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Topics:
• Backpropagation
• Computation Graph and Automatic Differentiation



Administrative

• PS1 / HW1 is out. Due by Sep 19th 11:59pm (+48hr grace period)
• Use Piazza for Q&A
• PS1 / HW1 tutorial 1pm Sep 6st (Friday) 3:15 PM (hosted by David He and 

Tony Tu)
• The tutorial will be recorded.
• Start early!
• Project proposal prompt posting soon. Due Sep 24th (no grace period)



Recap: Multiclass SVM loss

Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 = #
𝒋#𝒚𝒊

$
𝟎
𝒔𝒋

= #
𝒋#𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

− 𝒔𝒚𝒊 + 𝟏
𝐢𝐟 𝒔𝒚𝒊 ≥ 𝒔𝒋 + 𝟏
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

“Hinge Loss”

𝒔𝒚𝒊𝒔𝒋

𝑳𝒊

scores for other classes

margin

score
score for correct class

Loss = 0:

𝟏



Recap: Regularization
Q: How do we pick between W and 2W?
A: Opt for simpler functions to avoid overfit

How? Regularization!

= regularization strength 
(hyperparameter)

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data



Want to interpret raw classifier scores as probabilities

Softmax 
Function

How do we optimize the classifier? We maximize the probability of 𝑝#(𝑦$|𝑥$)

Recap: Softmax Classifier and Cross Entropy Loss

Want to interpret raw classifier scores as probabilities

Softmax
Function*# + = #! , = "! = -$!"

∑%-$#

How do we optimize the classifier? We maximize the probability of /#(#!|"!)!

Finding a set of weights & that maximizes the 
probability of correct prediction: argmax

!
∏-! ." /"

This is equivalent to:

argmax
!

0ln-! ." /"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of 
observed data. In this case, the loss function is the 
Negative Log-Likelihood (NLL).

3" = −ln-! ." /" = −ln 6#!"
∑$6##

Recap: Softmax Classifier and Cross Entropy Loss

2. Information theory view:
Derive NLL from the cross entropy measurement. 
Also known as the cross-entropy loss

Cross Entropy: 8 -, 9 = −0: ; ln <(;)

?% :, :! = −0
&∈(

: @ ;% ln :! @ ;%

= −ln:! @% ;%
A =0?% :, :! = −0ln:! @% ;% ≡ CAA

Cross Entropy Loss -> NLL 
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Q: Why softmax?

Consider the following three basis for NLL:
1. Squash and clip network value (x) to (0, 1]
2. (Negative) logistic function
3. NLL with logistic function

2. NLL w/ logistic: Strong guidance 
when classifier is wrong

Only saturate at convergence,
e.g. 𝜎(3) ≈ 0.95

Use logistic function as example. Same as softmax 
but for binary classification

Cross-Entropy Loss Example

Q: Why softmax?

*# + = #! , = "! = -$!"
∑%-$#

Why this?

Use logistic function as example. Same as softmax
but for binary classification

: ; = <%
1 + <%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative 

likelihood)

1. Squash & clip: no loss, 
no learning!

Why this?
Want to interpret raw classifier scores as probabilities
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Cross Entropy Loss -> NLL 



Loss Function and Optimization

⬣ Input (and representation)
⬣ Functional form of the model

⬣ Including parameters
⬣ Performance measure to improve

⬣ Loss or objective function
⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model
Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model
𝒇 𝒙,𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



The Loss Landscape

Gradient-based Optimization

As weights change, the gradients 
change as well
⬣ This is often somewhat-smooth 

locally, so small changes in 
weights produce small changes 
in the loss

We can therefore think about 
iterative algorithms that take 
current values of weights and 
modify them a bit

𝑤%
𝑤&



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative:

⬣ Gradient is multi-dimensional derivatives

⬣ Notation: )*
)+

is the gradient of 𝑓(e.g., a loss function) 
with respect to variable 𝑤 (e.g., a weight vector). 

⬣ 𝝏𝒇
𝝏𝒘

is of the same shape as 𝑤

⬣ Intuitively: Measures how the function changes as 
the variable 𝑤 changes by a small step size

⬣ Steepest descent direction is the negative gradient
⬣ Gradient descent: Minimize loss by changing 

parameters

𝝏𝒇
𝝏𝒘

= lim
𝒉→𝟎

𝒇 𝒘 + 𝒉 − 𝒇(𝒘)
𝒉

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative
#/media/File:Tangent_animation.gif

∆𝒙



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative:

⬣ Gradient is multi-dimensional derivatives

⬣ Notation: )*
)+

is the gradient of 𝑓(e.g., a loss function) 
with respect to variable 𝑤 (e.g., a weight vector). 
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𝑤%
𝑤&

< −
𝜕𝐿
𝜕𝑤$

, −
𝜕𝐿
𝜕𝑤%

, 𝐿 >



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

Calculate gradients: finite differences



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:
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0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

Calculate gradients: finite differences



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



Computing Gradients

Several ways to compute 𝝏𝑳𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

More on autodiff: 
https://www.cs.toronto.edu/~rgrosse/courses/csc421_201
9/readings/L06%20Automatic%20Differentiation.pdf

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/readings/L06%20Automatic%20Differentiation.pdf


Numerical gradient: slow, approximate, easy to implement
Analytic gradient: fast, exact, error-prone (if implemented from scratch)

Almost all differentiable functions that you can think of have analytical 
gradients implemented in popular libraries, e.g., PyTorch, TensorFlow.

If you want to derive your own gradients, check your implementation with 
numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



⬣ 1. Choose a model: 𝒇 𝒙,𝑾 = Wx

⬣ 2. Choose loss function: 𝑳𝒊 = |𝒚 −𝑾𝒙𝒊|𝟐

⬣ 3. Calculate partial derivative for each parameter: 𝝏𝑳
𝝏𝒘𝒊

⬣ 4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳
𝝏𝒘𝒊

⬣ 5. Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

⬣ Repeat 3-5 

The gradient descent algorithm



Decomposing a Function 

Compose into a

complex function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

𝐬𝐢𝐧(𝒙)
𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑
− 𝐥𝐨𝐠

𝟏
𝟏 + 𝒆!𝒘⋅𝒙

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆K𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

How to compute gradients for deep neural networks?



Decomposing a Function 

./

.0 = ./
.2
.2
.3

.3

.0

! ⋅ # $
$ + &LM −()* +

, + -

This is a computation graph! 

NO
NP

NP
NQ

NQ
NR

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., *+*,)
2. Trace the computation graph (backward) to calculate the global 

gradients for each node w.r.t. to the loss function.
Decomposing a Function 

./

.0 = ./
.2
.2
.3

.3

.0

! ⋅ # $
$ + &LM −()* +

, + -

This is a computation graph! 

NO
NP

NP
NQ

NQ
NR

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., *+*,)
2. Trace the computation graph (backward) to calculate the global 

gradients for each node w.r.t. to the loss function.

Chain rule



Functions can be made arbitrarily complex (subject to memory and 
computational limits), e.g.:

𝒇 𝒙,𝑾 = 𝝈(𝑾𝟓𝝈(𝑾𝟒𝝈(𝑾𝟑𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )

We can use any type of differentiable function (layer) we want!

Loss 
FunctionInput

Label

𝝏𝑳
𝝏𝒘𝒊
?



To develop a general algorithm for this, we will 
view the function as a computation graph

Graph can be any directed acyclic graph
(DAG)

⬣ Modules must be differentiable to 
support gradient computations for
gradient descent

The backpropagation algorithm will then
process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computational Graph



18

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e.g. x = -2, y = 5, z = -4

20

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e.g. x = -2, y = 5, z = -4

Want:
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Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e.g. x = -2, y = 5, z = -4

1. Calculate local gradients

Want:

22

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e.g. x = -2, y = 5, z = -4

1. Calculate local gradients

Want:
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Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



e.g. x = -2, y = 5, z = -4

Want:

24
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:

25
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream 
gradient

Local 
gradient

29
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream 
gradient

Local 
gradient

30
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

Upstream 
gradient

Local 
gradient

31
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream 
gradient

Local 
gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



add gate: gradient replicator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

S = T + U
NS
NT =

NS
NU = 1

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



add gate: gradient replicator
Q: What is a max gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



add gate: gradient replicator
max gate: gradient router

only the path selected by the 
max operator gets the 
upstream gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



add gate: gradient replicator
max gate: gradient router 
Q: What is a mul gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



add gate: gradient replicator
max gate: gradient router 
mul gate: gradient switcher

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

S = T V U
NS
NT = U NS

NU = T

How does a local gradient modify the upstream gradient? 𝑓 = 2(𝑥𝑦 + max 𝑧,𝑤 )

Patterns in backward flow



+

…

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

…

… as long as the branches join at some point in the graph

copy

copy

Upstream gradients add at fork branches

𝑢 = 𝑓%(… )

… = 𝑓&(𝑢)

… = 𝑓+(𝑢)



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! +"#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= 1 > ?I + 1 > 2A
= ?I + 2A

Derivation: B = ?I + AJ
CB
CD = ?I + 2A

Claim: ,-
,.
= ,-

,/.

,/.
,.
+ ,-

,//

,//
,.

= 1 Q 𝑒. + 1 Q 2𝑥 = 𝑒. + 2𝑥

Derivation: 𝐿 = 𝑒. + 𝑥&
𝜕𝐿
𝜕𝑥 = 𝑒. + 2𝑥

Upstream gradients add at fork branches



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! +"#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= 1 > ?I + 1 > 2A
= ?I + 2A

Derivation: B = ?I + AJ
CB
CD = ?I + 2A

x

"! = $"

"# = %#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

& = "! ∗ "#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= AJ > ?I + ?I > 2A
Derivation: B = ?I ∗ AJ
CB
CD = ?I > 2A + ?I > AJ = AJ > ?I + ?I > 2A

𝐿 = 𝑓& B 𝑓'

Claim: ,-
,.
= ,-

,/.

,/.
,.
+ ,-

,//

,//
,.

= 𝑥& Q 𝑒. + 𝑒. Q 2𝑥 Derivation: 𝐿 = 𝑒. Q 𝑥&
𝜕𝐿
𝜕𝑥 = 𝑒. Q 2𝑥 + 𝑒. Q 𝑥&

Upstream gradients add at fork branches



(C) Dhruv Batra 43
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+

FPROP BPROP

SU
M

CO
PY

Duality in F(orward)prop and B(ack)prop



Given this computation graph, the training 
algorithm will:
⬣ Calculate the current model’s outputs 

(called the forward pass)
⬣ Calculate the gradients for each 

module (called the backward pass)
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Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph 
(DAG)

⬣ Graph represents an ordering constraining which paths 
must be calculated first

Given an ordering, we can then iterate from the last module 
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for 
efficient computation

⬣ We will do this automatically by tracing the entire graph, 
aggregate and assign gradients at each function / 
parameters, from output to input.

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph
⬣ Input = Data + Parameters
⬣ Output = Loss
⬣ Scheduling = Topological ordering

Auto-Diff
⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



Deep Learning Framework = Differentiable Programming Engine

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)
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Graph (or Net) object (rough psuedo code)
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Modularized implementation: forward / backward API
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Modularized implementation: forward / backward API
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Modularized implementation: forward / backward API



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20)) 
prev_h = Variable(torch.randn(1, 20)) 
W_h = Variable(torch.randn(20, 20)) 
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t()) 
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

% - h %0 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the flyWriting code == building graph

From pytorch.org



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural Turing Machine

https://twitter.com/karpathy/status/597631909930242048?lang=en


⬣ Computation graphs are not 
limited to mathematical 
functions!

⬣ Can have control flows (if 
statements, loops) and 
backpropagate through 
algorithms!

⬣ Can be done dynamically so 
that gradients are computed, 
then nodes are added, repeat

Adapted from figure by Andrej Karpathy

Program Space

Power of Automatic Differentiation

Software 1.0

Software 2.0

Program complexity

(optimization)



⬣ Autodiff from scratch: micrograd repo, video tutorial

Power of Automatic Differentiation

https://github.com/karpathy/micrograd
https://www.youtube.com/watch?time_continue=3050&v=VMj-3S1tku0&feature=emb_title


Power of Automatic Differentiation

Next time:
• More on backprop but for (shallow) neural nets!
• Jacobians
• Activation functions


