CS 4644 / 7643-A: LECTURE 5 DANFEI XU

Topics:

- Backpropagation
- Neural Networks
- Jacobians

- PS1/HW1 are out! Due Sep 19th
- Project:
 - Teaming thread on piazza
 - Next lecture will be on how to pick a project
 - Proposal due Sep 24th. Must have formed a team before then.
 - Will send out instruction after the next lecture

$$-\log\left(\frac{1}{1+e^{-w\cdot x}}\right)$$

$$w\cdot x \qquad u \qquad 1 \qquad p \qquad -\log(p) \qquad L$$



 $\frac{\partial L}{\partial w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}$

Chain rule and Backpropagation!

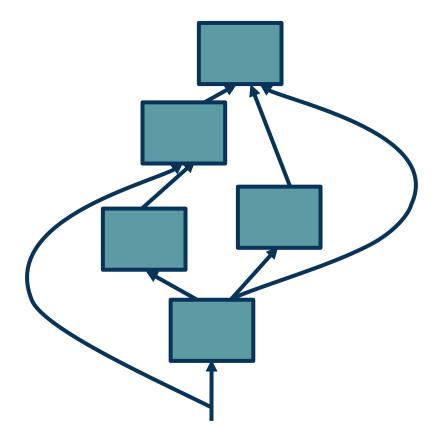
Recap: Computation Graph

We will view the function / model as a **computation graph**

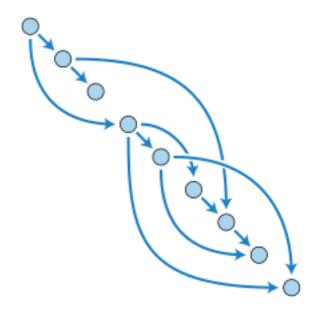
Key idea: break a complex model into atomic computation nodes that can be computed efficiently.

Graph can be any **directed acyclic** graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

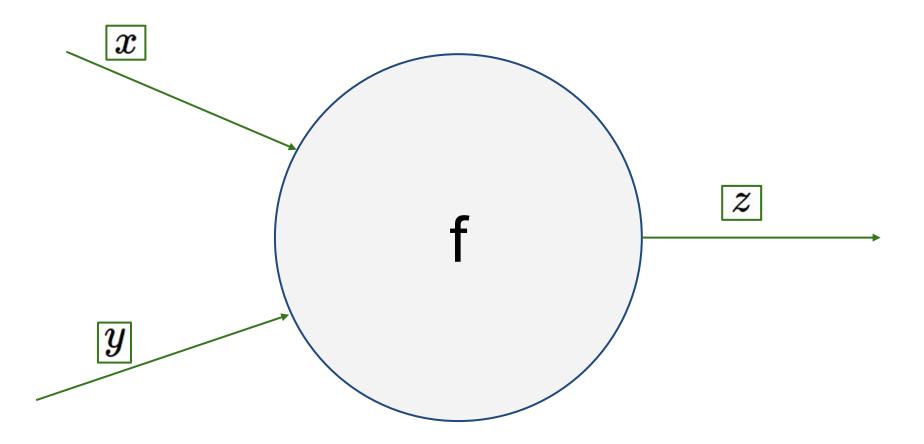


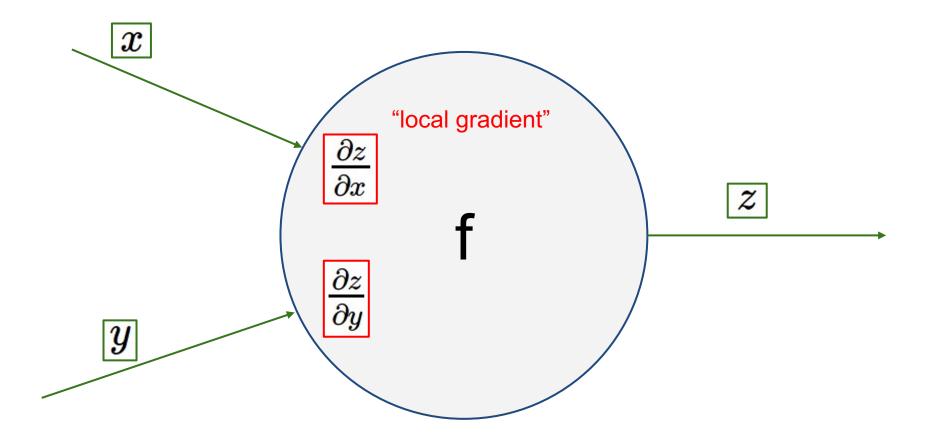
Directed Acyclic Graphs (DAGs)

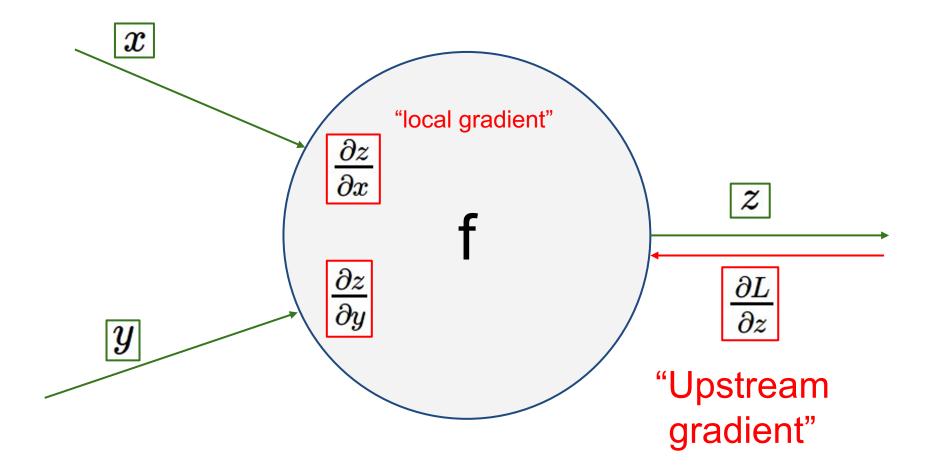


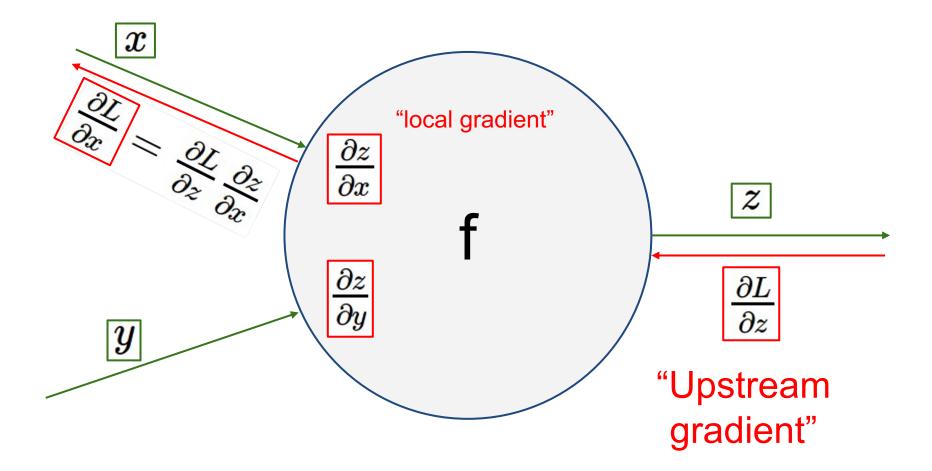
(C) Dhruv Batra

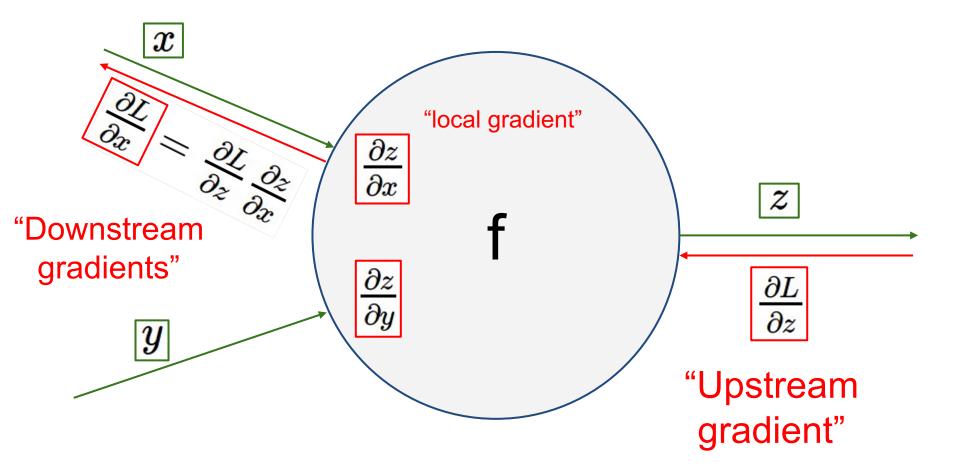
A computation node

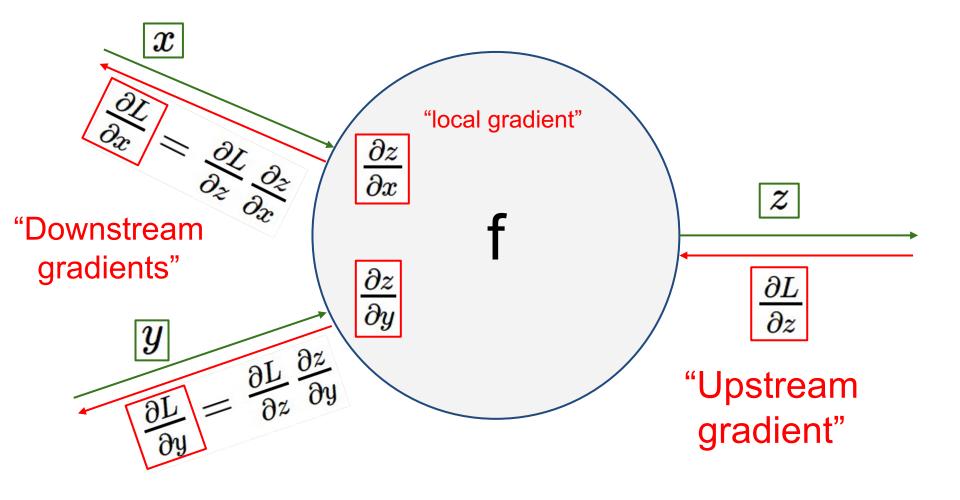


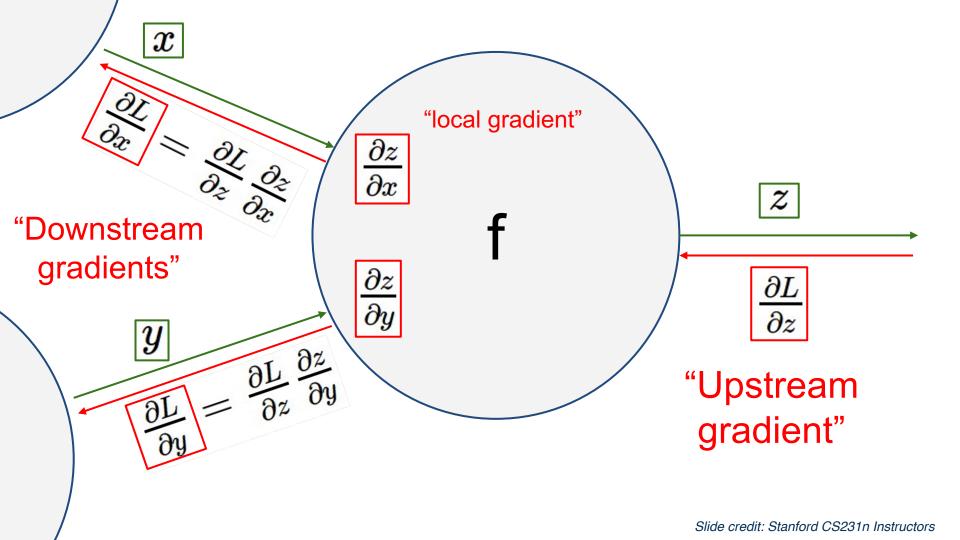




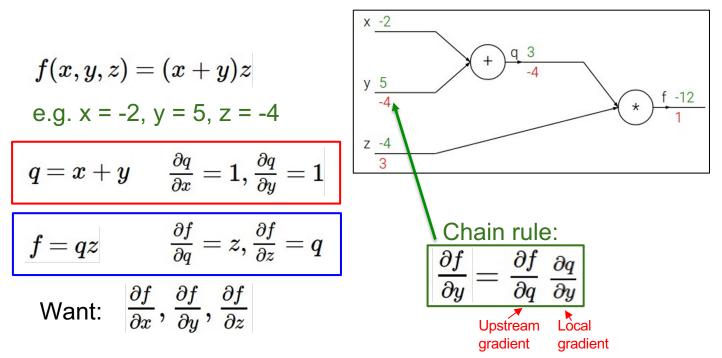








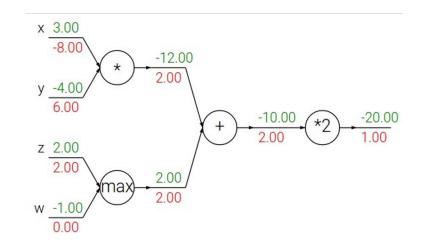
Backpropagation: a simple example



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

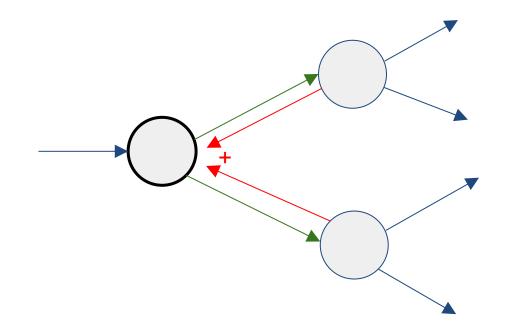
Patterns in backward flow

add gate: gradient distributormax gate: gradient routermul gate: gradient switcher



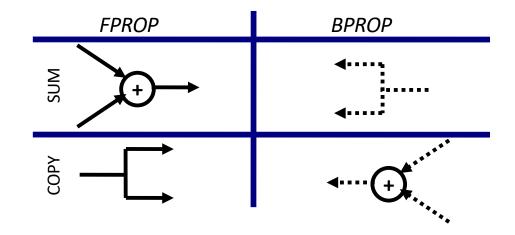
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Gradients add at branches



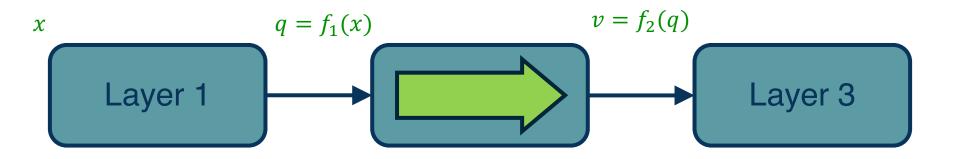
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

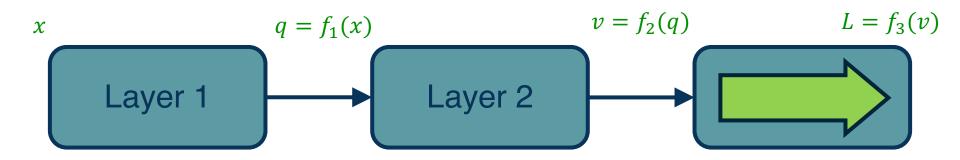
Duality in Fprop and Bprop



(C) Dhruv Batra



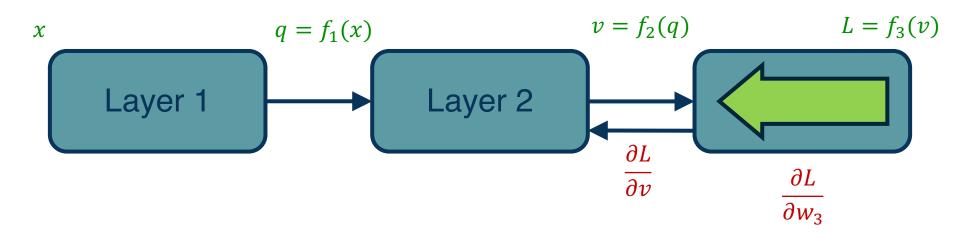




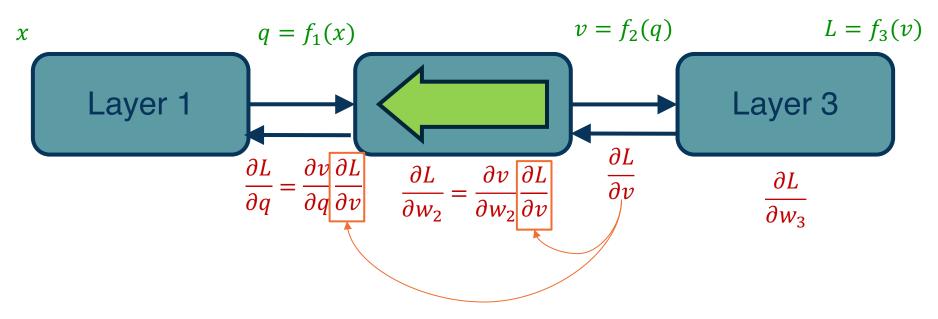
Note that we must store the **intermediate outputs of all layers**!

This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

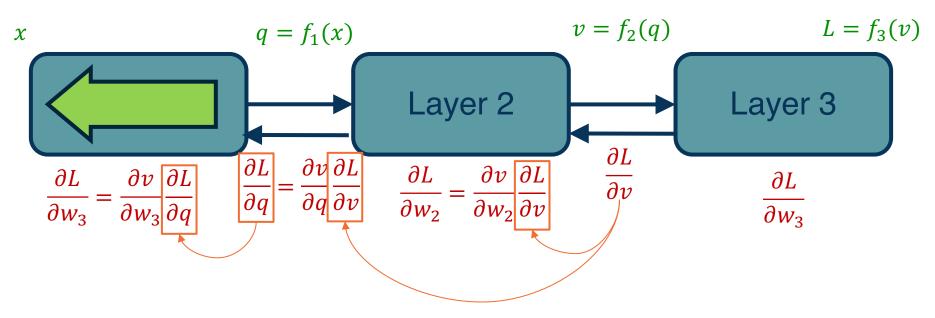
Step 1: Compute Loss on Mini-Batch: Forward PassStep 2: Compute Gradients wrt parameters: Backward Pass



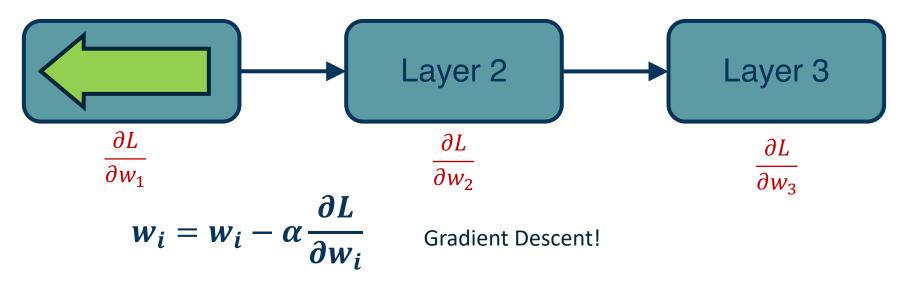
Step 1: Compute Loss on Mini-Batch: Forward PassStep 2: Compute Gradients wrt parameters: Backward Pass



Step 2: Compute Gradients wrt parameters: Backward Pass



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

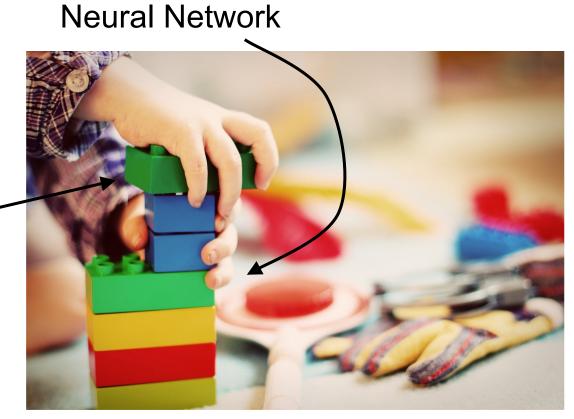


So far:

- Linear classifiers: a basic model
- Loss functions: measures performance of a model
- **Backpropagation**: an algorithm to calculate gradients of loss w.r.t. arbitrary differentiable function
- Gradient Descent: an iterative algorithm to perform gradient-based optimization

Next:

- What are neural networks?
- Non-linear functions
- How do we run backpropagation on neural nets?

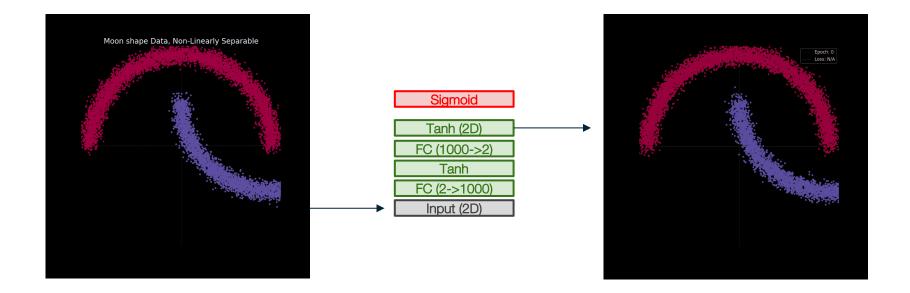


This image is CC0 1.0 public domain

Linear classifier

(Deep) Representation Learning for Classification

A function that transforms raw data space into a linearly-separable space



Neural networks: the original linear classifier

(**Before**) Linear score function: f = Wx

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

Neural networks: 3 layers

$$f = Wx$$

(**Now**) 2-layer Neural Network or 3-layer Neural Network

(**Before**) Linear score function:

$$f=W_2\max(0,W_1x)$$

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^{D}, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation (**Before**) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ Χ W2 W1 h S 10 100 3072 $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$

Neural networks: why is max operator important? (Before) Linear score function: f=Wx(Now) 2-layer Neural Network $f=W_2\max(0,W_1x)$

The function max(0, z) is called the **activation function**. **Q**: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important? (Before) Linear score function: f=Wx(Now) 2-layer Neural Network $f=W_2\max(0,W_1x)$

The function $\max(0, z)$ is called the **activation function**. **Q**: What if we try to build a neural network without one? $f = W_2 W_1 x$ $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again!

(Non-linear) activation function allows us to build non-linear functions with NNs.

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

- What the heck are universal function approximators?
- Why are NNs considered universal function approximators?
- Why does it matter?

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A quick primer on approximation theory.

A branch of mathematics that deals with how functions can be approximated by <u>simpler or more tractable functions</u>, while maintaining some measure of <u>closeness to the original function</u>.

Example: approximating $f(x) = e^x$.

 e^x are known as *transcendental functions*: you <u>cannot</u> calculate its value with finitely many basic algebraic operations like multiplication, addition, and power.

But we can <u>approximate</u> e^x with a polynomial with bounded error:

$$\sum_{k=1}^{N} \frac{1}{k!} x^{k}$$

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

NNs as function approximators

A single layer network with a sigmoid activation $\sigma = \frac{1}{1+e^{-x}}$ can be written as

$$F(x) = \sum_{i=1}^{M} v_i \sigma(w_i^T x + b_i)$$

Is the <u>family of single layer network</u> with sigmoid activation enough to approximate <u>any reasonable function</u> (more on this next slide)?

$$\mathcal{F} = \{ \sum_{i=1}^{M} v_i \sigma (w_i^T x + b_i) : w_i, b_i \in \mathbb{R}^N, v_i \in \mathbb{R} \}$$

Adapted from https://tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

The universal approximation theorem (Cybenko, G. 1989)

Theorem 1. Let σ be any continuous discriminatory function. Then finite sums of the form

$$G(x) = \sum_{j=1}^{N} \alpha_j \sigma(y_j^{\mathsf{T}} x + \theta_j)$$
⁽²⁾

are dense in $C(I_n)$. In other words, given any $f \in C(I_n)$ and $\varepsilon > 0$, there is a sum, G(x), of the above form, for which

$$|G(x) - f(x)| < \varepsilon$$
 for all $x \in I_n$.

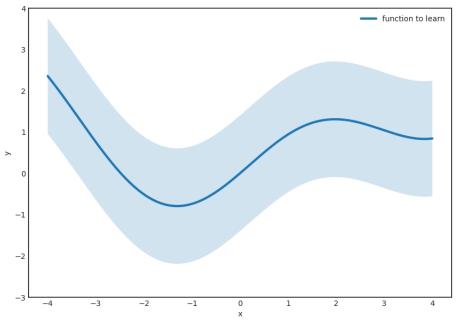
Plain English: as long as the activation function is <u>sigmoid-like</u> and the function to be approximated is <u>continuous</u>, there exists a neural network with a single hidden layer that can approximate it with certain error.

Aside: Universal Function Approximators

Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A 1-D example of the universal approximation theorem

We want to approximate g(x) bounded by some small error ϵ (shaded band) with a single layer NN F(x)



Adapted from https://tivadardanka.com/blog/universal-approximation-theorem

Aside: Universal Function Approximators

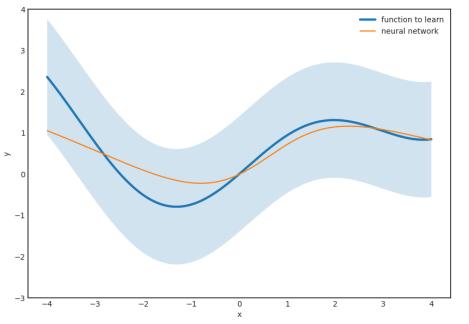
Claim: Neural Networks with certain non-linear activation functions are universal function approximators.

A 1-D example of the universal approximation theorem

We want to approximate g(x) bounded by some small error ϵ (shaded band) with a single layer NN F(x)

The universal approximation theorem guarantees the existence of such an F(x)

... but it doesn't tell us how to get it or what the size of the model (M) should be



Adapted from https://tivadardanka.com/blog/universal-approximation-theorem

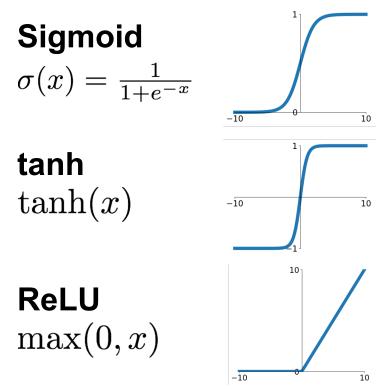
Activation functions

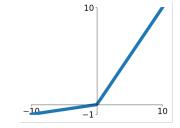
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ $x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H imes D}, W_2 \in \mathbb{R}^{C imes H}$

(In practice we will usually add a learnable bias at each layer as well)

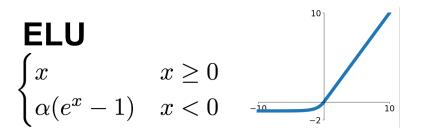
Slide credit: Stanford CS231n Instructors

Activation functions

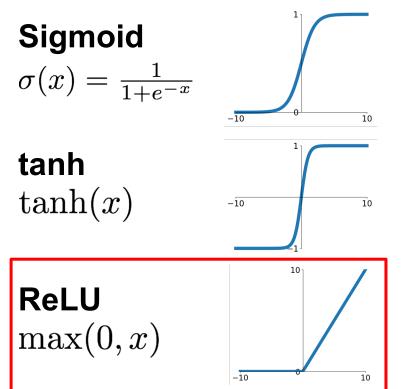




 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

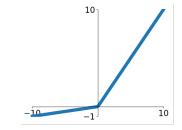


Activation functions

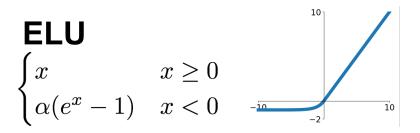


ReLU is a good default choice for most problems

Leaky ReLU $\max(0.1x, x)$



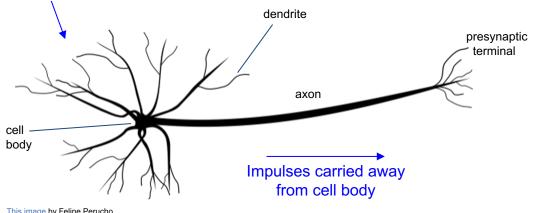
 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$



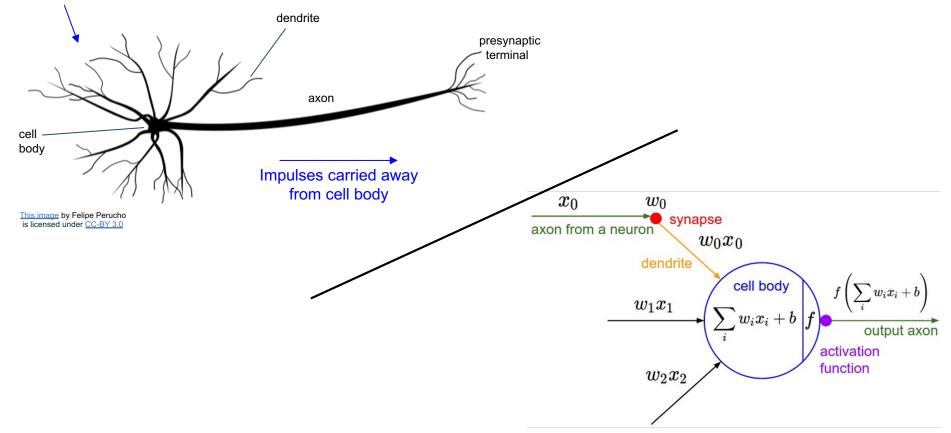
Slide credit: Stanford CS231n Instructors

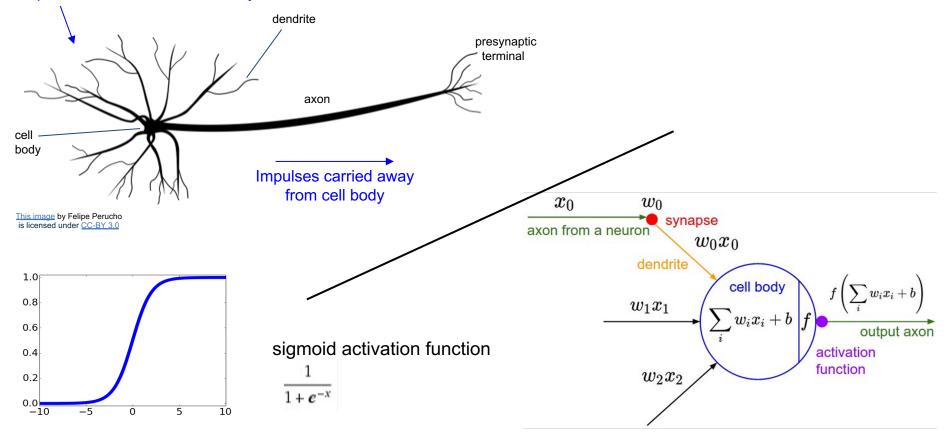
Why are they called Neural Networks, anyway?

This image by Fotis Bobolas is licensed under CC-BY 2.0

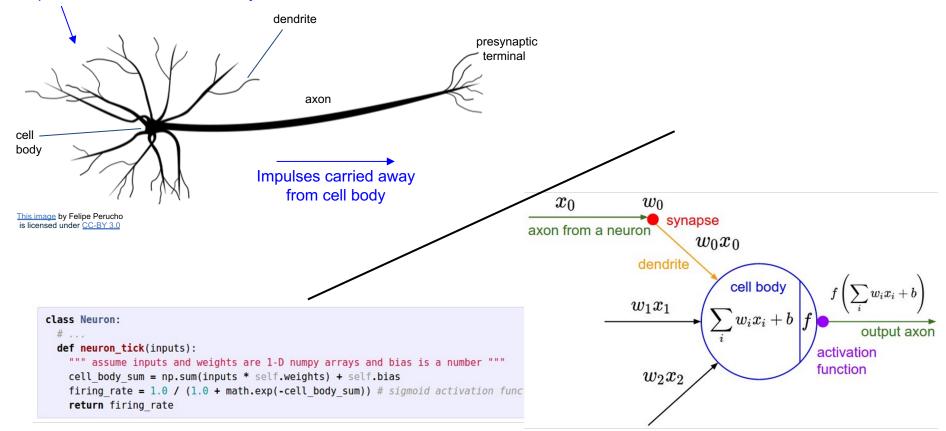


This image by Felipe Perucho is licensed under <u>CC-BY 3.0</u>

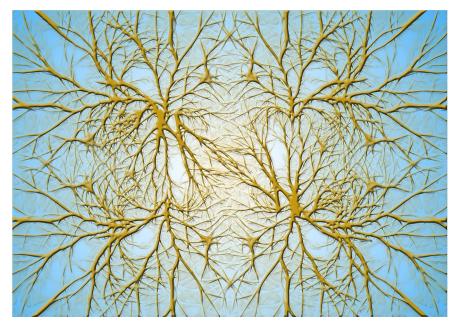




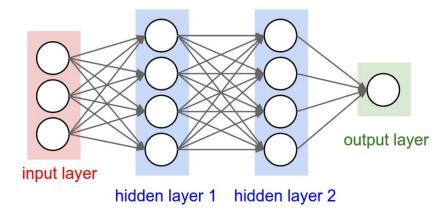
Slide credit: Stanford CS231n Instructors



Biological Neurons: Complex connectivity patterns



Neurons in a neural network: Organized into regular layers for computational efficiency



This image is CC0 Public Domain

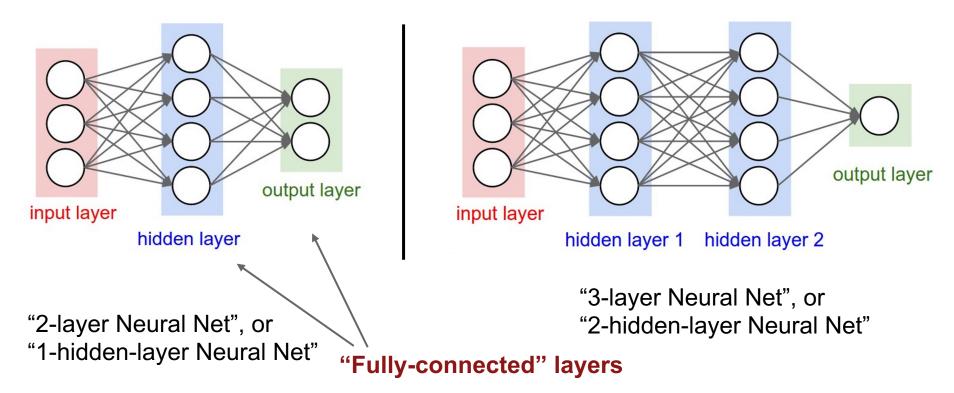
Be very careful with your brain analogies!

Biological Neurons:

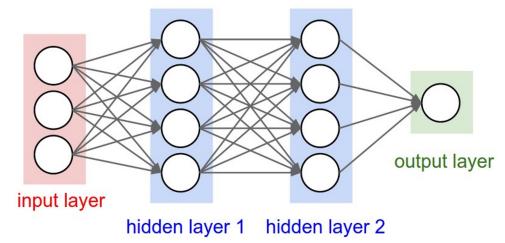
- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Neural networks: Architectures

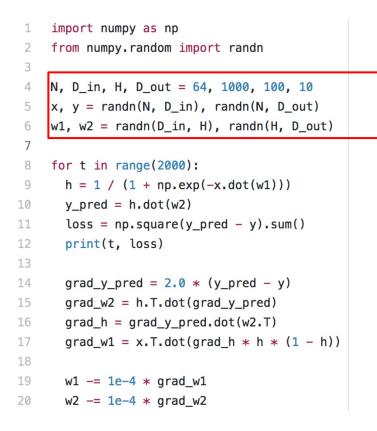


Example feed-forward computation of a neural network

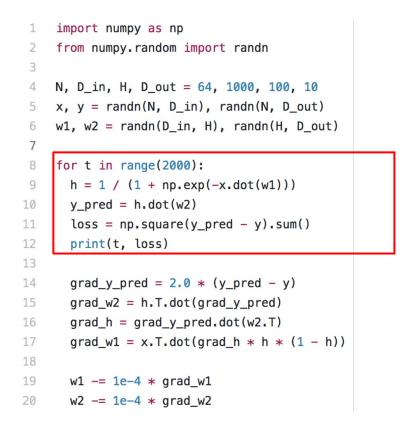


forward-pass of a 3-layer neural network: f = lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) x = np.random.randn(3, 1) # random input vector of three numbers (3x1) h1 = f(np.dot(W1, x) + b1) # calculate first hidden layer activations (4x1) h2 = f(np.dot(W2, h1) + b2) # calculate second hidden layer activations (4x1) out = np.dot(W3, h2) + b3 # output neuron (1x1)

```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * qrad w1
19
20
      w^2 = 1e^4 * qrad w^2
```

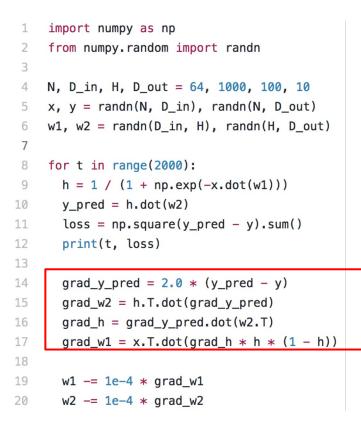


Define the network



Define the network

Forward pass



Define the network

Forward pass

Calculate the analytical gradients

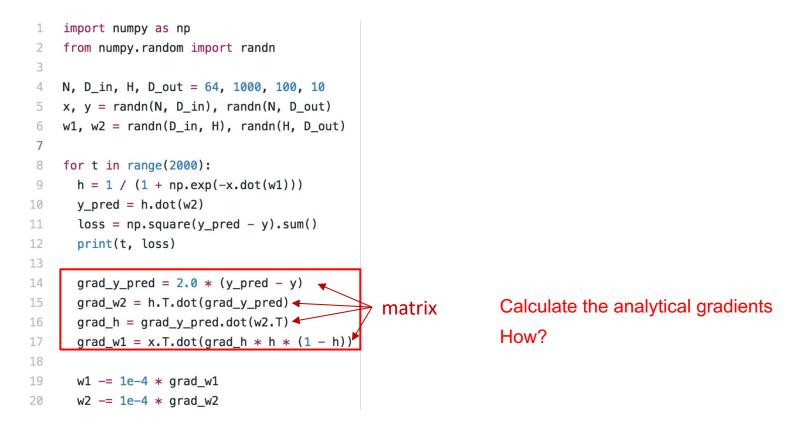
```
import numpy as np
 1
    from numpy.random import randn
 2
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
 4
    x, y = randn(N, D_in), randn(N, D_out)
 5
    w1, w2 = randn(D in, H), randn(H, D out)
 6
 7
    for t in range(2000):
 8
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y \text{ pred} - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
       w1 -= 1e-4 * grad w1
20
      w2 = 1e - 4 * grad_w2
```

Define the network

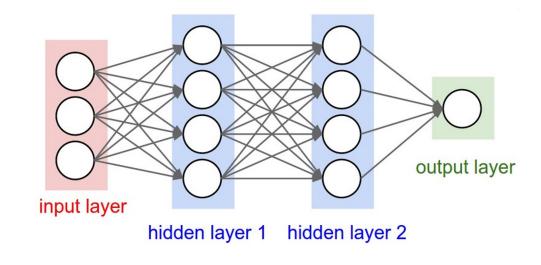
Forward pass

Calculate the analytical gradients

Gradient descent



Next: Vector Calculus!



How do we do backpropagation with neural nets?

Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

Vector to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:

Derivative is Gradient:

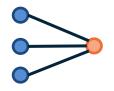
 $x \in \mathbb{R}^N, y \in \mathbb{R}$

 $\frac{\partial y}{\partial x} \in \mathbb{R}$

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

If x changes by a small amount, how much will y change?

For each element of x, if it changes by a small amount, how much will y change?

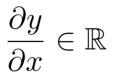


Recap: Vector derivatives

Scalar to Scalar

 $x \in \mathbb{R}, y \in \mathbb{R}$

Regular derivative:



Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is Gradient:

$\frac{\partial y}{\partial x} \in \mathbb{R}^N$	$\left(\frac{\partial y}{\partial x}\right)_n =$	$= \frac{\partial y}{\partial x_n}$
--	--	-------------------------------------

Vector to Vector $x \in \mathbb{R}^N, y \in \mathbb{R}^M$

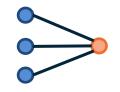
Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^{M \times N} \quad (\frac{\partial y}{\partial x})_{n,m} = \frac{\partial y_n}{\partial x_m}$$

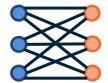
If x changes by a small amount, how much will y change?

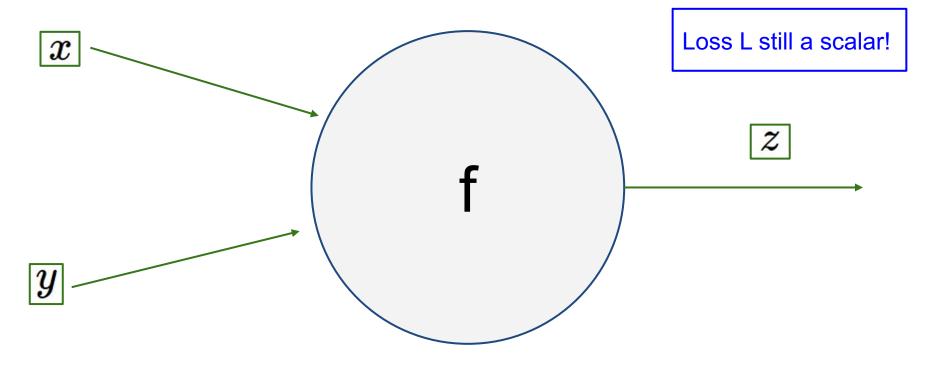
—

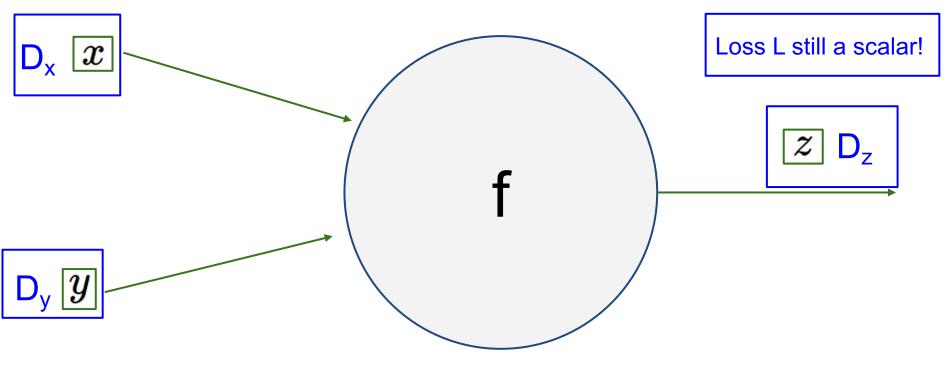
For each element of x, if it changes by a small amount, how much will y change?

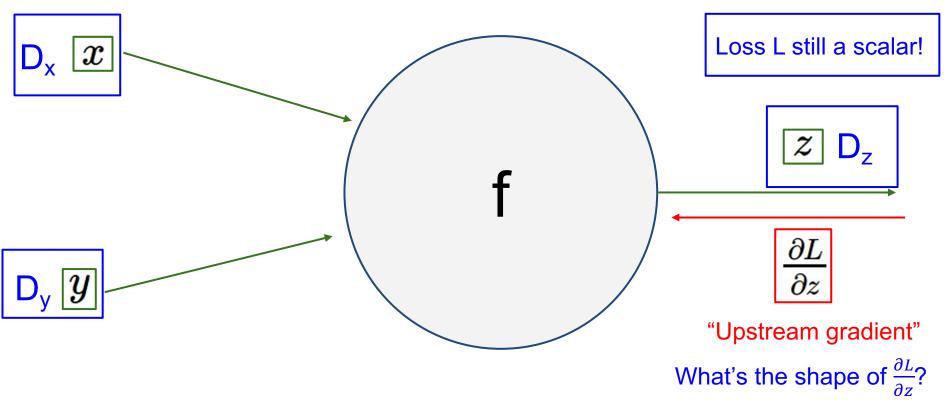


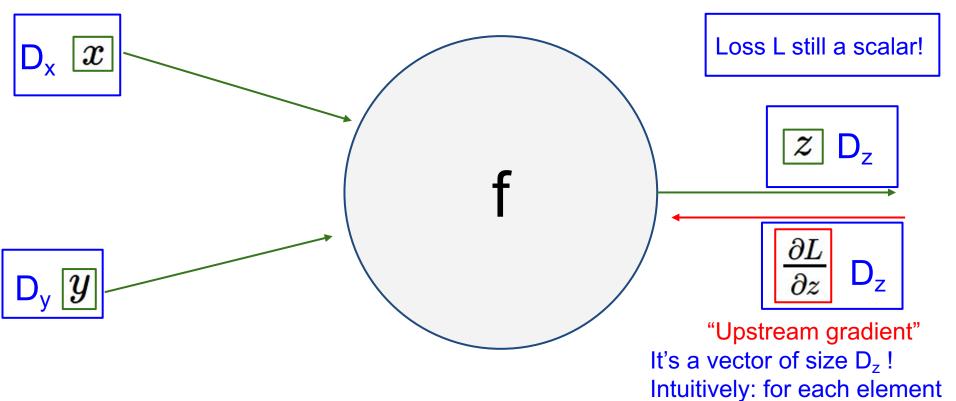
For each element of x, if it changes by a small amount, how much will **each element** of y change?







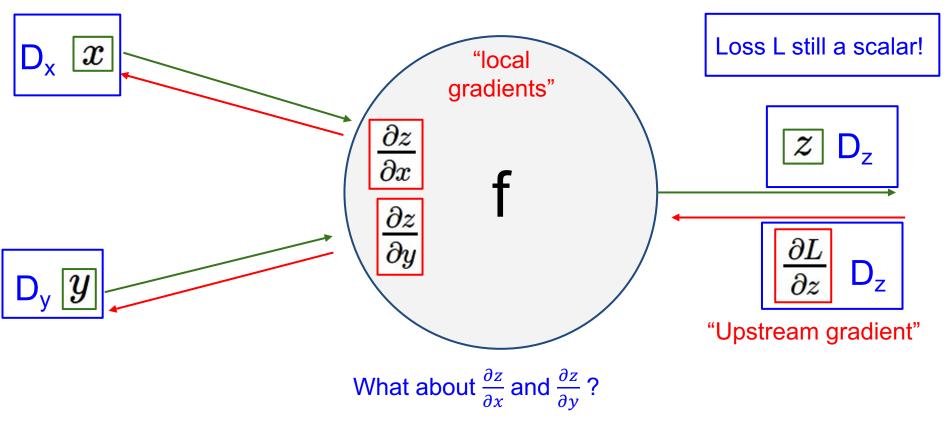


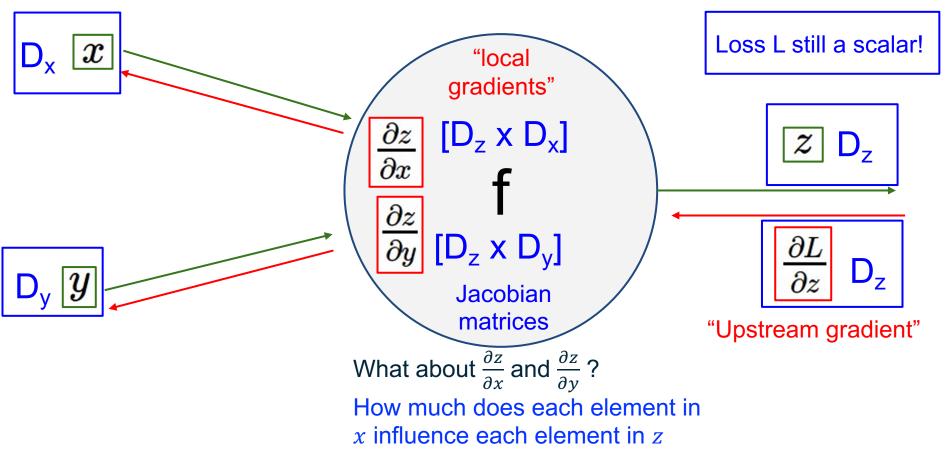


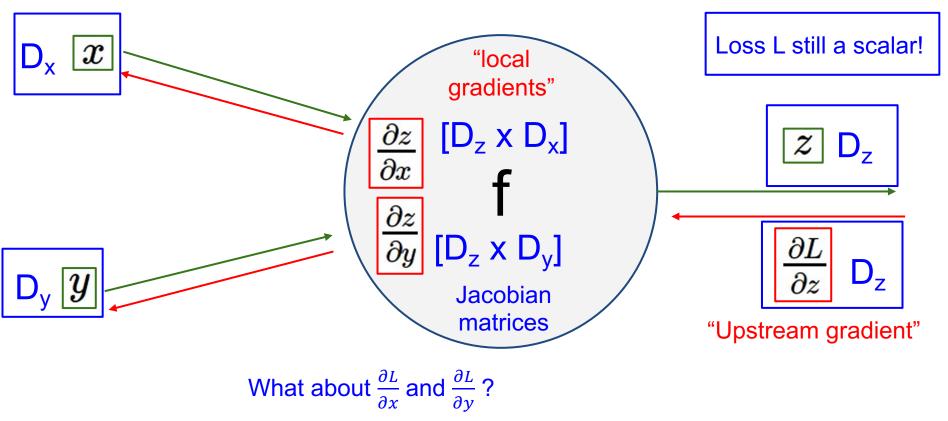
Slide credit: Stanford CS231n Instructors

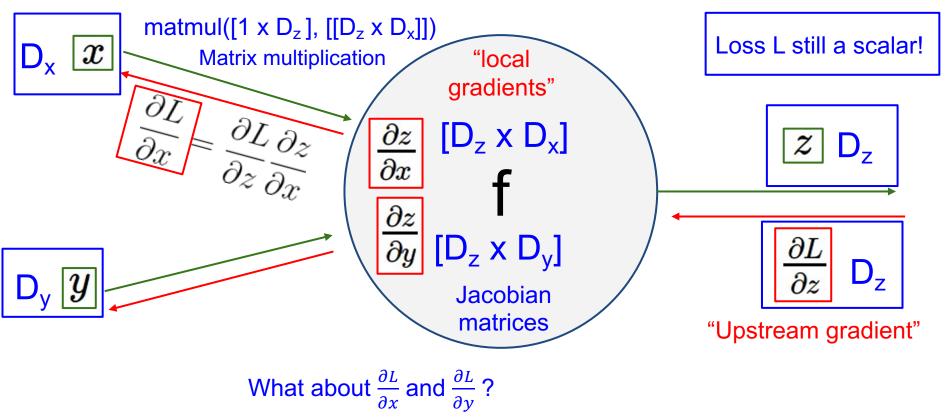
of z, how much does it

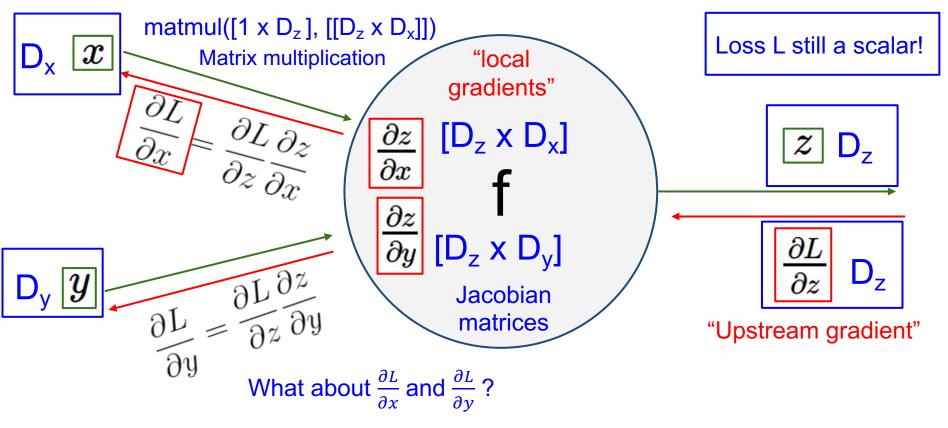
influence L?

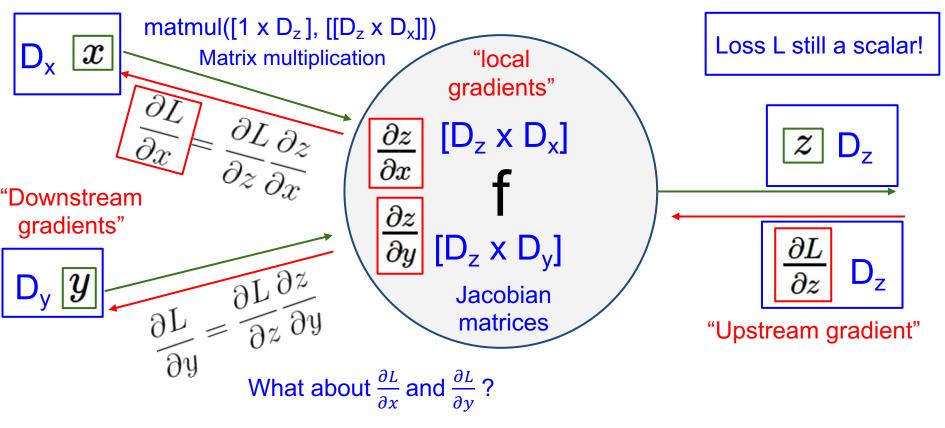




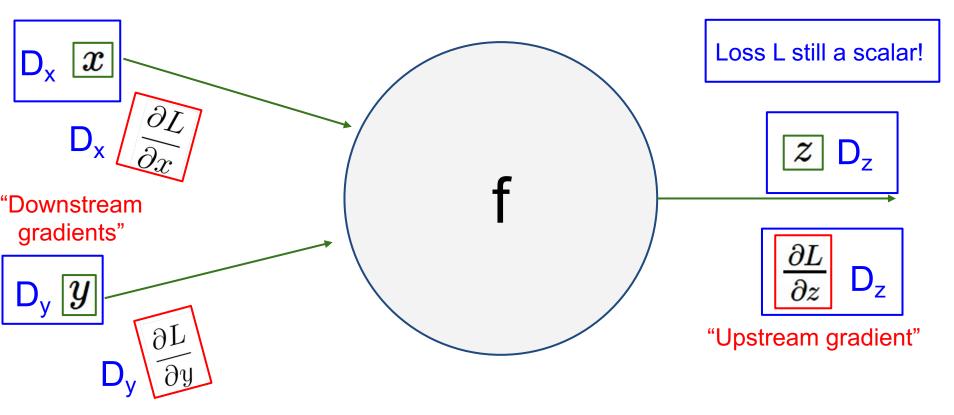








Gradients loss of wrt a variable have same dims as the original variable

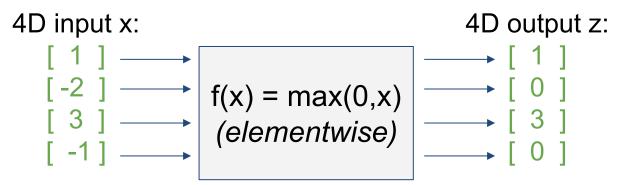


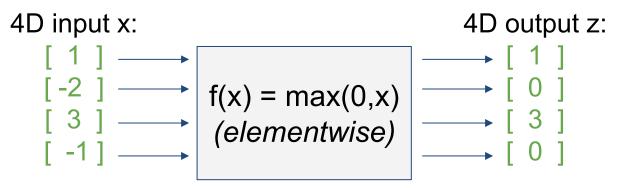
Jacobians

Given a function $f: \mathbb{R}^n \to \mathbb{R}^m$, we have the Jacobian matrix **J** of shape $m \times n$, where $\mathbf{J}_{i,j} = \frac{\partial f_i}{\partial x_j}$

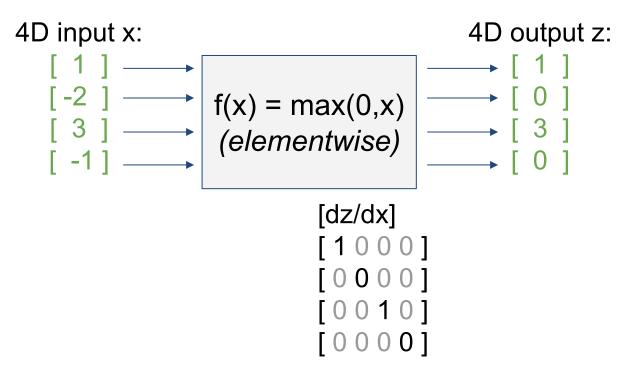
$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{f}}{\partial x_1} & \cdots & \frac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla^{\mathrm{T}} f_1 \\ \vdots \\ \nabla^{\mathrm{T}} f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

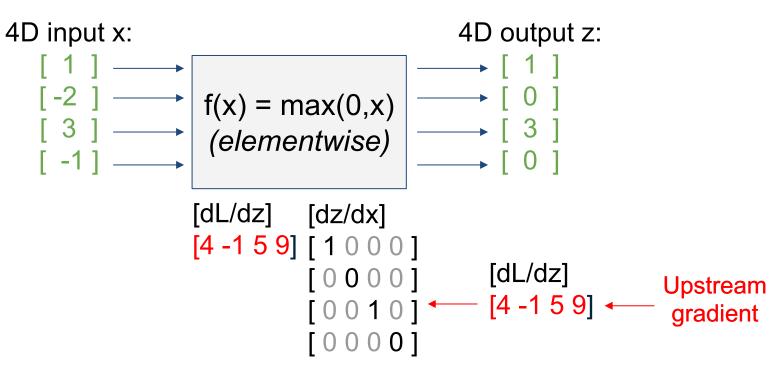
Figure source: https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant

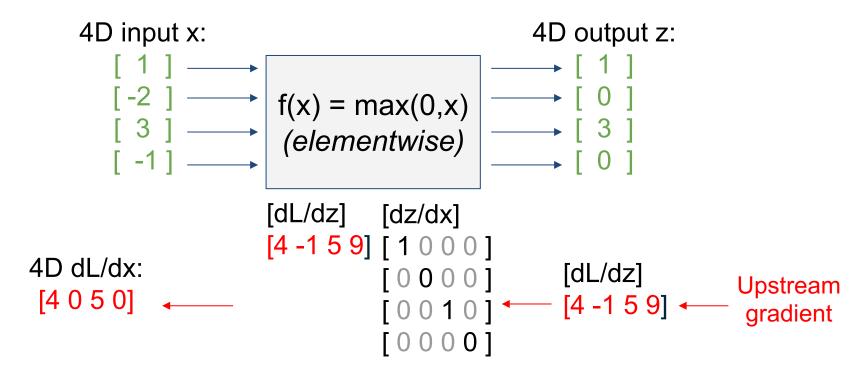


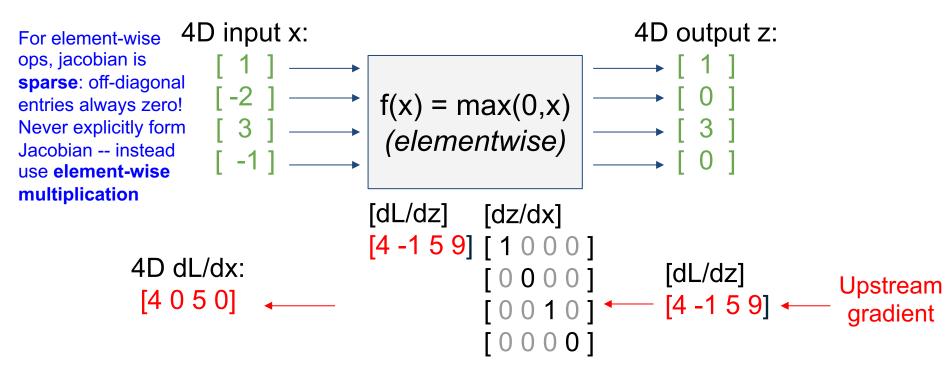


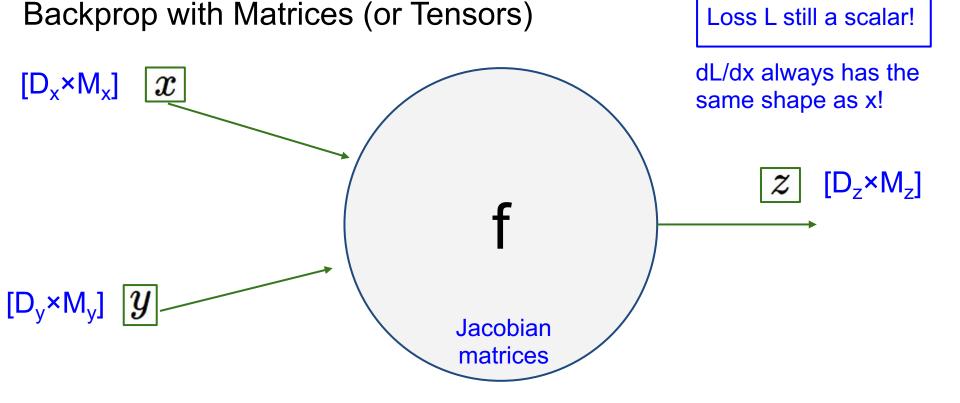
What does $\frac{\partial z}{\partial x}$ look like?



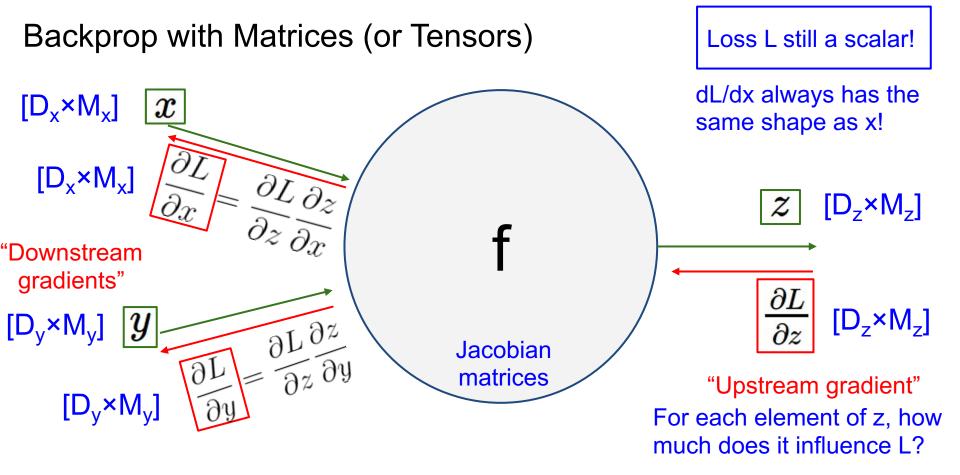


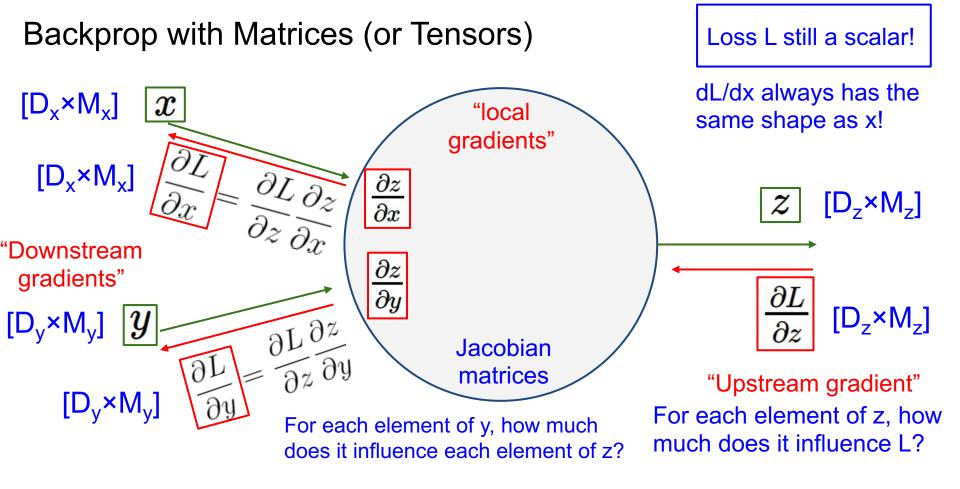


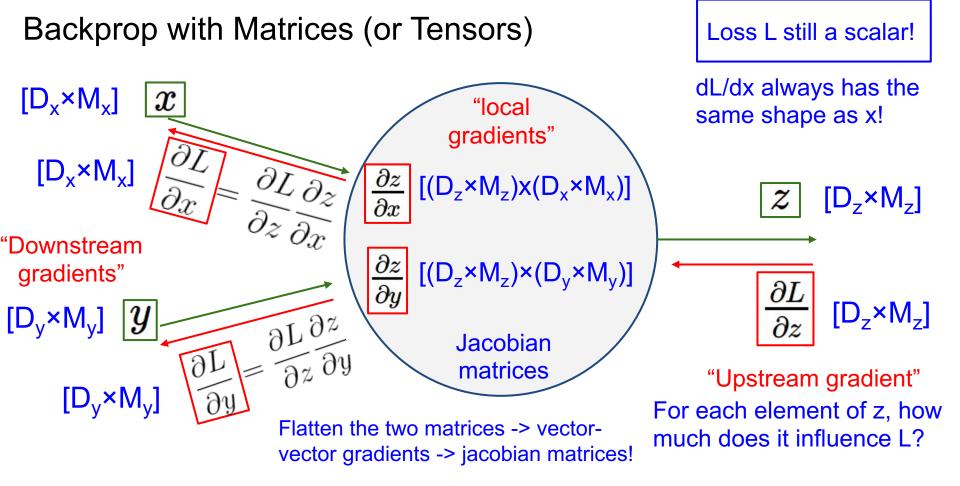




Slide credit: Stanford CS231n Instructors

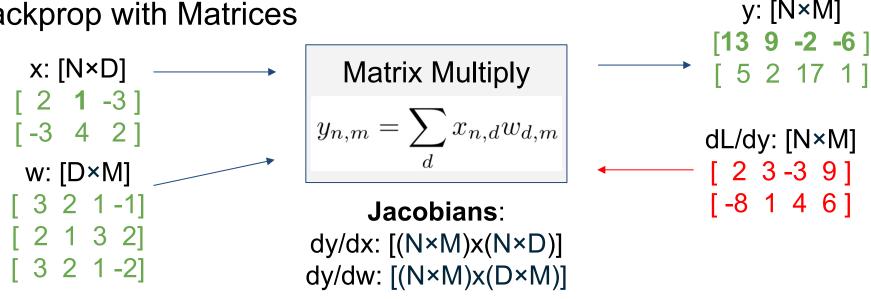






y: [N×M] **Backprop with Matrices** [13 9 -2 -6] x: [N×D] Matrix Multiply [52171] [2 1 -3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ [-3 4 2] dL/dy: [N×M] dw: [D×M] [23-39] [-8 1 4 6] [3 2 1 - 1] 2 1 3 2]

[321-2]



What does the jacobian matrix look like?

x: [N×D] [21-3] [-342] w: [D×M] [321-1] [2132] [321-2] Matrix Multiply $y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$

Jacobians: dy/dx: [(N×M)x(N×D)] dy/dw: [(N×M)x(D×M)]

For a neural net with N=64, D=M=4096 Each Jacobian takes 256 GB of memory! Must exploit its sparsity! y: [N×M]

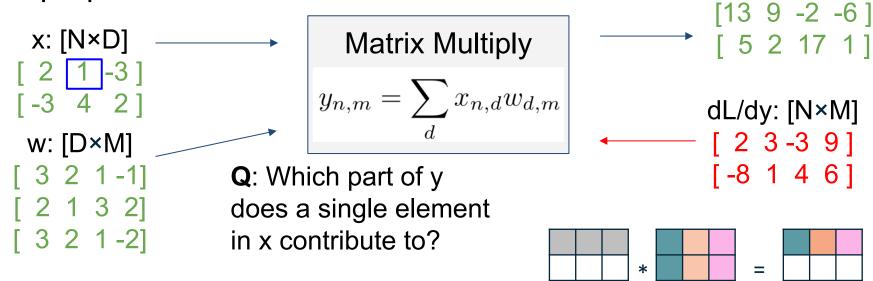
[13 9 -2 -6]

52171]

dL/dy: [N×M]

[23-39]

[-8 1 4 6]



W

X

y: [N×M]

y

x: [N×D] Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ 4 -3 21 dL/dy: [N×M] w: [D×M] **Q**: Which part of y 3 2 1 - 11 2 1 3 2] does a single element 3 2 1 - 2] in x contribute to? A: $x_{n,d}$ affects the * whole row $y_{n,\cdot}$ X W ∂L ∂L $\bar{\partial}x_{n,d}$ m

Recall the branching gradient rule!

=

N×M

6

V

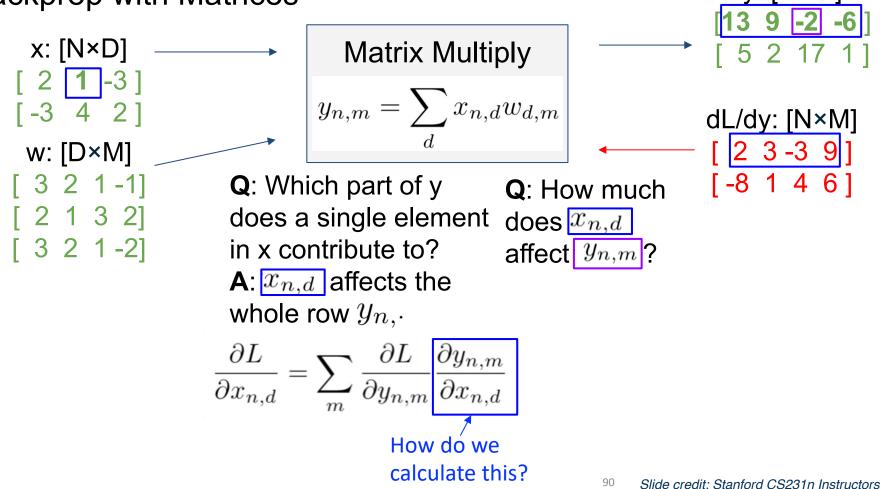
4

x: [N×D] — [21-3] [-342] w: [D×M] [321-1] [2132] [321-2]

Matrix Multiply $y_{n,m} =$ $\sum x_{n,d} w_{d,m}$ **Q**: Which part of y does a single element in x contribute to? A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$ $Oy_{n,m}$ $\overline{\partial} x_{n,r'}$ Upstream local

gradient

gradient



N×M -6 x: [N×D] Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ 4 2] -3 dL/dy: [N×M] w: [D×M] **Q**: Which part of y 6 3 2 1 - 11 4 **Q**: How much 2 1 3 2] does a single element does $x_{n,d}$ [3 2 1 - 2] in x contribute to? affect $y_{n,m}$? A: $x_{n,d}$ affects the $y_{n,m} = \sum x_{n,i} w_{i,m}$ whole row $y_{n,\cdot}$ $\partial y_{n,m}$ $\frac{\partial y_{n,m}}{\partial x_{n,d}} = w_{d,m}$ How do we calculate this?

-6 x: [N×D] Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ 4 2] -3 dL/dy: [N×M] w: [D×M] 6 **Q**: Which part of y Q: How much 4 21 -11 2 1 3 2] does a single element does $x_{n,d}$ 3 2 1 - 2] in x contribute to? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $w_{d,m}$ 92 Slide credit: Stanford CS231n Instructors

-6 x: [N×D] Matrix Multiply $y_{n,m} = \sum x_{n,d} w_{d,m}$ -3 4 21 dL/dy: [N×M] w: [D×M] **Q**: Which part of y Q: How much 4 6 -11 2 1 3 2] does a single element does $x_{n,d}$ 3 2 1 - 2] in x contribute to? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m} = \frac{\partial L}{\partial y_{n}} w_{d}^{T}$ Just a dot product! $w_{d,m}$ 93 Slide credit: Stanford CS231n Instructors

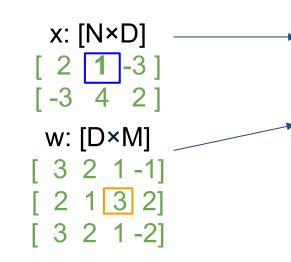
x: [N×D] Matrix Multiply 1 -3] $y_{n,m} = \sum x_{n,d} w_{d,m}$ 4 2] -3 dL/dy: [N×M] w: [D×M] **Q**: Which part of y 6 3 2 1 - 11 4 **Q**: How much 2 1 3 2 does a single element does $x_{n,d}$ 3 2 1 - 2] in x contribute to? affect $y_{n,m}$? A: $x_{n,d}$ affects the A: $w_{d,m}$ $[N \times D]$ $[N \times M]$ $[M \times D]$ whole row $y_{n,\cdot}$ $\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m} = \frac{\partial L}{\partial y_{n}} w_{d}^{T}$

Just a matrix multiplication No jacobian matrix needed!

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

 $[N \times D]$ $[N \times M]$ $[M \times D]$

$$\left[\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y}\right)\right]$$



Backprop with Matrices

Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

V. [V] V/J

 ∂L ∂x

 $[N \times D]$ $[N \times M]$ $[M \times D]$

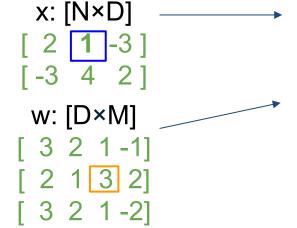
By similar logic:

 $[D \times M]$ $[D \times N]$ $[N \times M]$

 ∂L

 $^{1}\partial u$

For a neural net layer with N=64, D=M=4096 The larges matrix (W) takes up to 0.13 GB memory



Matrix Multiply
$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

y: [N×M]

Backprop with Matrices

Summary:

- Review backpropagation
- Neural networks, activation functions
- NNs as universal function approximators
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

Next Time: How to Pick a Project!