CS 4644 / 7643-A DANFEI XU

Topics:

- Machine learning intro, applications (CV, NLP, etc.)
- Parametric models and their components

- PSO: This should take less than 3hrs!
- Please do it now, and give others a chance at waitlist if your background is not sufficient (beef it up and take it next time)
 - Do it even if you're on the waitlist!
- **Piazza**: not all enrolled!
- Office hours start next week
- Start finding your project partners

Collaboration

- Only on HWs and project (not allowed in HW0/PS0).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part
- Do NOT search for code implementing what we ask; search for concepts
- Zero tolerance on plagiarism
 - Neither ethical nor in your best interest
 - Always credit your sources
 - Don't cheat. We will find out.

• Grace period

- 2 days grace period for each assignment (EXCEPT PSO)
 - Intended for checking submission NOT to replace due date
 - No need to ask for grace, no penalty for turning it in within grace period
 - Can NOT use for PS0
- After grace period, you get a 0 (no excuses except medical)
 - Send all medical requests to dean of students (https://studentlife.gatech.edu/)
 - Form: <u>https://gatech-advocate.symplicity.com/care_report/index.php/pid224342</u>
- **DO NOT SEND US ANY MEDICAL INFORMATION!** We do not need any details, just a confirmation from dean of students

Learn Numpy!

CS231n Convolutional Neural Networks for Visual Recognition

Python Numpy Tutorial

This tutorial was contributed by Justin Johnson.

We will use the Python programming language for all assignments in this course. Python is a great generalpurpose programming language on its own, but with the help of a few popular libraries (numpy, scipy, matplotlib) it becomes a powerful environment for scientific computing.

We expect that many of you will have some experience with Python and numpy; for the rest of you, this section will serve as a quick crash course both on the Python programming language and on the use of Python for scientific computing.

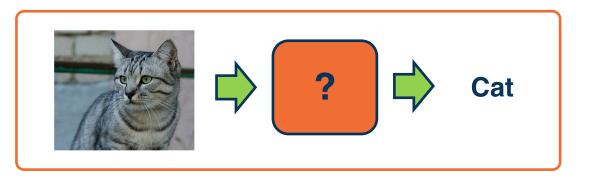
```
http://cs231n.github.io/python-numpy-tutorial/
```

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Machine Learning Overview

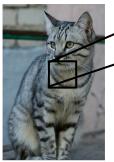
When is Machine Learning useful?

```
algorithm quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)
algorithm partition(A, lo, hi) is
    pivot := A[hi]
    i := lo
    for j := lo to hi do
        if A[j] < pivot then
            swap A[i] with A[j]
            i := i + 1
    swap A[i] with A[hi]
    return i
```



When it's difficult / infeasible to write a program

Example: Object Recognition



What the computer sees What the computer sees

An image is just a big grid of numbers between [0, 255]:

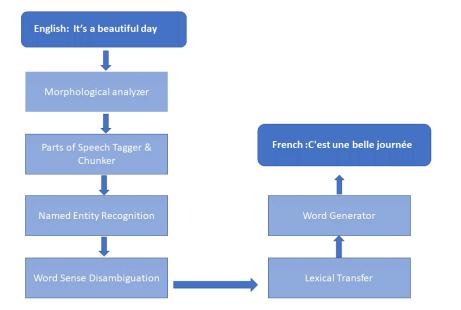
e.g. 800 x 600 x 3 (3 channels RGB)

Viewpoint Changes All pixels change when the camera moves! Illumination Deformation This image by sare <u>Salvaonin</u> i bear is licensed licensed icensed

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

When Machine Learning is Useful

Example: Machine Translation



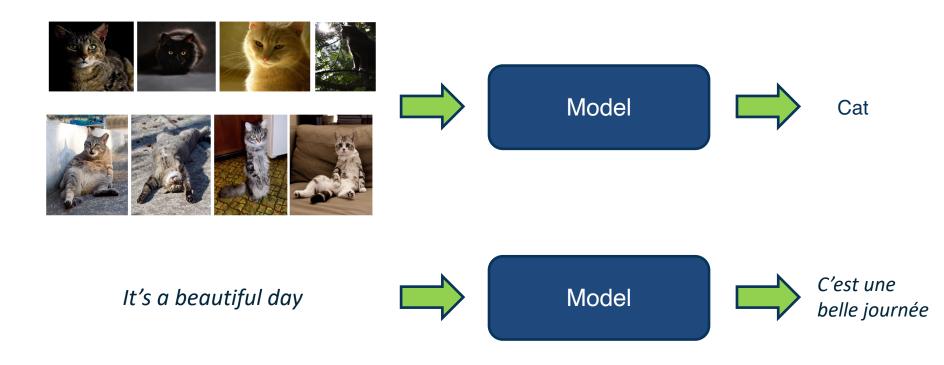
But what about ...

...

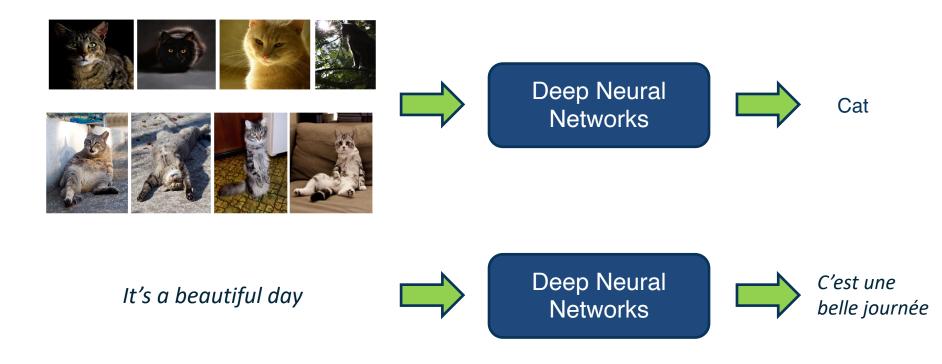
...

- Word play, jokes, puns, hidden messages
- Concept gaps: go Jackets! George P. Burdell
- Other constraints: lyrics, dubbing, poem,

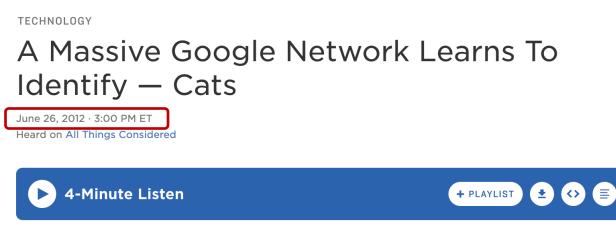
The Power of Machine Learning



The Power of Machine Learning



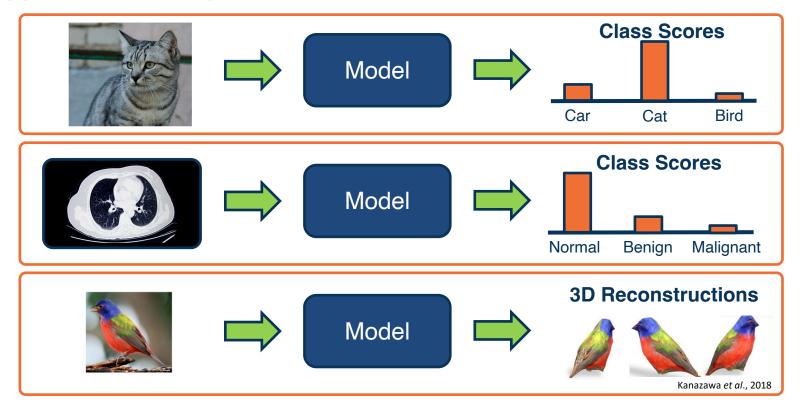
The Power of (Deep) Machine Learning



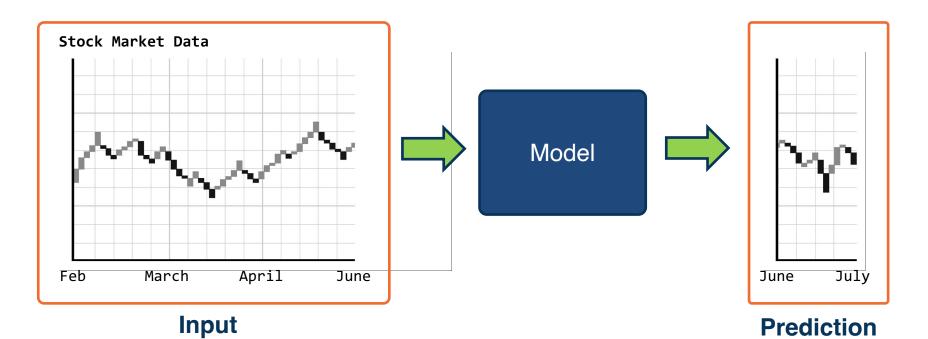
All Things Considered host Audie Cornish talks with Andrew Ng, Associate Professor of Computer Science at Stanford University. He led a Google research team in creating a neural network out of 16,000 computer processors to try and mimic the functions of the human brain. Given three days on YouTube, the network taught itself how to identify — cats.

Source: https://www.npr.org/2012/06/26/155792609/a-massive-google-network-learns-to-identify

Application: Computer Vision

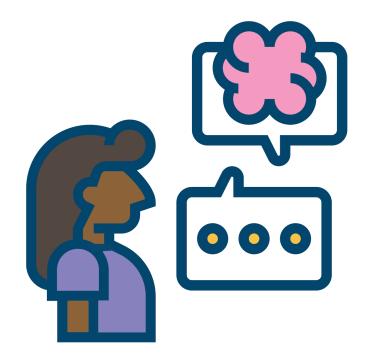


Application: Time Series Forecasting



Example: Time Series Forecasting

Application: Natural Language Processing (NLP)



Very large number of NLP sub-tasks:

- Syntax Parsing
- Translation
- Named entity recognition
- Summarization
- Generation

Sequence modeling: Variable length sequential inputs and/or outputs

Recent progress: Large-scale Language Models

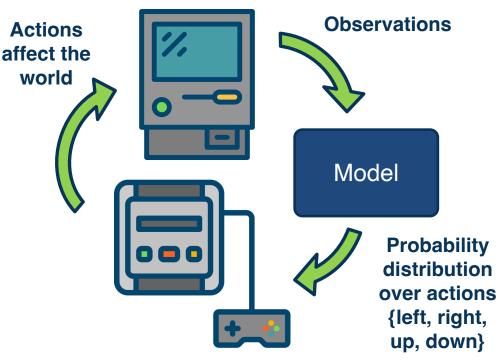
Application: Decision Making

Example: Video Game

 Sequence of inputs/outputs

 Actions affect the environment

Examples: Chess / Go, Video Games, Recommendation Systems, Web Agents ...



Georgia Tech

Robotics involves a **combination** of Al/ML techniques:

- Sense: Perception
- Plan: Planning
- Act: Controls

Some things are **learned** (perception), while others programmed

An evolving landscape

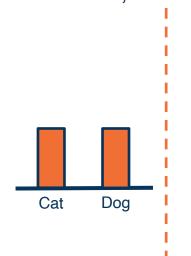
Rest of the lecture (also next lecture):

- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

Supervised Learning

- Train Input: {X, Y}
- Learning output: $f : X \rightarrow Y$
- Usually f is a distribution,
 e.g. P(y|x)

https://en.wikipedia.org/wiki/CatDog



X =

Y =

Dataset

Types of Machine Learning

Supervised Learning

- Train Input: {X, Y}
- Learning output: $f : X \to Y$, e.g. p(y|x)

Terminology:

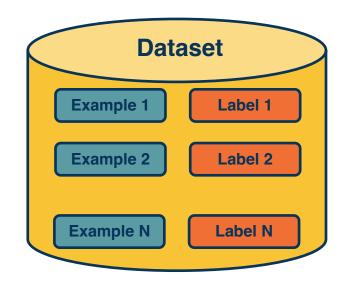
- Model / Hypothesis Class
 - $H: \{f: X \to Y\}$
 - Learning is search in hypothesis space

E.g.,
$$H = \{f(x) = w^T x \mid w \in \mathbb{R}^d\}$$

Dataset

$$X = \{x_1, x_2, \dots, x_N\}$$
 where $x \in \mathbb{R}^d$ **Examples**

$$Y = \{y_1, y_2, \dots, y_N\} where \ y \in \mathbb{R}^d$$



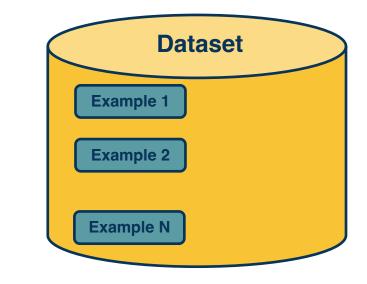
Labels

Dataset

$$X = \{x_1, x_2, \dots, x_N\} where \ x \in \mathbb{R}^d$$

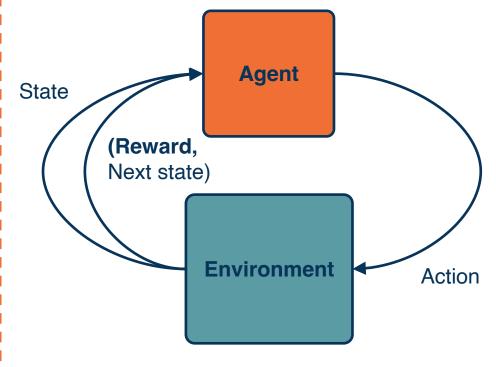
Unsupervised Learning

- Input: {X}
- Learning output: $p_{data}(x)$
- How likely is x under p_{data} ?
- Can we sample from p_{data} ?
- Example: Clustering, density estimation, generative modeling, ...



Reinforcement Learning

- Supervision in the form of reward
- No supervision on what action to take, but the expected outcome, e.g., control a robot to run fast.



Adapted from: http://cs231n.stanford.edu/slides/2020/lecture_17.pdf

Types of Machine Learning

Supervised Learning

- Train Input: {X, Y}
- Learning output: $f: X \rightarrow Y$, e.g. P(y|x)

Unsupervised Learning

- Input: {X}
- Learning output: P(x)
- Example: Clustering, density estimation, etc.

Reinforcement Learning

- Supervision in form of reward
- No supervision on what action to take

Very often combined, sometimes within the same model!

Rest of the lecture (also next lecture):

- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

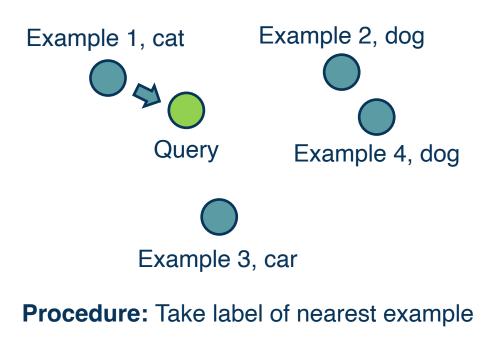
Non-Parametric Model

No explicit model for the function, **examples**:

- Nearest neighbor classifier
- Decision tree

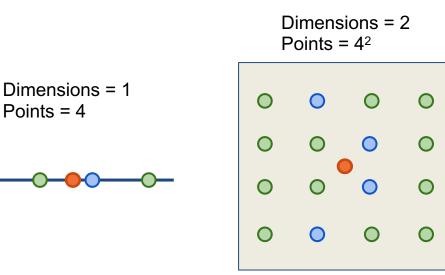
Hypothesis class changes with the number of data points

Non-Parametric – Nearest Neighbor

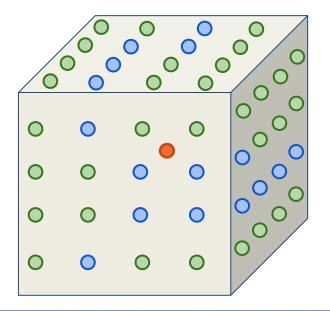


k-Nearest Neighbor on high-dimensional data (e.g., images) is *almost never* used.

Curse of dimensionality



Dimensions = 3 Points = 4^3



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Curse of Dimensionality

- Curse of Dimensionality
 - Data required increases exponentially with the number of dimensions

- Doesn't work well when large number of irrelevant features
 - Distances overwhelmed by noisy features

- Expensive
 - No Learning: most real work done during testing
 - For every test sample, must search through all dataset very slow!
 - Must use tricks like approximate nearest neighbor search

Problems with Instance-Based Learning

Parametric Model

Explicitly model the function $f : X \to Y$ in the form of a parametrized function f(x, W) = y, **examples**:

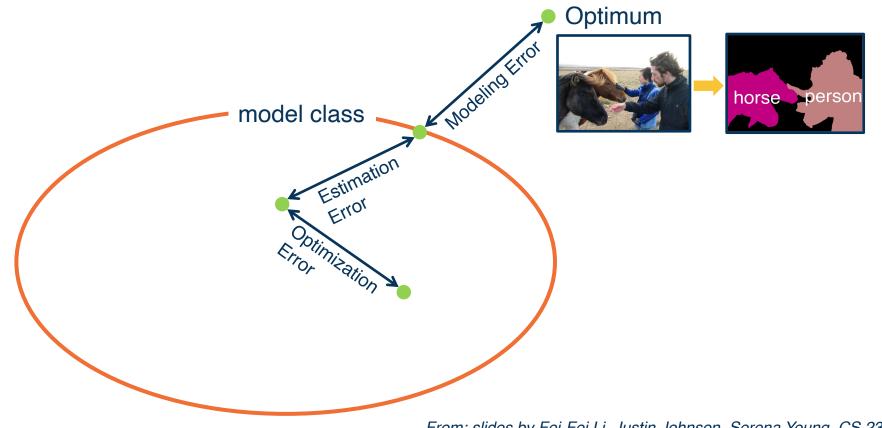
- Linear classifier
 - Number of parameters grows linearly with the number of dimensions!
- Neural networks

Parametric – Linear Classifier

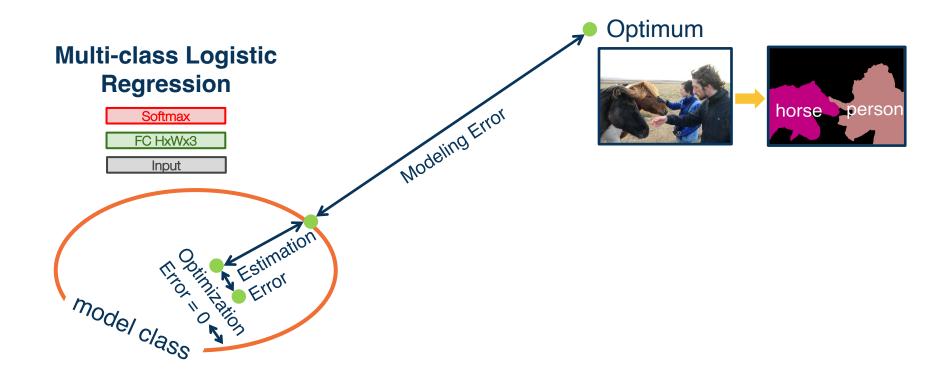
f(x,W) = Wx + b

Q: How many parameters to classify **N**-dimensional data? A: N + 1

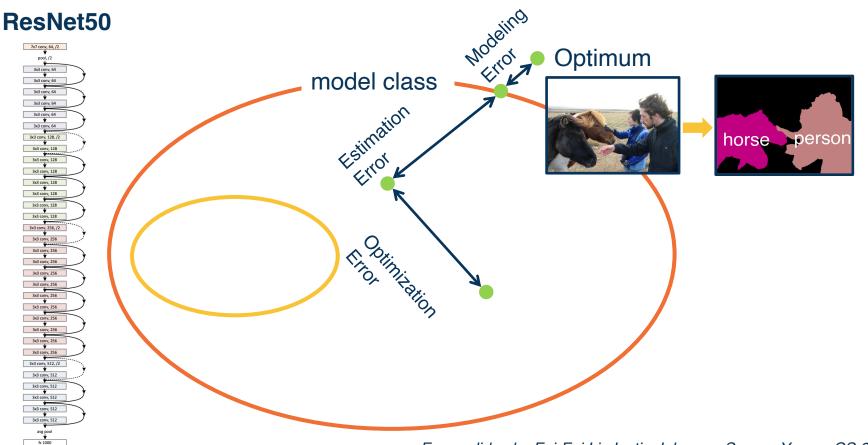
Hypothesis classes doesn't change: we are simply searching for the optimal value for each parameter



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

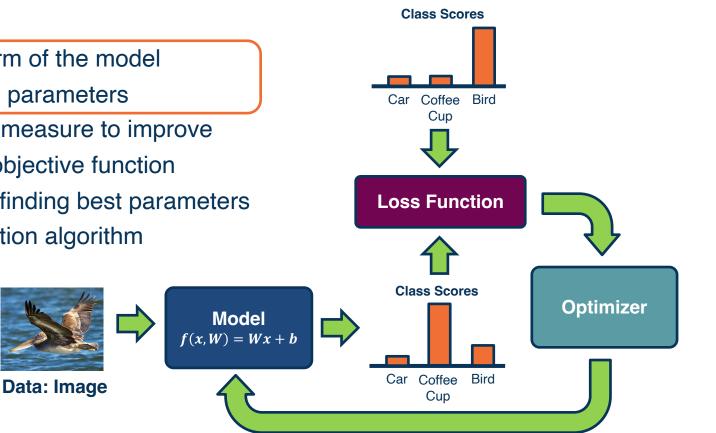
Types of Errors and Generalization

Rest of the lecture (also next lecture):

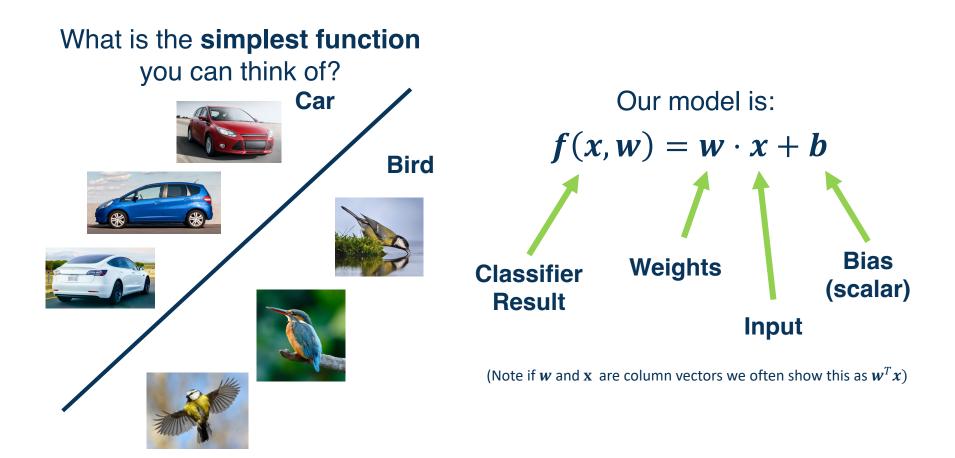
- Types of Machine Learning Problems
- Parametric Models
- Linear Classifiers
- Gradient Descent

Input

- Functional form of the model
 - Including parameters
- Performance measure to improve
 - Loss or objective function
- Algorithm for finding best parameters
 - Optimization algorithm



Components of a Parametric Model



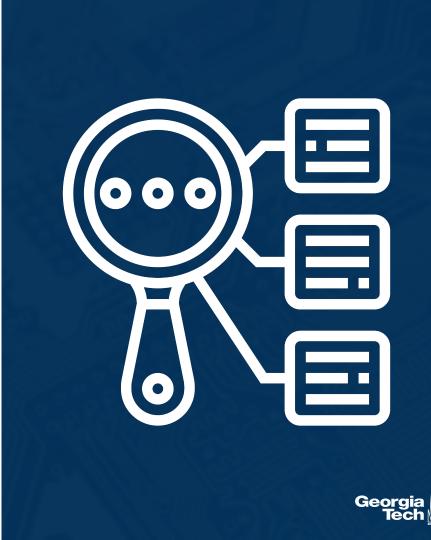
Linear Classification and Regression

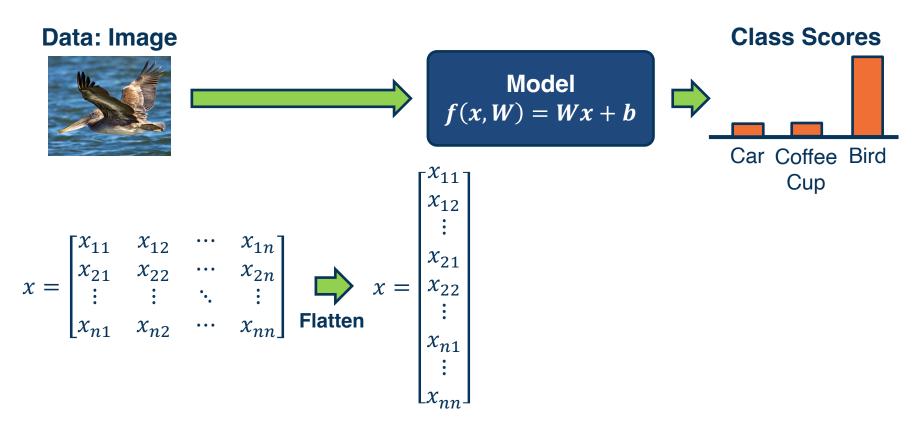
Simple linear classifier:

- Calculate score: $f(x, w) = w \cdot x + b$
- Binary classification rule
 (*w* is a vector):

 $y = \begin{cases} 1 & \text{if } f(x, w) > = 0 \\ 0 & \text{otherwise} \end{cases}$

For multi-class classifier take class with highest (max) score f(x, W) = Wx + b



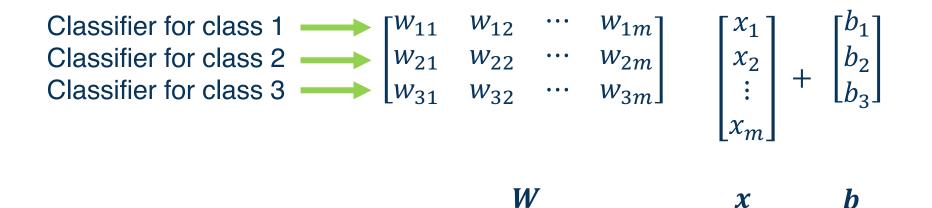


To simplify notation we will refer to inputs as $x_1 \cdots x_m$ where $m = n \times n$

Input Dimensionality

Georgia Tech

$$Model f(x, W) = Wx + b$$



(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

Weights

We can move the bias term into the weight matrix, and a "1" at the end of the input

Results in one matrix-vector multiplication! Model f(x, W) = Wx + b

 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b_1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b_2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$

W

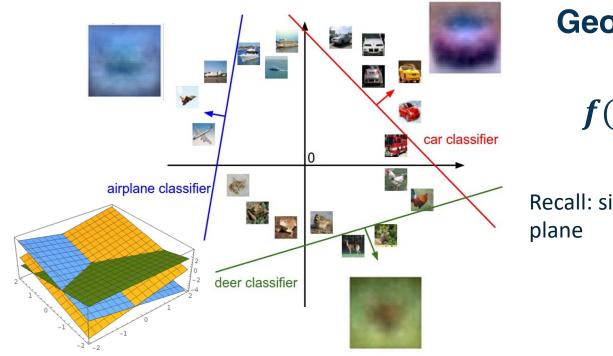
x

airplane automobile bird cat deer dog frog horse ship truck

Visual Viewpoint

We can convert the weight vector back into the shape of the image and visualize

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n



Geometric Viewpoint

f(x,W) = Wx + b

Recall: signed distance from point to plane

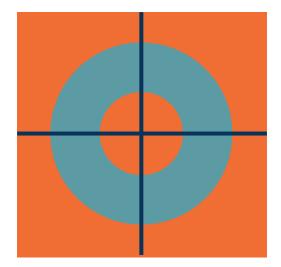
$$\frac{ax_1 + bx_2 + cx_3 + d}{\sqrt{a^2 + b^2 + c^2}}$$

Plot created using Wolfram Cloud

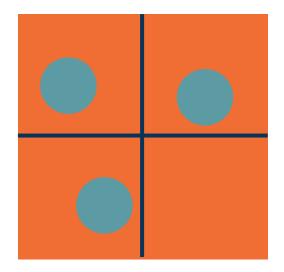
Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Class 1: number of pixels > 0 odd Class 2: number of pixels > 0 even

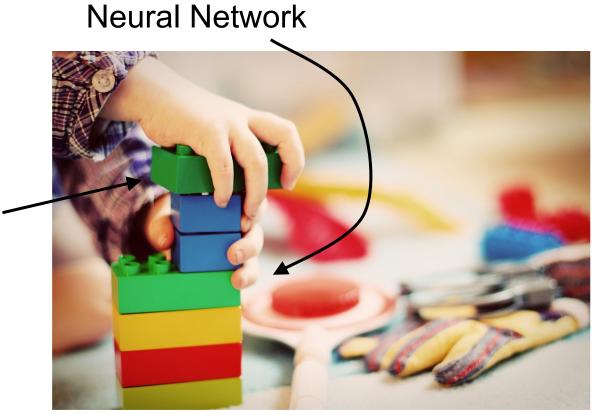
Class 1: 1 < = L2 norm < = 2 Class 2: Everything else



Class 1: Three modes Class 2: Everything else



Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n



This image is CC0 1.0 public domain

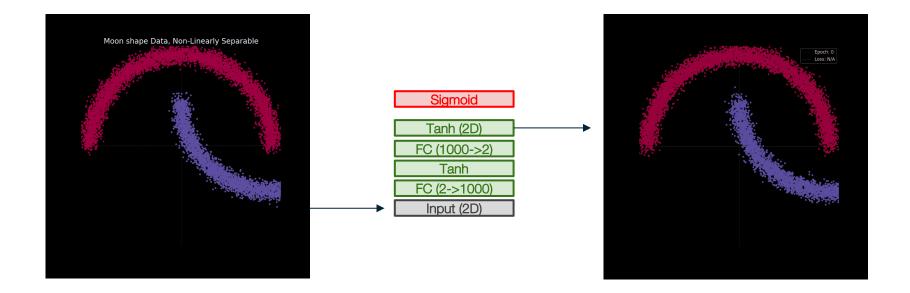
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

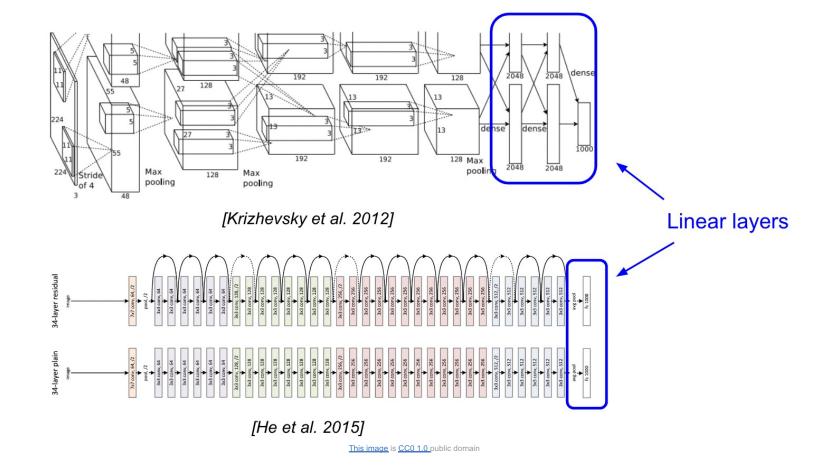
Linear

classifier

(Deep) Representation Learning for Classification

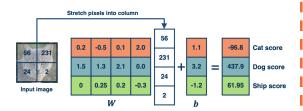
A function that transforms raw data space into a linearly-separable space





Slide Credit: Fei-Fei Li, Ranjay Krishna, Danfei Xu, CS 231n

 $\boldsymbol{f}(\boldsymbol{x},\boldsymbol{W})=\boldsymbol{W}\boldsymbol{x}$

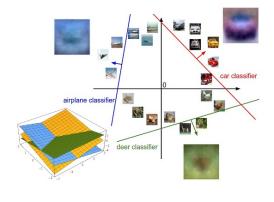


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Linear Classifier: Three Viewpoints

Next time:

- Functional form of the model
 - Including parameters
 - Performance measure to improve
 - Loss or objective function
- Algorithm for finding best parameters
 - Optimization algorithm

