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ABSTRACT: This paper presents recent results concerning the realization of HLA RTIs in high-speed LAN
environments. Specifically, the UK-RTI and a second, simplified RTI implementation were realized on a cluster of
Sun workstations using Myrinet, a gigabit, low-latency interconnection switch developed by Myricomm Inc. The
performance of these implementations was compared with the UK-RTI and version 1.3 of the DMSO RTI using UDP
and TCP/IP on an Ethernet LAN. The Myrinet implementations utilize a software package called RTI-Kit that
implements group communication services and time management algorithms on high-speed interconnection
hardware. Results of this study demonstrate the technical feasibility and performance that can be obtained by
exploiting high performance interconnection hardware and software in realizing HLA RTIs. In particular, in most
experiments the RTls using Myrinet achieved one to two orders of magnitude improvement in performance relative
to the UK-RTI and DMSO version 1.3 RTI using UDP/TCP in attribute update latency time, and the wallclock time

required to perform a time management cycle.

1. Introduction

The High Level Architecture (HLA) has been
mandated by the U.S. Department of Defense (DoD) as
the standard technical architecture to be used by DoD
modeling and simulation programs [1]. As such, the
HLA must span a broad range of applications with
diverse computational and communication
requirements, as well as a broad range of computing
platforms with widely varying cost and performance
characteristics.

An important, emerging class of distributed computing
platforms are cluster computers, i.e., high performance
workstations and/or personal computers inteconnected
with a high bandwidth, low latency interconnection
switch. Cluster computers offer the potential for much
higher communication performance than classica
networking solutions. This is typically accomplished
by by-passing traditional networking protocols, and
providing low level communication services directly to

the application. This typically yields message latency
times on the order of tens of microseconds or less,
compared to hundreds of microseconds using
traditional local area networking hardware and
software. Work in developing industry wide
communication standards for cluster computers called
the Virtual Interface Architecture (VIA) standard is
under way, and will help to ensure the widespread
availability of this technology [2]. Unlike most
supercomputers, cluster computers can  be
incrementally upgraded by replacing existing CPUs
with newer models, and/or including additional
workstations and expanding the interconnection
switch.

Most work to date has focused on realization of the
High Level  Architecture (HLA)  Runtime
Infrastructure (RTI) on conventional networking
hardware using wel-established protocols such as
UDP and/or TCP. While such implementations are
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sufficient for large portions of the M&S community,
many applications require higher communication
performance than can be obtained utilizing these
interconnection technologies. Cluster computers offer
a solution to this problem, but to date, little experience
has been reported concerning the realization of HLA
RTIs exploiting  these  high performance
interconnection switches.

In conjunction with the UK-RTI development[14], a
prototype library was developed to explore the
implementation of a Run-Time Infrastructure in
cluser computing environments composed of
workstations interconnected with high speed, low
latency switches. This paper describes the RTI-Kit
objectives, implementation and performance.

2. RTI-Kit

RTI-Kit is a collection of libraries designed to support
development of Run-Time Infrastructures (RTIs) for
paralld and distributed simulation systems, especially
distributed simulation systems running on high
performance cluster computing platforms.  Each
library is designed so it can be used separately, or
together with other RTI-Kit libraries, depending on
what functionality is required. It is envisioned that
these libraries will be embedded into existing RTIs,
eg., to add new functionality or to enhance
performance by exploiting the capabilities of a high
performance interconnect. Alternatively, the libraries
can be used in the development of new RTIs.

This  "library-of-libraries’  approach to RTI
development offers several important advantages
compared to more traditional RTI design approaches.
First, it enhances the modularity of RTI designs
because each library within RTI-Kit is designed as a
stand al one component that can be used in isolation of
other modules. Modul arity enhances maintainability of
the software, and facilitates optimisation of specific
components (e.g., time management algorithms) while
minimising the impact of these changes on other parts
of the RTI. This design approach facilitates
technology transfer of the results of this work to other
RTI development projects because utilising RTI-Kit
software is not an "all or nothing" proposition; one can
select modules such as the time management or
multicast communication software, and utilise only
those libraries while ignoring other libraries of
secondary importance to potential users.

Multiple implementations of each RTI-Kit library are
planned that are targeted at different platforms,
ranging from workstations interconnected with

conventional networking technologies, to compute
clusters using high speed interconnects, to shared or
distributed memory multiprocessors. The current
implementation utilises cluster computing platforms
composed of Sun workstations interconnected via
Myrinet switches.

The principal components of RTI-Kit that have been
developed are MCAST, a communication library
supporting group (multicast) communications among a
collection of federates, and TM-Kit which implements
time management algorithms. Other libraries that
have been developed provide services such as buffer
management, priority queues, and random number
generation. The latter two libraries were adapted from
code originally used in the Georgia Tech Time Warp
(GTW) software [3].

3. RTI-Kit Architecture

An architecture diagram showing how RTI-Kit might
be embedded into an existing RTI (e.g., the UK-RTI)
is shown in Figure 1. The existing RTI will generate
calls to MCAST to utilise the group communication
services. Group communications means messages are
in general sent to a collection of destinations rather
than to a single receiver. This is analogous to Internet
newsgroups where each message sent to a newsgroup
istransmitted to all subscribersto the group. Here, the
Distribution Manager (DMAN) object in Figure 1 will
cal MCAST primitives to create, join, and leave
groups, as well as to send and receive messages. If it
wishes these communication services to operate under
atime management protocol, it will also generate cals
to TM-Kit to initiate LBTS (lower bound on time
stamp) computations, and to provide TM-Kit with the
information it needs to compute LBTS. For example,
TM-Kit must be notified whenever a time stamped
message is sent or received, in order to account for
transient messages. For buffer allocation, the existing
RTI can utilise its own memory management services
by embedding callbacks into MCAST, or it can use a
module called MB-Lib for buffer allocation.
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Figure 1. RTI architecture using RTI-Kit.

MCAST and TM-Kit both require the use of basic
communication services, defined in a module called
FM-Lib. This communication layer software acts as a
multiplexer to route messages to the appropriate
module. If the existing RTI wishes to bypass MCAST
for certain communications that it requires, it can
either utilise FM-Lib directly, or use an altogether
different mechanism. The latter option assumes, of
course, this alternate mechanism can co-exist with
FM-Lib. The current implementation of FM-Lib
utilises an APl based on the Illinois Fast Messages
(FM) software [4] for its basic communication
services, and provides only dightly enhanced services
beyond what FM provides.

The RTI-Kit architecture is designed to minimise the
number of software layers that must be traversed to
realise communication and time management services.
For example, TM-Kit does not utilise the MCAST
library for communication, but rather directly accesses
the low-level primitives provided in FM-Lib. Thisis
important in cluster computing environments because
low level communications are very fast, on the order of
ten to twenty microseconds latency for short messages,
compared to hundreds of microseconds or more when
using conventional networking software such as
TCP/IP. Thus, if not carefully controlled, overheads
introduced by RTI-Kit software could severely degrade
performance in cluster environments, whereas such
overheads would be insignificant in traditiona
networking environments where the time required for
basic communication services is very high.
Measurements indicate the overheads introduced by
RTI-Kit are indeed small, on the order of 10% when

using Myrinet switches.

4. MCAST Library

Two goals in the MCAST design are (1) to support
potentially large numbers of multicast groups (e.g.,
thousands) with frequent changes to the composition
of groups, and (2) to minimise the overhead of
frequently used operations such as sending and
recelving messages. It has been reported that large
distributed simulation exercises typically require
thousands of multicast groups, and rapid (no more
than a few milliseconds) changes to group composition
[8]. Further, as discussed earlier, communication
overheads must be kept low to enable full exploitation
of the fast communication services provided in cluster
environments.

A varigty of techniques are used to achieve these
goals. Groups in MCAST are light weight. Storage
required to implement each group is kept to a
minimum; the bulk of the storage is used to hold lists
indicating group membership. Hashing functions are
used to rapidly access table entries. Group
membership information is cached at processors
sending messages to the group to reduce interprocessor
communication. Message copying overheads are
avoided by allowing the application to specify where
incoming messages are to be written, as opposed to
more traditional approaches where each incoming
message is written into a temporary message buffer
and then copied it to an application defined buffer
after the application has been natified that the message
has been received. Joining or leaving groups is
optimised to reduce the amount of interprocessor
communication that must take place to realise these
operations

Each MCAST group contains a list of subscribers to
that group. Whenever a message is received for a
group, each subscriber is notified by a cal to a
procedure (a message handler) defined by the
subscriber. A single processor may hold multiple
subscriptions to a group, in which case it receives a
call back for each one when a message for the group is
received. Any processor can send a message to any
group; in particular, one need not be subscribed to the
group in order to send a message to it. If the processor
sending a message to the group is also subscribed to
the group, it will still receive a call back for each
subscription, i.e, processors can send messages to
themselves using this service. Of course, the message
handler can simply ignore messages sent by a
processor to itself if thisisthe desired semantics.



Each group has two unique names that are used to
identify it: (1) an ASCIl string name, and (2) an
internal handle that serves as a pointer to the group.
The internal name is required to send/receive
messages to/from the group. A name server is
provided that maps the ASCII names of groups to their
internal name.

In the current implementation, multicast
communication is implemented by a sequence of
unicast sends, with one message send to each
processor holding one or more subscribers to the
group. If the processor holds several subscriptions to
the group, only a single physical message is sent to the
processor.

Destination lists for groups are distributed among the
processors  participating in the  simulation.
Specifically, the degtination list for each group is
maintained at a "home" location for that group.
Message senders for a group need not reside at the
home location for that group. In order to avoid
communication with the home location with each
message send, MCAST includes a caching mechanism

to provide a local copy of the destination list to each
sender. The degtination list is only loaded into the
sender’s cache when the sender obtains a handle for
the group. This avoids the need to load destination
lists into caches for processors that do not have a
handle (and thus cannot send messages) to that group.
MCAST includes a set of cache directories in order to
update copies of the destination list when the
composition of the group changes.

MCAST is designed to minimise message copying,
thereby eliminating a major source of overhead in
traditional communication systems. Specifically, each
processor specifies a memory allocator, called a
WhereProc procedure that indicates where incoming
messages are to be written. Different WhereProc
procedures may be specified for different groups. This
allows MCAST to directly write incoming messages
into the location specified by the user, rather than
writing it into an internal buffer, which would
typically require the application to later copy the
message to its desired location.

5. TM-Kit Library

The services in TM-Kit provide the basic primitives
necessary for time management in distributed
simulations. At the heart of TM-Kit is an algorithm
for computing LBTS information, i.e., a lower bound
on the time stamp of future messages that can be later
received by each processor. The other procedures, for

the most part, are included to provide enough
information to compute LBTS, and do not actually
perform any other service. For example, the
"communication primitives" TM_Out() and TM_In()
do not actually send an@aeive messages. They only
inform the TM software that messages have been
sent/received, and provide the TM software the
opportunity to piggyback some of its own information
onto the message.

To use TM-Kit, users must make the following
additions to an existing RTIl. First, calls must be
added to initiate LBTS computations, and handlers
must be defined that are called when the LBTS
computation is complete. Calls must be made to TM-
Kit whenever time stamp ordered messages are sent or
received, so that TM-Kit can properly account for
transient messages (messages sent but not yet
received). Appliations define abstract data types and
associated operators for operations dealing with time
values (e.g., comparisons), allowing TM-Kit to be used
with arbitrary representations of time (integers,
floating point values, priority fields to break ties, etc.).
TM-Kit also requires that certain information be
piggy-backed onto messages, so mechanisms are
provided to add this information to outgoing messages,
and to remove it from messages that are received.
Finally, the TM-Kit interface supports exploitation of
federate topology information, i.e., information
considering which federates send messages to which
other federates, though time management algorithms
to exploit this information have not yet been
implemented.

TM-Kit does not directly handle time stamped
messages. Thus, message queuing and determining
when it is "safe" to deliver time stamped messages is
performed outside of TM-Kit.

The underlying computation model for the simulation
is viewed as a collection of processors that
communicate through message channels. A parallel
computer could be designated as a single processor if it
provides its own internal time management
mechanism (e.g., a Time Warp implementation), or
each processor within the parallel computer can be
viewed as a separate processor, in which case TM-Kit
provides time management among processors in the
parallel machine.

TM-Kit computes LBTS by using a "butterfly" like
interconnection graph. This allows a global minimum
to be computed, and the result distributed to all
processors in log N time (with N processors) and N log
N messages, without use of a centralised controller.
TM-Kit can be configured to use different "fanouts"



for the butterfly interconnection scheme.

The butterfly scheme is similar to well-known paralléel
prefix and barrier algorithms (eg., see [11]), and
works as follows. Assume an N-processor reduction is
performed, and the processors are numbered 0O, 1, 2,

..., N-1. Each processor holds a local time value. The
goal is to compute the global minimum among these N
values, and notify each processor of this global
minimum. To simplify the discussion, assume N is a
power of 2; the TM-Kit software allows arbitrary
values of N. The communication pattern among
processors for this barrier mechanism for the case of
eight processors is shown in Figure 2(a). Each
processor executes a sequence of log N pairwise
minimum operations with a different processor at each
step. A pairwise minimum operation between
processors i and j is accomplished by simply having i
(or j) send a message to j (i) containing the minimum
value it has computed thus far, then wait for a similar
message from j (). When this message is received, a
new local minimum is computed as the minimum of
the current value and the new value received from j (i).
In the first step, processors whose binary addresses
differ only in the least significant bit perform a
pairwise minimum, e.g., processors 3 (011) and 2
(010). In the second step, processors whose addresses
differ only in the second least significant bit, e.g.,
processor 3 (011) and 1 (001) exchange messages. In
general, in step k processor i communicates with the
processor whose address differs in only the kth bit
(where bits are numbered 1, 2, ... log N from least
significant to most significant). These pairwise
minimum operations continue for log N steps until all
of the address bits have been scanned. This
communication pattern is referred to as a butterfly.
Each processor has the global minimum once it has
completed the log N pairwise minimum operations.

Figure 2. Eight processor Butterfly barrier. (a)
communications pattern, and illustration of barrier
from the per spective of processor 3. (b) tree
abstraction of barrier mechanism.

The operation of the barrier mechanism from the
perspective of a particular processor is shown in
Figure 2. The highlighted nodes and arcs in Figure
2(a) illustrate the barrier from the perspective of
processor 3. After step 1 has completed, processor 3
has computed the minimum of the values stored in
processors 2 and 3. This is illustrated by the dashed
box around processors 2 and 3 in step 1 of Figure 2(a).
In step 2 processor 3 receives a message from
processor 1 containing the minimum between
processors 0 and 1. By computing the minimum of
this value with its own local minimum, processor 3
computes the minimum among processors 0, 1, 2, and
3. This is represented by the dashed box around these
four processors in step 2. Continuing this analysis, in
step 3 processor 3 receives a message from processor 7
that contains the minimum among processors 4, 5, 6,
and 7. After minimising this value with its local
minimum, it now has the global minimum value over
all eight processors. In effect, as shown in Figure 2(b),
a tree is constructed in bottom-up fashion with
processors at the leaves. Intermediate nodes of the tree
indicate the set of processors whose minimum values
have been computed when that step of the algorithm
has been completed.

The above algorithm is complicated somewhat by the
fact that the LBTS computation must take into account
transient messages, i.e., messages that have been sent,
but have not yet been received while the LBTS
computation is taking place. Failure to take into



account these messages could result in an incorrect
(i.e, too large) LBTS value to be computed. To
address this problem, one must (1) have a mechanism
to detect the presence of transient messages in the
system since the LBTS computation cannot be
completed until all such messages have been
accounted for, (2) detect when a transient message has
been received, and (3) provide a means for including
the time stamp of transient messages into the global
minimum computation. Detecting the presence of
transient messages is accomplished by maintaining
two counters in each processor indicating the number
of messages the processor has sent, and the number it
has received. Actually, TM-Kit only maintainsasingle
counter indicating the difference between these two
values, but we assume two counters are used to
simplify the explanation. When all processors have
initiated an LBTS computation and the sum of the
message send counters across all of the processors in
the system is equal to the sum of the message receive
counters, there are no transient messages remaining in
the syssem. These counters are reset when the
processor initiates (or detects that another processor
has initiated) a new LBTS computation. The global
minimisation operation is augmented to also sum the
two counters in each step, enabling each processor to
detect when there are no more transient messages.
Specifically, if the counters do not match, then this
indicates one or more transient messages has not been
included in the global minimum, so completion of the
LBTS computation is delayed.

Receipt of a transient message is detected by a
colouring scheme [12]. Each processor is initialy
some colour, say red. When a processor enters into a

new LBTS computation, it changes colour, e.g., to
green. Each message sent by a processor is tagged

with the sending processor's current colour.
Therefore, if a green processor receives a red message,
it is known that that message is a transient message,
i.e., one sent before the sender entered into the LBTS
computation, but eceived after the receiver had
entered into the computation and reported its local
minimum. When a processor receives a transient
message, the time stamp of this message is reported up
through the butterfly network, as well as the fact that
the receive count for that processor has increased by
one, in exactly the same way as other butterfly
operations as discussed previously. Thus, when the
last transient message is received the sum of the send
counters and the sum of the receive countéitsnaw
match, indicating the true LBTS value has been
computed and the computation has been completed.

The butterfly scheme described above uses pairwise

minimum operations. In general, one can perform F-
wise minimum operations at each step where each
processor sends its local minimum to F-1 other
processors. F is referred to as the fanout. The TM-Kit
software implements this functionality, and allows

arbitrary fanout (up to the number of processors in the
system) to be used. TM-Kit uses a default value of 2 as
the fanout, and this value is used in all of the

experimental results reported later.

TM-Kit allows any processor to initiate an LBTS
computation at any time by invoking a TM-Kit
primitive. If two different processors simultaneously
begin a new LBTS computation, the two computations
are automatically merged, and only one new LBTS
computation is actually started. If a processor detects
another processor has initiated an LBTS computation,
but none has been started locally, the processor can
then either participate in this new LBTS computation,
or defer participation until some later time; in the
latter case, the processor must eventually participate in
this computation or it will never complete. Each
processor is notified when an LBTS computation has
completed by a call-back from RTI-Kit that indicates
the new LBTS value.

The approach used in TM-Kit for time management
offers several attractive properties. First, the time
complexity of the LBTS computation grows
logarithmically with the number of processors,
enabling it to scale to large machine configurations.
Because any processor can initiate a new LBTS
computation at any time, RTI developers are given
great flexibility concerning how they initiate these
computations. For example, each processor might
asynchronously start a new computation whenever it
needs a new LBTS value to be computed; as discussed
earlier, the TM-Kit software automatically merges
multiple, simultaneous initiations of new LBTS
computations by different processors into a single
LBTS computation. This approach is used in the UK-
RTI and BRTI implementations discussed later.
Alternatively, a central controller could be used to
periodically start a new LBTS computation at fixed
intervals of wallclock time, or using some other
criteria. TM-Kit allows multiple different LBTS
computations to be in progress at one time, i.e., a
processor can start a second LBTS computation even
though one that it had previously initiated has not yet
completed (note this is different from simultaneous
initiation of LBTS computations by different
processors, which are automatically merged into one
computation). This allows a processor to immediately
begin a new LBTS computation when it has obtained
new information (e.g., a new local minimum), without



having to wait for a previoudy initiated LBTS
computation to complete. The current implementation
of TM-Kit allows up to K LBTS computations to be in
progress at one time, where K is a parameter specified
during configuration.

6. Other Libraries

MB-Lib is a simple library providing memory
allocation services. This can be coupled with
MCAST's where-procedures to allocate memory for
incoming messages, or applications using RTI-Kit can
utilise their own memory management facilities.

Heap-Lib provides software to implement priority
gueues. One or more priority queues can be created,
with arbitrary types of information stored in each node
of the queue. An in-place heap data structure with
O(log N) insertion and deletion times, where N is the
number of elements in the heap, is used in the current
implementation

Rand-Lib provides a collection of random number
generators for a variety of probability distributions.
This and the heap library were derived from the

Georgia Tech Time Warp (GTW) software
distribution. Rand-Lib allows one to draw random
numbers  following the uniform,  binomial,

exponential, gamma, geometric, normal, or Poisson
distributions.  Facilities are provided to support
generation of multiple independent streams of random
numbers.

The current implementations of TM-Kit and MCAST
interface to the communications system through FM-
Lib. FM-Lib is built on top of, and is only slightly
different from the lllinois Fast Messages (FM 2.0)
API, as described in [5]. The RTIKit software
described here uses FM “as is”, facilitating portability
to other platforms since one need only recreate the FM
interface. An alternative approach involving
modification of the Myrinet switch firmware is
described in [13].

7. TheMyrinet System

The first implementation of RTI-kit has been written
on top of the Myrinet networking hardware [4]
running on a network of Sun UltraSPARC
workstations. The Myrinet hardware is a high
performance networking interconnect designed to
enable individual workstations to be built into cluster
computers. It provides low latency, high bandwidth
communications; the system currently in use has a
bandwidth of 640 Mbit/s but now Myricom are

shipping a 1.2 Mbit/s version. Because the
experiments described here do not utilize the fastest
available switches, we consider the performance
measurements presented later to be conservative.

Whilst the actual speed of the interconnect is not that
much faster than 100Base-T Ethernet the main
difference between using the Myrinet and TCP/IP is
that the overhead of the protocol stack can be
removed. The Myrinet device is accessible via an area
of shared memory in the process’s address space and
data can be read and written to the device without a
context switch. This gives a dramatically lower latency
than traditional TCP/IP communications, especially
TCP where there are multiple memory copies as the
data moves from user space, into the kernel and down
onto the Ethernet device.

Another feature of the Myrinet which is extremely
useful is that the network is built out of low latency cut
through switches which route packets of arbitrarily
long length through the network between source and
destination hosts. This removes the fragmentation of
TCP packets forced by the 1500 byte IP limit and also
provides an almost perfect error free connection. The
Myrinet does not however directly support either
broadcast or multicast which needs to be implemented
in software as multiple point to point communications.

8. RTI Implementations

Two separate RTI implementations were developed
using RTI-Kit. First, the UK-RTI [14], an HLA RTI
originally implemented using TCP and UDP/IP, was
modified to use the RTI-Kit libraries. In addition, a
separate RTI built directly on top of RTI-Kit was
developed (in contrast to the UK-RTI which was an
existing implementation modified to use RTI-Kit),
providing an additional point of comparison. This
implementation is referred to as the BRTI ("baby"
RTI). The BRTI software is written in C, and
implements a modest subset of the HLA Interface
Specification  services. In particular, BRTI
implements key time management services (e.g.,
NextEventRequest, TimeAdvanceRequest,
TimeAdvanceGrant) as well as certain object
management and declaration management services.

At present, BRTI does not conform to the Interface
Specification (IFSpec) API, e.g., the
UpdateAttributeValues and ReflectAttributeValues
services transmit a block of bytes to the destination,
and do not pack/unpack the data into attribute handle
pair sets. It does implement the callback mechanisms
required in the HLA IFSpec for message transmission



and time management.

9. Peformance M easurements

Under lying Communication Perfor mance

To understand the potential communcation gains of
cluster computers experiments were run on the
SPARCdtation Ultra-1 machines to measure average
one way message latencies of the different
communications bearers. The machines used in the
experiments were otherwise idle when the experiments
were performed. We have observed that latency times
vary significantly when the test program must compete
with computations from other users that are
simultaneoudy using the test machines. All
experiments described below were run on a network of
UltraSparc 1 machines on Solaris 2.5.

The figures shown in Table 1 have been measured on
the Myrinet configuration, which has been reported
yidding bandwidth as high as 550 Mbytes/sec one
way. The table shows one-way message latency,
measured as the round-trip time to send a message
between processors divided by two. Each experiment
completes 100,000 round-trip sends of four byte
packets via Myrinet, socket based TCP and CORBA

(OMNIBroker[7]) (the CORBA and TCP
communications used a 100 Mbit network).

CORBA TCP (raw Socket | Myrinet
(OMNI broker) based comms)

over TCP

552 microsecs 168 microsecs 13 microsecs

Table 1: Raw latency communcations per for mance
over different bearers

As can be seen the Myrinet performance is an order of
magnitude better than using CORBA and even raw
TCP communications. This underlying latency is even
better on the latest generation of Myrinet hardware.

Figure 3 comparesthe latency (half the round trip time

to send and return the payload) for RTI-Kit's MCAST
library with the underling FM software and TCP for
different message sizes. As can be seen, MCAST
introduces only a modest increase in latency beyond
the underling FM system.

RTI Performance

RTI performance was evaluated using the DMSO
benchmark programs [6]. Software included in the
version 1.3 release was used for the DMSO and UK-

RTI evaluatioR. The benchmarks were re-
implemented for evaluating BRTI performance. The
studies described here focused on two benchmark
programs: the "latency” and "TAR" programs.
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Figure 3. M essage latency measur ements.

The Latency Benchmark

The latency benchmark measures the latency for best
effort, receive ordered commuaitons. This program
uses two federates, and round-trip latency was
measured. Specifically, latency times report federate-
to-federate delay from when the
UpdateAttributeValues service is invoked to send a
message containing a wallclock time value and a
payload of N bytes until the same federateeives an
acknowledgement message from the second federate
(via a ReflectAttributeValues callback). The
acknowledgment message contains a time stamp, but
no payload.

Latency measurements were taken and averaged over
100,000 round trip transmissions. The one-way
latency time is reported as the round trip time divided
by two.

We remark that this seems like an unusual way to
measure one-way latency since the return message
does not contain a payload, but we used this approach
to be consistent with the existing DMSO software and
methodology discussed in the literature. As noted
earlier, the "raw" one-way transmission latency for a
four byte message using the low level message passing
layer (FM) on the Myrinet switch was measured at 13
microseconds.

The graph in Figure 4 shows the one-way latency time

2 The UK-RTI only supports the previous version of the IF
specification so the benchmarks had to be modified slightly
to compile.



on BRTI, UKRTI (using Myrinet) and RTI11.3 (using
TCP and UDP/IP) in microseconds, note the
logarithmic scale. The Myrinet does not actually
support unreliable communications so the times for
UK-RTI and BRTI are for reliable communications,
while those for RTI 1.3 are best effort. Federate-to-
federate BRTI latency is approximatey 20-30
microseconds for small messages (up to 128 bytes).
The current figures for UK-RTI are only preliminary
as the RTI is being optimized. Similar tests for
interactions have aready shown a speedup of an order
of magnitude which is beginning to approach BRTI
performance.
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Figure 4. Update/Reflect latency on different RTIs.

It can be seen that one to two orders of magnitude
reduction in latency were observed using the Myrinet
cluser rdative to the DMSO RTI using UDF/IP.
While time did not permit comparison with the UK-
RTI usng UDP/IP, we anticipate a smilar
performance differential would exist. This is
consistent with measurements of the time management
benchmark that are discussed next.

The Time Advance Request Benchmar k

The TAR benchmark measures the performance of the
time management services, and in particular, the time
required to perform LBTS computations.

This benchmark contains N federates, each repeatedly
performing TimeAdvanceRequest calls with the same
time parameter, as would occur in a time stepped
execution. The number of time advance grants
observed by each federate, per second of wallclock
time is measured for up to eight processors.
Performance measurements for BRTI are shown in
Figure 5, and for UK-RTI (both the Myrinet and TCP
implementations) and RTI 1.3 in Figure 6. The

lookahead and time step size are set equal to 1.0 in
these experiments. We note that substantial
performance improvements can be gained by setting
the lookahead to value dightly larger than 1.0, due to
the nature of the definition of the time management
services. As shown in Figure 5 this doubles the
performance of BRTI (since a new LBTS computation
only needs to be performed every other time step
rather than every time step), and resulted in about a
25% increase in performance in the DMSO RTI.
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Figure 5. TimeAdvance benchmark on BRTI
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Figure 6. TimeAdvance benchmark on RTI1.3 and
UK-RTI.

The number of TAR cycles per second in the DMSO
RTI drops from several thousand to one to two
hundred per second as the number of processors is
increased beyond two. This is because in the two
processor case, many TAR cycles can be performed
without interprocessor communication, so require a
negligible amount of time. However, when there are
three or more processors, nearly all of the cycles



require interprocessor communication, resulting in a
substantially lower level of performance.

As can be seen in Figures 5 and 6 the RTI-Kit
implementations using Myrinet achieve one to two
orders of magnitude improvement in performance
relative to the TCP implementations when there are
three or more processors. The performance
improvement in the two processor case is substantial,
about afactor of 4, though not as dramatic.

These figures are expected to improve as performance
tuning takes place. In particular, we believe the UK-
RTI version will approach the speed of the BRTI
implementation because both provide essentially
complete implementations of the
TimeAdvanceRequest / TimeAdvanceGrant cycle.
The reason the UK-RTI performance is currently
lower than that of BRTI is the UK-RTI includes
additional computational overheads for queue
management and memory allocation that are avoided
in the BRTI implementation. While such overheads
are modest compared to interprocessor communication
overheads in conventional LAN environments (for
which the UK-RTI was originally developed), these
overheads become much more significant in high-
speed LAN environments.

10. Conclusions

The experiments here have shown that it is possible to
develop an RTI implementation for cluster computer
hardware which significantly improves on the
performance of the current generation of RTIs. Most of
our measurements resulted in one to two orders of
magnitude reduction in message latency and wallclock
time to perform atime advance cycle compared to both
the UK-RTI and DMSO RTI (version 1.3) using TCP
and UDP/IP on an Ethernet LAN. As this paper was
being written a presentation was given to the
Architecture Management Group recommending study
into non-TCP based RTIs [9] and we present this
paper as the first data point in this regard. We have
aso shown that time management costs are
substantially lower in high-speed LAN environments,
helping to ensure federations of causal smulations are
able to keep up and interoperate with ‘real time’
federations.

What has become abundantly clear during the
performance tuning of this implementation of RTIKIT
in the UKRTI is the importance of memory allocation
and deletion. Using C++ which encourages object
based design can, when used naively, result in
unintentional and costly copying and creation of new

objects. When dealing with Myrinet the cost of

communications decreases to a level where even
copying data once becomes a significant overhead.
However the RTI is forced to make a certain

unpredictable number of memory copies to cope with
changes in publication and subscription and storing
timestamped updates prior to release. This concern
was also a focus of [10].

In the longer term it is interesting to note that the
technology used in Myrinet is now becoming
mainstream with the introduction of the Virtual
Interface Architecture (VIA)[2] standard from Intel
and Compag. This is a server interconnect standard
which can utilise fast networking hardware and
removes the classical protocol stack overheads just as
Myrinet does. Myricom is already able to support this
standard and other vendors have products in the
pipeline.
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