
HLA TIME MANAGEMENT AND DIS

Richard M. Fujimoto
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280

Richard M. Weatherly
The MITRE Corporation

7525 Colshire Drive
McLean, VA 22102-3481

Keywords: Architecture, Interoperability, Simulation Time, Time Synchronization

ABSTRACT

The High Level Architecture (HLA) effort is viewed by many as the next generation for DIS. HLA
encompasses a broad range of simulation applications including training, analysis, and test and evaluation
of components and systems. A challenging aspect of the HLA concerns defining a single time
management structure that not only supports a wide variety of federations (e.g., DIS, ALSP, hardware-in-
the-loop simulations), but also supports interoperability among simulations using different local time
management mechanisms.  For example, a single federation execution may include both DIS simulations
where interactions are based on the real-time arrival of simulation messages, and constructive simulations
such as ALSP where events must be processed according to logical time timestamp order to ensure cause-
and-effect relationships are correctly reproduced by the simulation.

This paper describes the time management services that have been proposed for the HLA.  These services
include different categories of message transportation reliability and ordering, and mechanisms for
controlling time advances.  The ramifications of these time advance services on DIS are discussed.

INTRODUCTION

The Defense Modeling and Simulation Office
(DMSO), through its High Level Architecture
(HLA) initiative, is addressing the continuing
need for interoperability between new and
existing simulations within the U. S. Department
of Defense.  The HLA seeks to generalize and
build upon the results of the Distributed
Interactive Simulation (DIS) world and related
efforts such as the Aggregate Level Simulation
Protocol (ALSP) [Wilson94].  The HLA activity
began in March 1995 with the goal of
recommending an architecture to the Executive
Council for Modeling and Simulation (EXCIMS)
before the end of calendar year 1996. The
EXCIMS in turn, after appropriate review, will
recommend the architecture to the Under
Secretary of Defense (Acquisition and
Technology) for approval and standardization.
Prototype demonstrations of the use of the
architecture are scheduled to be completed in the
summer of 1996.  Information about the HLA
concept and the DMSO Master Plan is available
at http://www.dmso.mil.

The HLA concept consist of three parts: 1) a set
of rules that govern certain characteristics of
HLA-compliant simulations, 2) an object

modeling scheme that describes the information
of common interest to a group (called a
federation) of cooperating federates, and 3) the
Run-Time Infrastructure (RTI) that provides the
software environment needed by the federates to
exchange information in a coordinated fashion.
The RTI is a special purpose distributed operating
system that provides several categories of
services, as described below.  The specification of
these services is evolving through
experimentation and can be found on the web
server mentioned above.  In this paper we will
address the services concerning time
management.  The challenge to the RTI is to
bring together, in a general and extensible way,
the time management mechanisms represented by
several disparate communities including DIS,
ALSP, and test and evaluation.  Below, we briefly
review key concepts prevalent in DIS and ALSP
before describing the HLA.

Distributed Interactive Simulation

"The primary mission of DIS is to define an
infrastructure for linking simulations of various
types at multiple locations to create realistic,
complex, virtual `worlds’ for the simulation of
highly interactive activities" [DIS94].  A DIS
exercise may include (1) virtual human-in-the-
loop elements such as tank or flight simulators,



(2) computation only elements such as wargame
simulations, and (3) live elements such as
instrumented tanks or aircraft. Each simulation
advances in time according to a (local) hardware
clock.  Any changes in state that might affect
other simulations (e.g., firing a weapon) are
broadcast to all other simulations.  Each
simulation is responsible for determining what
information is relevant to the entities it is
modeling, and what information can be discarded.
The sender transmits perfectly accurate “ground
truth” information, and it is the receiving
simulation’s responsibility to degrade the
information in accordance with environmental
effects (e.g., smoke) and/or sensor limitations.

DIS simulations typically process incoming state
updates and interactions in the order that they are
received.  Because the DIS infrastructure does not
provide message ordering services, different
simulations may perceive the same set of updates
in different orders.  DIS exercises typically utilize
unreliable message transmission services,
sacrificing reliability in favor of lower
communication latency.  Because simulations
generate state update messages “as they occur” at
simulation time “now,” simulations are constantly
receiving “old” information, with its age
determined by the latency in generating,
transmitting, and receiving the information at the
destination simulation. For information such as
position updates, the receiving simulation can
compensate for this latency by extrapolating
forward (e.g., using dead-reckoning models),
effectively assigning a new timestamp to reflect
the time at which the information was received.
Some temporal inaccuracies are acceptable in DIS
because it has been found that in most cases,
human perception cannot detect inaccuracies of
up to 100 milliseconds.

Aggregate Level Simulation Protocol

ALSP was designed to extend the DIS concept,
and focused to a large extent on combining
separately developed wargame simulations into
federations.  Wargame simulations are often
referred to as constructive or aggregated
simulations because they model battlefield
components at a higher, more aggregated level of
abstraction, e.g., battalions or divisions rather
than individual aircraft or tanks.  A key
distinction between ALSP and the training
simulations used in DIS is ALSP federations

require strict adherence to causality, i.e.,
simulation events must be processed in timestamp
order.  ALSP currently uses a
Chandy/Misra/Bryant style null message protocol
to synchronize the distributed simulation
[Chan79].

Parallel Discrete Event Simulation

ALSP is one instance of a broader body of
research concerned with fast execution of discrete
event simulation programs on parallel and LAN
connected distributed computers.  Work in the
parallel discrete event simulation (PDES)
community has been primarily concerned with
reducing the execution time of as-fast-as-possible
(as opposed to real-time) simulations where
causality is maintained by ensuring that each
simulation processes events in timestamp order,
thereby eliminating the possibility of any event
affecting those in the past.  Because events are
processed in timestamp order, PDES protocols are
able to guarantee repeatable executions, i.e.,
successive executions of the same simulation
program, using the same input data, can be made
to generate exactly the same results.  PDES
research typically assumes reliable
communications.

PDES protocols to ensure that events (state
updates and interactions) are processed in
timestamp order are generally classified as either
conservative or optimistic.  Conservative
protocols prevent any simulation entity from ever
processing events out of timestamp order.  The
Chandy/Misra/Bryant null message protocol used
in ALSP is a well known example of a
conservative mechanism [Chan79].  Optimistic
protocols use a detection and recovery
mechanism where out of order execution is
detected at runtime, and a rollback mechanism is
used to recover.  Jefferson’s Time Warp
mechanism is the most well known optimistic
protocol [Jeff85].  See [Fuji90] for an
introduction to PDES research.

OVERVIEW OF THE HLA

Real-world entities are modeled in the HLA by
objects.  The HLA does not assume the use of
object-oriented programming languages,
however.  Each object contains an identity that
distinguishes it from other objects, state for the
object, and a behavior description that specifies
how an object reacts to state changes.  The



relationship of objects to one another is specified
through (1) attributes that indicate those state
variables and parameters of an object that are
accessible to other objects, (2) association
between objects (e.g., one object is part of
another object), and (3) interactions between
objects that indicate the influence of one object’s
state on that in another object.

Each object attribute has an owner that is
responsible for generating updates to the value of
that attribute (e.g., position information).  At any
instant, there can be at most one owner of an
attribute, however, ownership of the attribute may
pass from one federate to another during an
execution.  Any number of other federates may
subscribe to receive updates to attributes as they
are produced by the owner.

The HLA includes a non-runtime and a runtime
component. The non-runtime component specifies
the object model used by the federation.  This
includes the set of objects chosen to represent the
real world, the attributes, associations, and
interactions of these objects, the level of detail at
which the objects represent the world (including
spatial and temporal resolution), and the key
models and algorithms (e.g., for dead-reckoning)
that are to be used.

Each simulation must define a simulation object
model (SOM) that identifies the objects used to
model real-world entities in the simulation, and
specifies the public attributes, the attributes
whose ownership may be transferred, and those
attributes whose value must be imported.  Using
the SOMs for the simulations that are included in
a particular federation, a federation object model
(FOM)  must then be developed that describes the
common object model used by all simulations in
the federation.  The FOM specifies all shared
information (objects, attributes, associations, and
interactions) for a particular federation.  The HLA
includes object model templates (OMTs) to
provide a standard, tabular format for specifying
objects, attributes, and the relationships among
them.

The runtime component defines a set of services
invoked by simulations or by the Run-Time
Infrastructure (RTI) during a federation
execution.  HLA runtime services fall into the
following categories:

• Federation management.  This includes
services to create and delete federation
executions, to allow simulations to join or
resign from existing federations, and to
pause, checkpoint, and resume a federation
execution.

• Declaration management.  These services
provide the means for simulations to establish
their intent to publish object attributes and
interactions, and to subscribe to updates and
interactions produced by other simulations.

• Object management.  These services allow
simulations to create and delete object
instances, and to produce and receive
individual attribute updates and interactions.

• Ownership management.  These services
enable the transfer of ownership of object
attributes during the federation execution.

• Time management.  These services
coordinate the advancement of logical time,
and its relationship to wallclock time during
the federation execution.

The remainder of this document is concerned with
the time management services.  Certain object
management services are also discussed where
they relate to time management.

INTEROPERABILITY ISSUES

Conceptually, the runtime infrastructure provides
a base into which separately developed federates
can be “plugged in” to form large distributed
simulations.  A central goal of the high level
architecture time management (HLA-TM)
structure is to support interoperability among
simulations utilizing different internal time
management mechanisms.  Specifically, a single
federation execution may include:
1. simulations with different message ordering

requirements, e.g., DIS simulations with no
ordering requirements and ALSP simulations
that require messages to be delivered in
timestamp order,

2. simulations using different internal time flow
mechanism, e.g., timestepped and event
driven simulations,

3. real-time (or scaled real-time) simulations
and as-fast-as-possible simulations,

4. parallel simulations executing on
multiprocessor platforms using conservative
(non-rollback-based) or  optimistic (rollback-
based) synchronization protocols, or



5. individual simulations using a mixture of
message ordering and transportation services,
e.g., training simulations with message
ordering and reliable delivery for certain
types of events (e.g., weapon detonations)
intermixed with unordered, best-effort
delivery for others.

Allowing different messages within a single
simulation to utilize different categories of
service enables gradual, evolutionary exploitation
of previously unused HLA-TM services.

The HLA supports these capabilities provided
federates adhere to certain requirements necessary
to realize each service, e.g., lookahead (discussed
later) is required to provide timestamp ordering of
messages.  Further, individual federates executing
in conjunction with the RTI must deliver real-
time performance in federations whose execution
is paced by real-time clocks.

A central design goal that is used to achieve
interoperability is time management transparency.
This means the local time management
mechanism used within each federate must not be
visible to other federates.  This is realized by
developing a single, unifying approach to time
management that provides a variety of services
needed by disparate simulations.  Different
categories of simulations typically use only a
subset of the RTI’s full capability.  Simulations
need not explicitly indicate to the RTI the local
time management mechanism being used. Each
federation execution globally specifies a real-time
scale factor to indicate the rate each simulation
attempts to advance in time relative to wallclock
time.  As-fast-as-possible federations specify
“infinity” as the scale factor.

ASSUMPTIONS AND DEFINITIONS

The time management system makes the
following assumptions concerning the federation:
1. No common, global clock is assumed.  At

any instant in the execution, different
federates may have advanced to different
times.  This will often be the case for
federates that must coordinate time advances
with other federates to adhere to causality
constraints.  Even in (scaled) real-time
simulations, drift between hardware clocks
could result in federates having different
local clocks at an instant in the execution.

2. It is assumed an external, synchronized wall
clock of some specified accuracy is available
to both the RTI and individual federates.

3. Each event is assigned a timestamp that is
determined by the federate generating the
event.  Other timestamps are assigned to
events to facilitate real-time simulations,
however, the ordered message service
provided by the RTI is based on this sender-
assigned timestamp.  A consequence of this
assumption is that federates may generate
(schedule) events with timestamps “in the
future”, i.e., timestamp larger than the
federate’s current  time.

4. Federates may not generate events with
timestamp “in the past,” i.e., with timestamp
smaller than the federate’s current time.

5. Federates need not generate events in
timestamp order.  For example, a federate
may first generate an event with timestamp
10, then later generate a new event with
timestamp 8.

The classes of simulations supported by the HLA
may be characterized according to two
dimensions.  The first dimension distinguishes
between constrained simulations where there is a
fixed relationship between the rate of advance of
the simulation and wallclock time, and
unconstrained simulations where there is no such
relationship.  Here, constrained simulations are
also referred to as (scaled) real-time simulations.
Unconstrained simulations are also referred to as
as-fast-as-possible simulations.  The second
dimension concerns whether the simulations
coordinate their advances in time with one
another.  Coordinated simulations use a protocol
(e.g., Chandy/Misra/Bryant) to ensure message
ordering constraints are met, while independent
simulations advance local time independent of
other simulations, usually paced by wallclock
time.  DIS simulations use an independent time
advance mechanism.  ALSP uses coordinated
time advance.  DIS executions are always
constrained (i.e., real-time), but ALSP executions
may be either constrained, or unconstrained.

The HLA time management structure
distinguishes between two distinct notions of
time: (scaled) wallclock time is a federate’s
measurement of the true global time, typically
derived from a hardware clock.  A scale factor is
used to expand/compress time, e.g., a scale factor
of two indicates the federate is running twice as



fast as real-time.  Advances in wallclock time
cannot be controlled by the federate.  Logical
time refers to a federate controlled time value.
Logical time is what is commonly referred to as
“simulation time” in the classical discrete event
simulation literature (typically, as-fast-as-possible
simulations), and is used for coordinated time
advancement.  If a federate advances its logical
time to T, then it has declared that it has
simulated all entities under its control up to time
T.  Operationally, logical time is advanced using
the time advance  services that are defined in the
RTI.  The current time of a federate is defined as
the minimum of its wallclock and logical times.

An event refers to an attribute update, interaction,
instantiate, or delete action performed by a
federate. The corresponding primitive must be
invoked to inform the RTI of an event.
Operationally, an event causes messages to be
transmitted to federates that have declared an
interest in that event. Here, the terminology
“delivering an event” to a federate is sometimes
used as shorthand to mean “delivering a message
that contains  information concerning an event.”
It should be noted that messages may be used for
other purposes besides transporting event
information, however.

TIME MANAGEMENT IN THE HLA

Time management is concerned with the
mechanisms for controlling the advancement of
time during the execution of a federation.  Time
advancement mechanisms must be coordinated
with other mechanisms responsible for delivering
information (e.g., attribute updates and
interactions) to individual federates because such
information is timestamped to indicate when the
information is valid.  For example, federates may
require that no information be received “in the
federate’s past,” i.e., with timestamp less than the
current time of the federate.  Thus, the time
management services supported in the HLA must
encompass two aspects of federation execution:
• Transportation services: Different categories

of service are specified that provide different
reliability, message ordering, and cost
(latency and network bandwidth
consumption) characteristics.

• Time advancement services: Different
primitives are provided for simulations to
request advances in logical time.  A simple
protocol is provided to enable a federate to

control the flow of attribute updates and
interaction requests to that federate.

The different categories of transportation service
are distinguished according to (1) reliability of
message delivery, and (2) message ordering.
With respect to reliability, reliable message
delivery means the RTI utilizes mechanisms (e.g.,
retransmission) to increase the probability that the
message is eventually delivered to the destination
simulation.  This improved reliability normally
comes at the cost of increased latency.  On the
other hand,  the best effort message delivery
service attempts to minimize latency, but with the
cost of lower probability of delivery.  Message
ordering characteristics specify the order and time
at which messages may be delivered to federates,
and are described in detail later.

Time advance primitives provide the means for
federates to coordinate their time advances with
the timestamp of incoming information, if this is
necessary.  The time advance mechanism in the
RTI must accommodate both real-time, scaled
real-time, and as-fast-as-possible executions.  The
HLA time advance mechanisms are described
later.

MESSAGE ORDERING

Central to the HLA time management services are
mechanisms to order messages that are passed to
federates.  A variety of services are provided to
support interoperability among federates with
diverse requirements.  Four ordering mechanisms
are currently specified in the HLA: receive,
priority, causal, and timestamp order.  These
provide, in turn, increased functionality but at
increased cost.

Each federate may intermix different message
ordering services for different types of
information within a single federation execution.
For example, position updates where reliable
delivery and ordering are not important may
utilize a best effort, receive order category of
service.  These messages may be intermixed with
messages for ordnance detonation events utilizing
reliable, timestamp ordered delivery.

Receive Order

This is the most straightforward, lowest latency
ordering mechanism.  Messages are passed to the
federate in the order that they were received.



Logically, incoming messages are placed at the
end of a first-in-first-out (FIFO) queue, and are
passed to the federate by removing them from the
front of this queue.

Receive order should be utilized by applications
where minimizing communication latency is
more important than adhering to message
orderings that guarantee causality.  It is
anticipated that simulations with hard real-time
constraints (e.g., hardware-in-the-loop) will use
this service.  Similarly, many DIS federations are
expected to use this mechanism, at least in the
near term.

Priority Order

Incoming messages are placed in a priority queue,
with the message timestamp used to specify its
priority.  Messages are passed to the federate
lowest timestamp first.  In other words, the RTI
attempts to deliver messages in timestamp order
based on the local information available to the
RTI when the message is delivered. However, a
message could later arrive and be delivered to the
federate that has a timestamp smaller than one
that has already been delivered. Further, this
service does not prevent a message from being
delivered in a federate in its “past” (timestamp
less than the federate’s current time). While this
service does not guarantee timestamp ordered
delivery, it  is less costly in terms of latency and
synchronization overhead than the service
guaranteeing timestamp ordered delivery.  This
ordering should not be used if timestamp ordering
of messages is  essential to the correct operation
of the federate.

Priority order with best effort delivery may be
used for federates where sequences of messages
require ordering, but the increased latency
associated with either reliable delivery or
guaranteed order cannot be tolerated.  For
example, speech packets may utilize this service.

Messages using receive or priority order are
available for delivery to the federate as soon as
the message has been received.  By contrast, the
RTI may buffer messages using causal or
timestamp order until it can guarantee the desired
ordering properties.

Timestamp Order

Messages utilizing this service will be delivered
to federates in timestamp order. To accomplish
this task, the RTI will hold incoming messages in
its internal queues until it can guarantee that no
other timestamp ordered message containing a
smaller timestamp will later be received.
Simulations are not constrained to generate
messages in timestamp order.  A conservative
PDES style synchronization protocol is used to
implement this service.

In addition to delivering messages in timestamp
order, the RTI also ensures that no event is
delivered to a federate “in its past,” i.e., no
message is delivered that contains a timestamp
less than the federate’s current time.  This is
accomplished by forcing the federate to explicitly
request advances in logical time using the RTI’s
time advance services.  The RTI will not provide
a “grant” to the time advance request until it can
guarantee that no messages containing a
timestamp smaller than the time of the grant will
later be received.

This timestamp order service is required for
classical discrete event simulations (e.g.,
constructive simulations) where timestamp order
event processing is the norm.  Federates that do
not traditionally utilize timestamp ordered event
processing, e.g., DIS simulations, but could be
enhanced with strong event ordering properties
for certain types of information may also utilize
this service, while continuing to use less costly
event ordering services for other information
where order is less critical.

An important feature of the timestamp order
service is that all federates receiving messages for
a common set of events will receive those
messages in the same order, i.e., a total ordering
of events is provided.   This eliminates certain
temporal anomalies that might otherwise occur
when different simulations perceive different
orderings of events.  The RTI provides a
consistent tie breaking mechanism so events
containing identical timestamps will be delivered
to different simulations in the same order.

Causal Order

Like the timestamp order service, the causal order
service ensures that messages are delivered to
federates in an order that is consistent with before



and after relationships of the events represented
by these messages.  For example, firing a weapon
must occur before the target is destroyed.  Unlike
the receive and priority ordered services where
varying communication latencies could cause the
message for the destroy event to be delivered
before the message for the fire event, the causal
and timestamped ordered services guarantee that
that if one event “happens before” a second, then
all federates will receive messages for the first
prior to the messages for the second.

The fundamental difference between the causal
and timestamp ordered services is concerned with
their respective definition of the “happens before”
relationship.  In the timestamped order service, an
event is said to happen before another event if it
has a smaller timestamp than the second,
following one’s intuitive notion of event ordering
in physical systems. The federation can precisely
specify which events happen before which other
events by assigning appropriate timestamps, e.g.,
the “fire” event might be assigned a timestamp of
102, and the “destroy” event a timestamp of 103
to specify that “the fire event happens before the
destroy event.”

In the causal ordered service, the “happens
before” relationship is that defined by Lamport
[Lamp78].  The execution of each federate can be
viewed as an ordered sequence “actions” (e.g.,
execution of a single machine instruction can be
viewed as an action).  Two specific actions of
particular interest are sending and receiving a
message.  Lamport defines the happens before
relationship as follows: (i) if actions A and B
occur in the same federate, and A appears before
B in the ordered sequence of actions within that
federate, then A happens before B (ii) if A is the
action sending a message to another federate, and
B is the action receiving the same message in the
second federate, then A happens before B, (iii) if
A happens before B, and B happens before C,
then A happens before C (transitivity).  The
happens before relationship can be easily
extended to include messages: (i) if a message X
is sent by a federate before the same federate
sends another message Y, then X happens before
Y, (ii) if X is received by a federate before that
federate sends another message Y, then X
happens before Y, (iii) if X happens before Y, and
Y happens before a third message Z, then X
happens before Z.  An event in the HLA is said to
causally precede another event if the first event

happens before the second, using the “happens
before” relationship defined above.

The HLA causal event ordered service guarantees
that if an event E causally precedes another event
F and messages for both events are delivered to a
federate, then the message for E will be delivered
to that federate before the message for F.

Figure 1.  Scenario demonstrating causal event ordering.
The RTI delays delivery of the first message received by C.

Time (real-time)

A

B

C

fire event

destroyed
event

For example, consider the example depicted in
Figure 1 where federate A fires a missile at
federate B, destroying an entity in that federate,
and a third federate C observes this exchange.
The fire event in federate A generates messages
to federates B and C.  Upon receiving this event,
federate B generates a state update event
indicating that an entity it contains has been
destroyed.  In the scenario depicted in this figure,
the “destroy” message reaches C before the “fire”
message.  Because the “fire” event causally
precedes the “destroy” event, the causal event
ordering service guarantees that the fire event is
delivered to C prior to the destroyed event. The
RTI will delay delivery of the message for the
“destroy” event until after it receives and delivers
the message for the “fire” event to C. The receive
and priority ordered services do not guarantee
causal ordering, so they could deliver the message
for the destroy event before the message for the
fire event in this scenario.

In the basic causal ordered service, messages
corresponding to events that are not causally
related (referred to as concurrent events) may be
delivered to federates in any order.  A variation
on causal ordering is to guarantee that all
federates receive messages for concurrent events
in the same order, thereby defining a total
ordering of events. This service is commonly
referred to as CATOCS (causally and totally
ordered communications support) in the literature.
Algorithms for implementing CATOCS have



been developed and implemented (e.g., see
[Birm91]).

Contrasting Timestamp and Causal Order

It is important to understand the differences
between timestamp and causal order in order to
determine which is appropriate for specific types
of information.  Timestamp order provides more
stringent ordering services than causal ordering.
Both the timestamp  and causal ordering
guarantee that messages for causally related
events are delivered to federates in the order
dictated by the causal happens before
relationship.  However, the ordering of concurrent
events in the causal ordered service, even if
CATOCS is used, is non-deterministic because it
depends on latencies within the communication
network.  Thus, causal ordering, with or without
total ordering, is not sufficient to produce
repeatable results.  Timestamp ordering must be
used if this is a requirement.

Further, while causal ordering is sufficient to
avoid certain anomalies (e.g., receiving a message
for a tank destroyed event before the message for
the event indicating the tank has been fired upon),
it is not sufficient in other situations.
Specifically, causal order is not sufficient if
ordering relationships among concurrent events
are important, or if there are “hidden
dependencies” between events, as elaborated
upon below.

Ordering Concurrent Events.  Consider a
simulation that includes three federates, each
representing a tank.  Suppose tank A has orders to
fire upon the first target to come within range of
its cannon.  It may happen that tank B comes
within range before tank C.  However, because
state updates by B and C are concurrent events,
causal ordering does not guarantee that B’s state
update message will reach A before C’s update
message.  This could cause A to incorrectly fire
upon C.  If capturing this behavior is important to
the objectives of the federation, the timestamp
order service should be used rather than the
causal order service.  Timestamp order will
produce correct results because B’s update
indicating it enters A’s range will have a smaller
timestamp than C’s update, so B’s message will
be delivered first.

Hidden Dependencies.  Consider a battle in a
military campaign that is staged as a timed
sequence of actions, e.g., a diversion might be
initiated by one unit at time 100, followed by
initiation of the actual attack by another unit at
time 150.  It is clear that the commanders
planning the operation staged its execution so that
the diversion occurs before the main attack.
However, CATOCS does not guarantee that
messages corresponding to the diversion reach
federates representing the opposing force before
messages corresponding to the main attack!  The
problem is that all message ordering in CATOCS
is based only on messages passed between
federates, so semantic relationships between
events are not visible to the RTI.  Again, this is an
instance where timestamp ordering must be used
to ensure federates receive messages for events in
the correct time sequence.

The principal advantage of causal ordering
relative to timestamp order is that it does not
require specification of lookahead (discussed
later).  Thus, causal order may provide an
acceptable alternative to timestamp ordering for
simulations with little lookahead where use of
optimistic (rollback-based) event processing
techniques is not considered viable.  Further, it is
anticipated that in most implementations, causal
message order (at least the basic service without
total ordering) will typically yield lower
communication latency and require less
bandwidth to implement than timestamp order.

Lookahead

The timestamp order service requires
specification of a quantity called lookahead.  To
motivate the need for lookahead, consider a
federation where timestamp order is specified for
all communications. Consider the federate with
the smallest logical time at some instant in the
execution.  Let this federate have a logical time
of T.  This federate could generate events relevant
to every other participant in the federation with a
timestamp of T.  This implies the RTI cannot
deliver any message with timestamp larger than T
to any federate.  In turn, this implies no federate
can advance its logical clock beyond T because it
is then prone to receiving an event in its past.

This is a well-known problem that has been
widely studied in the PDES community.  The two
principal approaches to circumventing it are:



• use the notion of lookahead, described below,
to define conservative protocols that prevent
out-of-order delivery of messages, or

• use optimistic synchronization techniques
that allow messages to be delivered out of
timestamp order, and use a rollback
mechanism within the federate to recover
from errors introduced from out-of-order
delivery.

HLA-TM supports both of these approaches.
Optimistic synchronization is beyond the scope of
this paper, but is described elsewhere [Fuji96].
Lookahead is elaborated upon next.

If one were to mandate that no simulation may
schedule an event with timestamp less than the
federate’s current time plus a value L, then the
RTI can allow concurrent delivery and processing
of messages in a time window L time units wide
beginning at the minimum logical time of any
simulation in the federation. This value L is
referred to as the lookahead for the simulation
because a federate must be able to “look ahead” L
time units into the future, or in other words,
predict attribute updates and interactions at least
L time units “ahead of time”.  Lookahead may, in
general, be difficult to incorporate into certain
classes of simulations, but nevertheless is very
important for simulations requiring guaranteed
message ordering services to achieve acceptable
performance.

Lookahead is clearly very intimately related to
details of the simulation model, and thus cannot
be determined automatically by the RTI.  Some
examples of where lookahead may be derived are
described below.
• Physical limitations concerning how quickly

one federate can react to an external event.
Suppose the minimum amount of time for a
tank to respond to an operator’s command
(e.g., to fire an ordnance) is 500
milliseconds.  This means the simulation can
guarantee that it will not schedule the results
of any new operator actions until at least 500
milliseconds into the future, providing a
lookahead of this amount.

• Physical limitations concerning how quickly
one simulation can affect a second
simulation.  Suppose two tanks are ten miles
apart, and there is also a maximum speed of a
projectile fired from one tank to another.

These constraints place a lower bound on
how much time must elapse for the first tank
to affect the second.  Thus, events such as a
projectile exploding at the second tank can be
scheduled into the future, providing some
degree of lookahead.

• Tolerance to temporal inaccuracies.  Suppose
a simulation produces an event at time T, but
the receiver of the message for that event
cannot distinguish between the event
occurring at time T and T+100 milliseconds
(e.g., in a training simulation, it might be the
case that a muzzle flash occurring at time T
is indistinguishable from one at time T+100
milliseconds).  Then, the simulation may
schedule events 100 milliseconds into the
future, providing a lookahead of this amount.

• Time stepped simulations: In a time stepped
simulation, the lookahead is normally the
size of the time step.  This is because a
simulation can only schedule events into the
next time step (or later), but not into the
current time step.

• Non-preemptive behavior.  Suppose a tank is
moving north at 30 miles per hour, and
nothing in the federation model could cause
it to change any events produced by the tank
over the next ten minutes.  These events
could therefore be scheduled immediately,
resulting in a lookahead of 10 minutes.

• Precomputing simulation activities.  If the
events produced by a simulation over the
next L units of time do not depend on
external events, but only depend on internal
computations, these computations can be
performed in advance, enhancing lookahead.
For example, if the time until the next
interaction of a simulation with another
simulation is drawn from a random number
generator, the generator can be sampled
ahead of time, and the computed value can be
used to derive the simulation’s lookahead for
this time instant.

Lookahead can change dynamically during the
simulation.  However, lookahead cannot
instantaneously be reduced.  At any instant, a
lookahead of L indicates to the RTI that the
federate will not generate any event (using
timestamp ordering) with timestamp less than
C+L, where C is the federate’s current time.  If
the lookahead is reduced by K units of time, the
federate must advance K units before this



changed lookahead can take effect, so no events
with timestamp less than C+L are produced.

The RTI requires each simulation to specify
lookahead information if any events utilizing the
guaranteed event ordering service are generated.
Care must be taken in developing the federate to
maximize lookahead, as this can significantly
affect performance. A single lookahead value is
designated by each federate.  This value may
change at runtime, but reductions in lookahead do
not take effect immediately, as noted above.

TRANSPORTATION SERVICES

The two reliability of delivery categories (reliable
and best effort) and four message ordering
categories (receive, priority, causal, and
timestamp ordered) result in eight different
transportation categories. At present, five
categories of transportation service are expected
to be the most useful:
• Category BRec: (aka Category I) best effort

message delivery, receive order.
• Category RRec: (aka Category II) reliable

message delivery, receive order.
• Category BP: (aka Category III) best effort

message delivery, priority order.
• Category RTS: (aka Category IV) reliable

message delivery, timestamp order.
• Category RCO (aka Category V): reliable

message delivery, causal order.

The category name (BRec, RRec, etc.) is derived
with the first letter indicating best effort delivery
(B) or reliable delivery (R), and the remaining
letters indicating the type of ordering (Rec for
receive order, P for priority order, TS for
timestamp order, and CO for causal order).

Categories providing increased reliability and/or
functionality will only do so at increased cost in
terms of latency of message delivery and the
network bandwidth required to support the
service.  Therefore, simulations should always use
the least costly transportation service adequate for
its objectives.  Other categories of transportation
service, specifically, different types of message
ordering, may be defined in the future.

Different approaches may be taken regarding how
the category of service is specified.  For instance:
1. Each federate might specify the category of

service for the messages it receives when it

subscribes for that information, thereby
allowing different federates to view incoming
information in a way that is most appropriate
for that federate.  This would be specified
when the federate subscribes to the
information.

2. Each federate may select the most
appropriate category of service on each
message send, thereby allowing federates
within a single execution to interleave
generation of messages using different
categories of service in arbitrary ways.  This
enables federates to select the appropriate
category of service based on the type of
information that is being transmitted.

3. Each federate may select the category of
transportation service when it announces it is
publishing that information.

The first approach is the most desirable from a
modeling perspective because it enables each
federate to treat incoming information in the
manner most appropriate to the way it intends to
use that information.  Therefore, this is the
approach specified by the HLA.  However, initial
versions of the RTI will not fully implement this
approach.  It is anticipated that initial
implementations will utilize an approach closer to
the third method described above.

Scheduling and Retracting Events

These are object management services.  The
Update Attribute Values and Send Interaction
services are used to schedule events.  Invocation
of these services typically results in the
generation of one or more messages transmitted
to federates subscribing to the requested
information.

Event retraction refers to the ability of a federate
to retract (sometimes called cancel or
unscheduled, but “cancel” refers to a mechanism
used in optimistic federates) a previously
scheduled event. This is a common discrete-event
simulation primitive often used to model
interrupts and other preemptive behaviors. The
Update Attribute Values and Send Interaction
RTI services return a handle for the event that is
used to specify the event that is to be retracted.

Event retraction is available for all categories of
service.  If the RTI at the destination federate
receives a retraction request for an event that is



not buffered in the RTI (e.g., because the event
has already been forwarded to the federate or is
delayed in the network), the retraction request is
forwarded to the federate.

TIME ADVANCE SERVICES

The time advance services provide a means for
the federate to control the advancement of its
logical time. Time advance requests typically
release new messages to the federate, as described
below.
• Time Advance Request (t): Requests an

advance of the federate’s logical time to t,
thereby releasing all incoming Category III,
IV, and V messages to the federate with
timestamp less than or equal to t, and all
Category I and II messages.  The messages
are passed to the federate by the Reflect
Attribute Values and Receive Interaction
services provided by the federate, and
invoked by the RTI.  The request is
completed by a Time Advance Grant as
indicated below.  By issuing this request, the
federate is guaranteeing it will not generate
any Category IV messages in the future with
timestamp less than t plus the federate’s
lookahead.

• Next Event Request (t, one or all): Requests
the message for the next Category IV event
from the RTI, provided that event has a
timestamp no greater than t.  The second
parameter specifies the number of events
passed to the federate (from any category) as
a result of invoking this service, i.e., either
one or all available events are requested.  If
“all” is specified, all received category I and
II events, and category III and V events with
timestamp no greater than t are also passed to
the federate in addition to (at most) one
category IV event.  If “one” is specified, at
most one event from any category is
delivered. The events are passed to the
federate by the Reflect Attribute Values or
Receive Interaction service.  If “all” is
specified, a Time Advance Grant completes
this request and indicates to the federate that
it has advanced its logical time to the
timestamp of the single Category IV event
that is delivered, if any, or to the time
specified in the Next Event Request (i.e., t).
If “one” is specified one service (Reflect
Attribute Values, Receive Interaction, or
Time Advance Grant) is invoked as the

result of this request.  If there are no
messages for Category IV events with
timestamp less than or equal to t, and no such
messages will be received in the future, a
Time Advance Grant is delivered to the
federate without delivering any events.  By
issuing this request, the federate is guarantee
that if it does not receive any additional
events with timestamp less than t, the
federate will not generate any Category IV
messages in the future with timestamp less
than t plus the federate’s lookahead.

The following services provided by the federate
are invoked by the RTI:

• Time Advance Grant: Invocation of this
service indicates a prior request to advance
logical time has been honored.  Specifically,
invocation of this service indicates either (1)
the RTI has delivered all messages for
Category IV events to the simulation with
timestamp less than or equal to that specified
in the Time Advance Request, or (2) there
are no messages for Category IV events with
timestamp less than or equal to the time
specified in the last Next Event Request
service invocation using the “all” option, or
(3) there are no messages for Category IV
events with timestamp less than or equal to
the time specified in the last Next Event
Request service invocation using the “one”
option and no messages for events from any
category available for delivery.  In either
case, the federate’s logical time is advanced
to that specified in the Time Advance
Request or Next Event Request.  If a
category IV event is delivered when one
event is requested via the Next Event
Request service, logical time is advanced to
the time of the last Category IV event that
was delivered.  The RTI will not deliver
other Category IV events in the future with
timestamp less than that of this advance.

• Reflect Attribute Values: The RTI will
invoke this service to deliver a new reflected
attribute value to the federate.

• Receive Interaction: The RTI will invoke
this service to deliver a new interaction to the
federate.

It is perhaps noteworthy that as defined above,
Time Advance Request, Next Event Request,
and Time Advance Grant only pertain to the



advancement of logical time.  Real-time advances
independent to the federate’s execution (of
course!).  The relationship between logical and
real-time is expanded upon next.

REAL-TIME SIMULATIONS

The relationship of the operation of the RTI to
real time merits closer examination.  Recall that
the current time of the federate is defined as the
minimum of two quantities:
• the scaled wallclock  time, and
• the logical time of the simulation (advanced

by the Time Advance Request and Next
Event Request services).

As-fast-as-possible simulations used in a non-
real-time (i.e., as-fast-as-possible) federation
execution will set the scale factor for wallclock
time to infinity, effectively setting wallclock time
to infinity. This makes the current time equivalent
to logical time. Real-time simulations that do not
require coordinated time advance with other
simulations, e.g., simulations using only real-time
synchronization as in DIS, set the logical time
clock to infinity, thereby making the current time
equivalent to wallclock time. The case of real-
time simulations requiring coordinated time
advances (e.g., as-fast-as-possible distributed
simulations operating in a real-time setting) is
discussed next.

Real-time (constrained) simulations with
coordinated time advances may use the RTI based
on the following paradigm:

• The timestamp on each event denotes a
deadline by which processing of that event
should be completed.

• Real-time computations often utilize a “start
time” with each event to denote the earliest
real-time when processing of the
corresponding message may begin.  The RTI
attempts to deliver the message to the
simulation as soon as possible, consistent
with ordering constraints, but does not
explicitly utilize the notion of start times. If
CTi is the current time of federate i, and Li  is
that federate’s lookahead (the minimum time
into the future that a federate may schedule a
Category IV event), the RTI will not deliver
a Category IV event to a federate with
timestamp larger than minimum(CTi + Li)
where  i  is computed over neighboring
federates, i.e., those federates  that send

messages to the federate receiving the event.
In other words, assuming skew between
hardware clocks is negligible, the maximum
amount of time an event will be delivered
before its deadline is the minimum lookahead
among its neighboring simulations.  If this
constraint is insufficient and could result in
processing the event “too soon,” the federate
will need to internally delay processing the
event by (for instance) specifying a start time
and using an internal scheduling mechanism
to specify when the event should be
processed.

• Federates attempt to “stay ahead” of real-
time by processing events before their
deadline, and scheduling events sufficiently
far “into the future” (timestamp larger than
the local clock) so that they can be
transmitted and delivered to receiving
federates before their deadline has passed.

• Logical time (controlled by the federate
generated time advance requests and RTI
generated grants) controls delivery of
Category III, IV and V events to the federate.
Ideally, each federate can advance logical
time so that it remains ahead of wallclock
time, causing the federate’s time advances to
be paced by wallclock time.  So long as
minimum(CTi + Li) remains larger than the
current time of the receiver, the RTI can
deliver events to the federate prior to their
timestamp.  This is a necessary, but not
sufficient, requirement to avoid missing
deadlines.  It is not sufficient because the
federate may not be able to process the
events before the deadline has expired.  In
general, a more in-depth real-time analysis of
event computations is required to guarantee
that deadlines are not missed (e.g., for
federations with hard real-time constraints).

• If logical time does not keep up with
wallclock time, either because of delays in
the RTI, federate, or the communication
network, one or more federates will fall
“behind” relative to wallclock time.  The RTI
will delay delivery of category IV events in
order to ensure event ordering guarantees are
met.  This will, in turn, slow the granting of
time advances of other federates, and could
eventually cause many federates using
coordinated time advance to proceed slower
than real-time.  In this case, the federation is



paced by logical time advances, which are
advancing slower than real-time.    This will
be problematic for certain federations.
Mechanisms to address this question, e.g., by
relaxing event ordering constraints, are
currently under investigation.

In general, it is clear that if an event is not
delivered to the federate prior to its timestamp, it
will be impossible to process it before its
deadline.  Thus certain real-time constraints must

be met for the federation to operate in real-time.
A necessary, though not sufficient constraint for
real-time execution without missed deadlines is:

ETS > T(real[sender]) + WC(max-error) +
Comm(max-latency) + HLA-TM-delay

where:
• ETS is the timestamp assigned to the event.

Figure 2. Logical flow of messages in the RTI.

The
Simulation

identifier

Controller

synchronization
messages

Time Advance Requests
Next Event Request

Publication, Subscription, and Distribution System

Queue
Manager

Time Advance Grant

Discovery
Rules

Instantiate Discovered Object
Remove Object

Reflect Attribute Values
Receive Interaction
Receive Retraction

Retract
Delete Object

Update Attribute Values
Send Interaction

FIFO
Queue

Switch
Synchronization

Protocol (SP-Box)

Prio.
Queue

Causal
Order
Queue

TS
Order
Queue

• T(real[sender]) is the local wallclock time
when the sending federate invokes the
Update Attribute Values or Send
Interaction service to pass the event to the
RTI.

• WC(max-error) is the maximum difference
between clocks in the federation, e.g., due to
skew in the hardware clocks of different
simulations.

• Comm(max-latency) is the maximum latency
incurred in the communication network.

• HLA-TM-delay is the time the RTI must hold
the message before delivering it to the
federate.  This includes other time-overheads
associated with delivering a message to the
application as well as the time the RTI must
hold the message until event ordering can be
guaranteed, for Category IV events.

In short, the federate needs to send the message
far enough into the future so it can be received
before its timestamp.

RTI STRUCTURE

The logical flow of messages within the RTI at a
single site is depicted in Figure 2.  Each federate
receives a stream of incoming state update and
interactions in accordance with the objects and
attribute values to which the federate has
subscribed.  Each message has a category of
service associated with it that specifies the
reliability of the transport mechanism (reliable  or
best effort) and the event ordering to be used.
The message is routed to an appropriate queue
based on the type of ordering, as depicted by the
“switch” module in Figure 2.  Messages that have
become available for delivery to the federate are
passed to the discovery rules module where



filtering may be performed before they are passed
to the simulation.

The synchronization protocol module in Figure 2
is responsible for implementing the more
complex event ordering services (causal and
timestamp order).  The controller module handles
time advance requests.  Outgoing messages are
sent through the identifier module that adds
header information to messages before sending
them onto the network.

CONCLUSIONS

The principal impacts of the HLA time
management services in the DIS community are:
• The HLA time management services provide

a structure to support integration of
simulations with strict causality requirements
(e.g., ALSP) with other simulations with
minimal needs for event ordering (e.g., DIS).

• The transportation services range from basic,
unordered communication services not unlike
those used in DIS today, to services
providing reliable message delivery and/or
timestamp ordered delivery of messages to
enable federations to faithfully reproduce
cause-and-effect relationships in the systems
they model.

• Different message delivery services may be
intermixed within a single federation
execution, allowing federates to utilize the
category of service best suited for the type of
information that is to be exchanged.

• Use of multiple categories of service enables
evolutionary development of federations
where new capabilities (e.g., higher
reliability and consistent ordering) are
gradually incorporated into the federation
over time.

The HLA time management structure is perhaps
unique in that it brings together extensive bodies
of research from the DIS, ALSP, PDES, and
distributed operating systems communities into
one common framework for distributed
simulation applications. Definition of HLA-TM
services is an evolving process that will continue
as more experience is gained in implementing
different versions of the RTI.

ACKNOWLEDGMENTS

The time management approach used in the HLA
is the result of the collective efforts of many
individuals, including the members of the HLA
time management working group.  Other
individuals that contributed to this design include
David Bruce, Chris Carothers, Danny Cutts,
Charles Duncan, Jerry Dungee, Jean Graffagnini,
Richard Henderson, Jack Kramer, Michael
Langen, Margaret Loper, Larry Mellon, Henry
Ng, Ernie Page, Kiran Panesar, Les Parish, Dana
Patterson, E. L. Perry, Jerry Reaper, Paul
Reynolds Jr., Sudhir Srinivasan, Jeff Steinman,
Bill Stevens, and Darrin West.  Sudhir Srinivasan
suggested inclusion of causal ordering in the HLA
and suggested the example depicted in Figure 1.
Richard Fujimoto’s work as chair of the HLA
Time Management group was funded by the
Defense Modeling and Simulation Office
(DMSO).

REFERENCES

[Birm91] K. Birman, A. Schiper and P.
Stephenson, Lightweight Causal and Atomic
Group Multicast, ACM Transactions on Computer
Systems, 9(3): 272-314, August 1991.

[Chan79] K. M. Chandy and J. Misra, Distributed
Simulation: A Case Study in Design and
Verification of Distributed Programs, IEEE
Transactions on Software Engineering, SE-5(5):
440-452, September 1979.

[DIS94] The DIS Vision, A Map to the Future of
Distributed Simulation, Institute for Simulation &
Training, Orlando FL, May 1994.

[Fuji90] R. M. Fujimoto, Parallel Discrete Event
Simulation, Communications of the ACM, 33(10):
30-53, October 1990.

[Fuji96] R. M. Fujimoto and R. M. Weatherly,
Time Management in the DoD High Level
Architecture, 10th Workshop on Parallel and
Distributed Simulation, May 1996.

[Jeff85] D. R. Jefferson, Virtual Time, ACM
Transactions on Programming Languages and
Systems, 7(3): 404-425, July 1985.

[Lamp78] L. Lamport, Time, Clocks, and the
Ordering of Events in a Distributed System,



Communications of the ACM, 21(7): 558-565,
July 1978.

[Wilson94] A. L. Wilson and R. M. Weatherly,
The Aggregate Level Simulation Protocol: An
Evolving System, In 1994 Winter Simulation
Conference Proceedings, pp. 781-787, December
1994.


