are determined by other researchers. Among
the current default simulation views and controls are:
• Simulation control (start, stop, pause, resume, kill)
• Simulation progress (simulation time advances,

percentage of completion)
• Simulation performance (continuously updated

aggregate and per-processor event plots, categorized
as processed, committed, rolled-back and aborted)

• Simulation critical path analysis.

Default TeD specific views are also supported for
simulations of TeD models. These include the display of
the hierarchy of TeD entities, along with entity
information such as their types and list of state variables.
Other TeD specific displays include visualization of
entity channel mappings, animation of event flows on
channels, and animation of TeD process execution.

Synchronization

The interface between the parallel simulation and
the interactive system must address synchronization
issues, such as the method of controlling time advances,
and the exchange of instrumentation data.

In Jane, the clients are implemented as
conservative processes that are guaranteed not to incur
any rollbacks. Instrumentation events from GTW/TeD
simulations are sent to Jane clients using conservative
I/O mechanisms of GTW. Event data is transferred from
the simulation to Jane clients only when Global Virtual
Time (GVT) reaches the receive-timestamp of the event.

Security

Security is an important consideration in the
context of remote-access to simulations, which can make
the remote computer susceptible to various kinds of
security threats. Although Jane does not support total
security in remote access, it implements a small set of
measures to guard against the simple security problems.
For example, the Jane server imposes a limit on the
number or client sessions that can be active at any given
time (currently a limit of 5 active clients is enforced). If
a client tries to establish connection to the server at a

time when the limit is reached, the connection request is
denied. Another simple security measure is to enforce a
hard limit on the maximum elapsed/CPU time utilized by
any simulation run. To prevent intentional or
unintentional execution of executables other than
bonafide simulations, the simulation executables can be
restricted to be chosen from a suitably isolated directory.
In addition, connections can be declined if they originate
from machines that do not belong to a user-defined list of
authorized machines. A consoling factor in the context
of TeD simulations is that the security problems are
lessened due to the fact that the TeD language currently
does not provide any facilities to introduce executable
content (such as macros) into the simulation beyond
compile-time.

We are currently unable to use applets for
implementing the clients (Jane clients are stand-alone
Java programs) due to the limitation that applets can
connect only to hosts from which the applet is loaded.
Specific workarounds indeed exist, but we are
investigating ways to deal with this problem in general.

Collaboration

Collaboration in simulation implies that different
users cooperate in the execution of the same simulation.
Geographically distributed users can benefit from the
capability for collaboration, through which they all can
observe identical displays of the same simulation, and
control that simulation remotely to cooperate in
debugging or monitoring. An important advantage of
collaboration is that it facilitates having simulation
experts help modelers debug their models or improve
simulation performance. This is especially important in
the context of parallel simulation because most modelers
are not knowledgeable about the intricacies of parallel
simulation, and hence the intervention of simulation
experts is often needed to debug or fine-tune the model.
Since users can connect to servers from remote locations,
it is possible for the experts to join an on-going
simulation session to cooperate with the users in
detecting and fixing problems in the simulation model.

Collaborative systems, in general, adopt fixed
protocols or metaphors for coordinating the actions of
the collaborators in order to avoid inconsistencies and
conflicts. Due to the nature of collaborative work in the
context of parallel simulation, there is no clear
distinction among the users to warrant a master-slave
relationship. Moreover, users can join and leave at
arbitrary points in time before, during or after the
simulation. Hence, we chose to provide mechanisms for
the users to communicate with each other, and leave
coordination policies to the users. Since this can
potentially lead to conflicts and inconsistencies in the
simulation, we implemented almost all simulation
actions as idempotent, i.e., multiple invocations of the
same action are resolved such that only one of the
invocations is executed, and the others become null
operations. For example, when more than one user

attempts to pause the simulation, all the pause commands
are effectively reduced to one pause command.

Multiple Scenario Analysis

When simulation is used as a tool in decision-
making (for example, in aggregate-level battlefield
simulation), it is necessary to evaluate multiple scenarios
simultaneously following a decision tree. In such
situations, users interactively select branching points and
perform what-if analysis along different decision paths.
Implementation techniques such as cloning (Hybinette
1997) are used to efficiently support such interactive
decision operations, significantly reducing the resource
requirements as compared to running several
independent and distinct simulations to evaluate multiple
scenarios.

In the Jane environment, the clients, equipped with
the interactive decision support interface, map the user
actions into appropriate operations on the servers and/or
multiple simulations that cooperate in the multiple
scenario analysis. The Jane architecture acts as the glue
i n r e a l i z i n g t h i s c a p a b i l i t y .
We are currently working on enhancing the Jane clients
to support scenario analysis using a combination of its
scripting and graphical interface features, while
incorporating the cloning technology into the parallel
simulator.

Critical Path Analysis

Critical path analysis is a method of estimating the
amount of parallelism present in a simulation, which
gives a non-trivial upper bound on the speedup that can
be expected for a parallel simulation model for a
specified mapping to a set of processors. This can be a
useful initial step in the process of tuning the application
for better parallel performance. We have incorporated
the critical path analysis algorithm of Lin (Lin 1992) into
GTW, which computes an estimate of the ideal speedup
achievable on any given GTW application. This feature
has been useful in confirming that some of our network
model simulations indeed achieve close to their
estimated ideal speedup.

5. STATUS AND FUTURE WORK

Robust implementations of the server and Java
client are currently operational, and network modelers
are actively using the Jane environment for simulating
and visualizing their models. The server is tested on Sun
workstations and Intel PCs running Solaris, and SGI
workstations and multi-processors running Irix. JavaÕs
portability permits the clients to be run on many machine
platforms. Multiple geographically distributed users can
run any GTW/TeD or RTI-Kit simulations in interactive
and collaborative mode. The exact same copy of the
server and client software can be used for both
GTW/TeD as well as RTI-Kit simulations,

demonstrating the frameworkÕs simulator-neutrality.
The server-simulation communication protocol is being
documented to help developers of other simulators to
interface with the Jane framework. Security and speed
enhancements are being made, along with support for
multiple scenario analysis through cloning.

REFERENCES

ÒThe High Level ArchitectureÓ, Defense Modeling and
Simulation Organization, http://www.dmso.gov/hla.

Fujimoto, R., Ferenci, S., ÒRTI Performance on Shared
Memory and Message Passing Architectures,Ó 1999
Spring Simulation Interoperability Workshop, March
1999.

Scalable Self-Organizing Simulations Project (S3),
http://dimacs.rutgers.edu/Projects/Simulations/darpa/.

On-l ine information on TeD and Jane,
http://www.cc.gatech.edu/computing/pads/ted..html.

Lin, Y. 1992. ÒParallel Analyzers for Parallel Discrete
Event Simulation.Ó ACM Transactions on Modeling and
Computer Simulation 2, no. 3 (July).

Carothers, C., et al. 1997. ÒVisualizing Parallel
Simulations in Network Computing Environments: A
Case Study.Ó In Proceedings of the 1997 Winter
Simulation Conference (Dec).

Graham, J., et al. 1996. ÒA Visual Environment for
Distributed Simulation Systems.Ó Simulation Digest.

Graham, J., et al. 1998. ÒEvaluation of a Prototype
Visualization for Distributed Simulations.Ó In
Proceedings of the 1998 Winter Simulation Conference.

The Maisie Visual Programming Environment,
http://may.cs.ucla.edu/projects/mvpe/.

Franks, S. et al. 1997. ÒState Saving for Interactive
Optimistic Simulation.Ó In Proceedings of the 11th

Workshop on Parallel and Distributed Simulation (June).

Hybinette, M. and Fujimoto, R. 1997. ÒDynamic Virtual
Logical Processes.Ó In Proceedings of the 12th Workshop
on Parallel and Distributed Simulation (June).

BIOGRAPHIES

Kalyan Perumalla is a Research Scientist and Ph.D.
candidate at the College of Computing, Georgia Tech.
His research interests include parallel telecommunication
network simulation and parallel combinatorial
optimization.

Richard Fujimoto is a Professor at the College of
Computing, Georgia Tech. His research interests include
computer architecture, parallel processing and parallel
and distributed simulation.

