CS 4644 / 7643-A: Lecture 23
Danfei Xu

Large Vision and Language Models



From Self-Supervised Learning Lecture ...

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2, Create dataset classifier from label text
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CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021




Vision and Language Models:
Connecting the Pixel and Semantic Worlds at Scale



Why Vision-Language Models?

e Language is the most intuitive interface for an unstructured data
space (e.g., natural images)

e Important to ground sensory information to semantic concepts

e Complementary information sources for a given task

e Claim: you cannot learn language without grounding it to the physical
world, e.g., through visual sensing.

e Representations are converging (more on this later)



History: the first captioning model (Ordonez, 2011)

Im2Text: Describing Images Using 1 Million
Captioned Photographs

Vicente Ordonez Girish Kulkarni Tamara L Berg

Stony Brook University
Stony Brook, NY 11794

{vordonezroma or tlberg}@cs.stonybrook.edu

Abstract



History: the first captioning model (Ordonez,

Gist + Tiny images ranking Top re-ranked images

*

Query image

Matched Images &
extracted content

Image -> Image lookup -> match text description -> text stitching

2011)

Top associated captions
Across the street from Yannicks
apartment. At night the
headlight on the handlebars
above the door lights up.

The building in which | live. My
window is on the right on the
4th floor

This is the car | was in after they
had removed the roof and
successfully removed me to the
ambulance.

| really like doors. | took this
photo out of the car window
while driving by a church in
Pennsylvania.



History: the first deep captioning model (Vinyals, 2015)

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals Alexander Toshev Samy Bengio Dumitru Erhan
Google Google Google Google

vinyals@google.com toshev@google.com bengiol@google.com dumitru@google.com



History: the first deep captioning model (Vinyals, 2015)

log pi(S1) | | log p2(S2) log pn(Sn)

A T A

D

e PI P2
r

/i g gy gl

4
i3,
H g{inc- i

—_—see —

) )
WeSo WS WeSh.1

t t t

image So Si SN-1

1 A
g A AEyRay
ik

i B

» o Dy Ny BT
seafasi P PG ple s

LSTM
!
!
LSTM

2]

HOH O OJE

f

— LSTM

—




History: the first VQA model (Agrawal, 2015)

VQA: Visual Question Answering

www.visualga.org

Aishwarya Agrawal*, Jiasen Lu*, Stanislaw Antol*,
Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers
(www.visualga.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared
with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vaga).

Standard task: Visual Question Answer



History: the first VQA model (Agrawal, 2015)

Is something under yzz zg
the sink broken? yes i
What number do gg 2
you see? 33 7
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Does this man have ﬁ: ;sz
children? yes yes
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Is this man crying? no yes
no yes
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no no . . bakery art supplies . 2 3
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topped on this pizza? ricotta mozzarella of the plate? round round

Free-form Text + Image -> Free-form Text

What does SEOP s:op
: stop stop
the sign say? stop yield
3 octagon diamond
mr;asti srr\‘gpe S octagon octagon
gn? octagon round



Foundation VLM (2019-)

Hand-drawn sketch + instruction -> website source code
GPT 4v(ision) (OpenAl, 2023)



Major Areas

e Representation: how to convert raw data into meaningful features

e Translation: transform one modality to another

e Alignment: discover relationships between elements across modalities
e Fusion: join features from modalities to support prediction

e Co-learning: transferring knowledge from one modality to another for

some downstream tasks

Slide credit: Desmont Elliott



Language->Vision

TEXT DESCRIPTION

An astronaut

riding a horse

in a photorealistic style

https://openai.com/dall-e-2/

: Language-guided Image Gen




neuraltalk2

Vision->Language: Image Captioning o s g

surfers, tennis, giraffe, motorcycle

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in

suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

Raid M



https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Image — Language Association

Contrastive learning between image and natural language sentences

1. Contrastive pre-training
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CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Image — language encoding architectures

Associative
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CLIP: Associative Encoding

1. Contrastive pre-training
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CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Recall: Noise Contrastive Learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Eyx

log

exp(s(f(z), f(z™T))

N-—1 —
exp(s(f(z), f(*)) + £00," exp(s(f (), £ (z7))
score for the positive score for the N-1 negative
pair pairs

Cross entropy loss for a N-way softmax classifier
l.e., learn to find the positive sample from the N samples




CLIP: Training

# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, ¢c] - minibatch of aligned images

# T[n, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed

# W_t[d_t, d_e] - learned proj of text to embed

# t - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]

T_f = text_encoder(T) #[n, d_t]

# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function Predict image -> text association
labels = np.arange(n) ‘////

loss_i = cross_entropy_loss(logits, labels, axis=0

Toss_t = cross_entropy_loss(logits, labels, axis=1

loss =

(loss_i + loss_t)/2 V\\\\\\

Predict text -> image association
CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



CLIP: Zero-shot Classification

2. Create dataset classifier from label text
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CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



CLIP: Zero-shot Classification

# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32"', device)

# Download the dataset
cifarle@® = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)

# Prepare the inputs

image, class_id = cifarle0[3637]

image_input = preprocess(image).unsqueeze(0@).to(device)

text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifarl@@.classes]).to(device)

# Calculate features

with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)

# Pick the top 5 most similar labels for the image

image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)

similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[@].topk(5)

https://github.com/openai/CLIP



CLIP: Zero-shot Classification

PatchCamelyon (PCam) ImageNet-A (Adversarial)
healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels lynx (47.9%) Ranked 5 out of 200 labels

X this is a photo of lymph node tumor tissue X a photo of a fox squirrel.

v this is a photo of healthy lymph node tissue X a photo of a mongoose.

—
X aphoto of a skunk

—
X aphoto of a red fox.

=
+ aphoto of a lynx.

Camera Nams 30,0111 37F @ 01-01-201

CIFAR-10 CLEVR Count
bird (40.9%) Ranked 1out of 10 labels 4 (75.0%) Ranked 2 out of 8 labels

+ aphoto of a bird. X aphoto of 3 objects.

—_—
X aphotoof acat. + aphoto of 4 objects.

X aphoto of a deer. X a photo of 5 objects.

—
X aphoto of a frog.

=
X a photo of 6 objects.
—

X aphoto of a dog.

'
X a photo of 10 objects.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Generating Images from CLIP Latents (DALL-E 2)

Text CLIP Image CLIP
_ P CLIP objective img
- o encoder
“a corgi
playing a
flame S ™ .
throwing .
trumpet” SO0 é
________________________________________ - O O O
—O>0O» O
O O
prior decoder

* Train image diffusion with classifier-free guidance using CLIP image embedding
* Train another diffusion model to predict CLIP image embedding from the CLIP
embedding of the input text.

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)



Generating Images from CLIP Latents (DALL-E 2)

Text CLIP Image CLIP
_ CLIP objective img
- o encoder
“a corgi
playing a
flame | et st
throwing
8-»8-»
""""""""""""""""""""" S - B_18.8. oXe
O O
prior decoder

Learning objective for the text to image CLIP embedding diffusion model:
t
Lprior — Etw[l,T],z(t)th [||f9(zz( )a t y) - Z’L”z]

i

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)



Image — language encoding architectures

Joint

e

[image] [ text ]




Joint Encodings: VILBERT (2019)

r ; . r-—-—---=
<CLS> Man shopping for fruit _ <SEP> TRM
W Wi w3 W3 Wy Wr Embed H:I —
L-k x

Vision and Language Joint Pretraining

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: VILBERT (2019) =

FasterRCNN i
y a4
Region Proposal / l Feature embedding
" v U3 Uy
’ , --,hﬂ)
<IMG>
.
QCLS> Man shopping for fruit <SEP> £
W0 Wi W, ws  w, T wp Embedl’,”[ TRM hwo:hwl;"':thJ

Vision and Language Joint Pretraining

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: VILBERT (2019)

‘,III vll“'*

Man shopping
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Language BERT

Aligned / Not Aligned
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Vision & Language BERT

<IMG>

*** | <MASK> | (<CLS>
N

<MASK>

<MASK>

for

+e |<SEP>

A4

(a) Masked multi-modal learning

<IMG> "' <CLS>|| Man ||shopping|| for [ e** |<SEP>

(b) Multi-modal alignment prediction

Vision and Language Joint Pretraining

ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: VILT (2021)

. . Modality Modality
Modality Modality : :
Interaction Interaction Interaction Interaction
C D
Visual Textual | | Visual i
Textual | Embed Embed | | Embed Textual | Embed Textual Visual
Embed Embed Embed Embed
@ C ) ( )
o
Text Image Text Image Text Image Text Image
(2) VE > TE > MI (b) VE = TE > MI (c) VE > MI > TE (d)MI > VE = TE

Categories of vision-language model in terms of
model complexity / capacity

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)



Joint Encodings: VILT (2021)

Image Text Matching Masked Language Modeling Word Patch Alignment
""" i il |
Pooler H FC ’——V: True MLP —>: office *
...... ) e
[ N B I A N N
@@ Extra learnable [class] embedding
Transformer Encoder

Mdltyp embedding

44444-‘@ -

Word Embedding Llnear PrOJectlon of Flattened Patches

T
| | — o <ol
a stone statue near an [MASK] z“m* ad ﬁ ‘ g‘.

Vision and Language Joint Pretraining

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)



Data matters
Scaling Up Foundation Vision and Language Models



Pre-foundation model era (2015 — 2020)

Who is wearing glasses? Where is the child sitting?
man woman } fridge arms

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.
Is the umbrella upside down? How many children are in the bed?
yes
: §
ol
'y
,'.
3
. A horse carrying a large load of hay and Bunk bed with a narrow shelf sitting
two people sitting on it. underneath it.
Visual Question Answering Image Captioning

(Goyal and Knot, 2017) (MS-COCO)



Pre-foundation model era (2015 — 2020)

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Diagnostic Language and Visual Reasoning
(CLEVR, Johnson et al., 2016)



The “Foundation Model Era” (2020-now)

* LAION-400M: 400 million image-text pairs

e Built using Common Crawl datasets,

* Extracting image-text pairs from HTML data.
e Post-processing filters unsuitable pairs using OpenAl's CLIP model.
e A 10TB webdataset with CLIP embeddings and kNN indices.



The “Foundation Model Era” (2020-now)

Backend url:

hitps://knnS.laior | french cat Q\ @ i:

Index:

Clip retrieval works
by converting the
text query to a
CLIP embeddin,
then using that

Y —_
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image embedddings

Hilarious pics of funny

french cat ¥ Y
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{ How to tell if your
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Display captions@
Display full
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Search over
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Search with
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ARIE TIEER s omato
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" A

French Bread Cat Loaf
Metal Print

e LAION-5B: Significantly larger than LAION-400M

* Crawled using 50 billion webpages + CLIP filtering

e 2.3 billion pairs in English + 2.2 billions in other languages + 1
billion unassignable languages (e.g., names).



The “Foundation Model Era” (2020-now)

Stable Diffusion »

Stable Diffusion was made possible thanks to a collaboration with Stability Al and Runway and builds upon our
previous work:

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach* Andreas Blattmann* Dominik Lorenz, Patrick Esser, Bjorn Ommer
CVPR '22 Oral | GitHub [ arXiv | Project page

Stable Diffusion is a latent text-to-image diffusion model. Thanks to a generous compute donation from Stability Al
and support from LAION, we were able to train a Latent Diffusion Model on 512x512 images from a subset of the
LAION-5B database. Similar to Google's Imagen, this model uses a frozen CLIP ViT-L/14 text encoder to condition
the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and
runs on a GPU with at least 10GB VRAM. See this section below and the model card.



A snapshot of vision-language dataset
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Automatic data crawling is great but ...

tomclancysthedivision2_gc18images_0001 Enchantments-JUN16-13.jpg

E """""""They Shall Not Grow Old"""". Watching Peter
4 Jackson tinker with WW1 is like watching George Lucas %
tinker with """"Star Wars"""". Only way more offensive.
pic.twitter.com/PkteSrh9tR"""

The International Code Council (ICC) has ratified a
change to the 2021 International Building Code (IBC) to
allow the use of shipping containers in commercial
construction. Photo © www.bigstockphoto.com

https://laion-aesthetic.datasette.io/laion-aesthetic-6pls/images? next=300



Composing Vision and Language Models



How to compose trained L and V models?




How to compose trained L and V models?

Fast finetuning

[ answer ]

e

[ text ] [image]

Language as interface

answer ]

f km @

text image




Finetuning VLM: Frozen LM, finetune VM

on the water Blue <EO0S> This is a dax . <EO0S>
t t t t e et ! ! t t t t t
Sle-;',:\gtl‘ez?l?)r?‘&‘)’/:lrs # Frozen Self Attention Layers Self Attention Layers
T
iéiﬁééééﬁ LI [H[[[T[ ][H[T[[[[[[ [T [[[[[[‘[[[[[[[T[[[[[[[T[ ]
|
U‘r’ V|s|on Language Model e Frozen Vision Text Vision Text Vision Text Vision Text
Encoder Text Embedder Encoder || Embedder Encoder || Embedder Encoder Embedder Encoder Embedder

1 1 1 1 11 : R v — :

Wl Question: This is a This is a Question:

L A small red boat W% what colour dax; blicket. What is

| is the car? this?
Answer: Answer:
0-shot VQA few-shot image classification
N P J
Y Y
Training Testing

* Train image encoder with frozen language model.
e At test time, can do 0-shot VQA or few-shot classification
through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

O-repeats Support Question
0-shots from ImageNet from ImageNet

°
z
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]
]
E
£

£
= Task Induction

Answer with dax This is a This is a dax. This is a This is a dax. Q: What is this?
or blicket. blicket. blicket. A: This is a
Support Question
from ImageNet from VisualGenome

>
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w it
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0-shots
Th a This is a dax.
blicket.

* Train image encoder with frozen language model.

Model Completion

blicket.

 blicket (vase)

dax (table)

Model Completion

wood

e At test time, can do 0-shot VQA or few-shot classification

through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

n-shot Acc. n=0 [ n=1 | n=4 | 7 n-shot Acc. n=0 | n=1 | n= T
Frozen 29.5 | 357 | 382 | X Frozen 59 | 9.7 | 126 | X
Frozen g atch 0.0 0.0 00 | X Frozen 400mim 40 | 59 | 66 | X
Frozen gnetuned 24.0 | 282 | 292 | X Frozen gnetuned 42 | 41 | 46 | X
Frozen i ampiina || 26.2 | 33.5 | 333 | X Frozen i ain-blind 33 | 72 | 00 | X
Frozen voa 48.4 — — v Frozen vqa 19.6 — — X
Frozen vqQa-plina || 39.1 — — v Frozen vqQa-piina || 12.5 — — X
Oscar [23] 73.8 — — v MAVEXx [42] 394 — — v

e Training large VLM from scratch does not work at all
* Finetuning LM degrades performance
* “Blind” baselines still works, showing the innate power of LM

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: freeze both LM and VM

g%§0utput: text

. Pretrained and frozen

Trained from scratch a very serious cat.
during Flamingo training
| — *
Perceiver Perceiver [ n-th GATED XATTN-DENSE
Resampler Resampler

;

1st GATED XATTN-DENSE

-

Processed text

<image> This is a very cute dog. <image> This is

Input: text and visual
data interleaved

This is a very cute dog. mThis is

5

Visual data
processing

* Interleaved text-image input
* Only finetune the cross attention (XATTN-DENSE) layers

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM

SotA Comparison Effect of Number of Shots Effect of Model Scale

NextQA f T
VOA — ;
Flick30K L _— ﬁ
STARA 107%. 115% ; #

OKVQA A 80% 106%
HatefulMemes - 88%.

i
VizWiz |
1
VATEX |
1
1

1
93% i

VQAV2 48%-
coco { Z N0 w2000 (50 Flamingo (808) 32 shots
A . I 32 shots I Flamingo (80B)
Vispial [ ST brevious A
1 zero/few-shot [ 8 shots [ Flamingo-9B
TextVQA SotA [ 0 shots [ Flamingo-3B
MSRVTTQA i
1
YouCook2 i i i
0% 50% 100% 150% 50% 75% 100% 125% 150% 50% 75% 100% 125% 150%

Performance relative to Fine-Tuned SotA

* Largely outperforms previous zero/few shot SotA
* More in-context learning examples do help
e Larger model gives better results

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM
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Freeze VM and LM. Train the linear layer and LORA finetune Llama 2

MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning (Chen et al., 2023)



Low-rank finetuning (LORA)

quickly finetune a billion-parameter model

Problem: finetuning still takes a lot of data, especially if

the model is huge and/or the domain gap is large. i
Fact: finetuning is just adding a Wy to the existing A N

R
weight matrix W, i.e., W™ =W + Wy \_/

Hypothesis: Wy is low-rank, meaning that Ws can be
decomposed into two smaller matrices A and B, i.e.,
Wg = A'B. N o4 A
So what?: A and B have a lot fewer parameters than

the full W. Requires less data and faster to train.

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”, 2021



Low-rank finetuning (LORA)

quickly finetune a billion-parameter model

import torch
from peft import inject_adapter_in_model, LoraConfig
@ PEFT
class DummyModel(torch.nn.Module):
@ def __init_ (self):
super().__init__ ()
self.embedding = torch.nn.Embedding(10, 10)

State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods
self.linear = torch.nn.Linear(10, 10)

e@ self.lm_head = torch.nn.Linear(10, 10)
Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models
(PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale def forward(self, input_ids):
PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model x = self.embedding ( input_ids]
parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT x = self.linear ( x)
techniques achieve performance comparable to that of full fine-tuning. x = self.lm_head(x)
Seamlessly integrated with & Accelerate for large scale models leveraging DeepSpeed and Big Model Inference. return x
Supported methods: lora_config = LoraConfig(
1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS lora_alpha=16,
2. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can lora_d ropout=0.1,
Be Comparable to Fine-tuning Universally Across Scales and Tasks r=64,
3. P-Tuning: GPT Understands, Too bias="none",
4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning target_modules= ["linear"],
5. AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning )
6. (IA)%: Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
7. MultiTask Prompt Tuning: Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning model = DummyModel ()
8. LoHa: FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning model = inject_adapter_in_model(lora_config, model)
9. LoKr: KronA: Parameter Efficient Tuning with Kronecker Adapter based on Navigating Text-To-Image
Customization:From LyCORIS Fine-Tuning to Model Evaluation implementation dummy_inputs = torch.LongTensor([[@, 1, 2, 3, 4, 5, 6, 7]])

dummy_outputs = model(dummy_inputs)

https://github.com/huggingface/peft



Q-Former: Pretraining to Align Vision to Text

Vision-and-Language
Representation Learning

Vision-to-Language
Generative Learning

|mage Q-Former E 3
- Querying Transformer Write d romantic message
X ¥ that goes along this photo.
Love is like a sunset, it’s
0O0-838) Text hard to see it coming but
Queries when it does it’s so beautiful.

Bootstrapping Pre-trained
Image Models

Bootstrapping Pre-trained
Large Language Models (LLMs)

Jd Encoder

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (Li et al., 2023)



Q-Former: Pretraining to Align Vision to Text

1. Extract text-relevant image feature through pretraining:

-F
LAl Image-Text Image-Grounded
Matching Text Generation

Q: query token positions; T: text token positions.
@ masked [J unmasked

Image-Text
i Q T Q T Q T
Input Image Contrastive
oy Ry — Learning Ry — HULL ,00EE OO EE
— # for every DD D\:‘ DD .. DD ..
g [T R Other block L0 00 OO0 B8 L]
P Cross Attention . .
p Encoder Attention Masking T T T
" i . bidirectional - DD DD DD DI:I .. DD
J Self Attention 7,[“9"3%9{%%@?951 _ , xN Bi-directional Multi-modal Causal Uni-modal
Self-Attention Mask  Self-Attention Mask Self-Attention Mask
Learned ; Image-Text Image-Grounded Image-Text
Queries Input Text [a cat wearing sunglasses ] { Matching ] Text Generation Contrastive Learning

2. Generative finetuning of Q-Former
e Output Text [ a cat wearing sunglasses ]
Bootstrapping from a S

Decoder-based ; N Fully ¥
Large Language Model 4 Encoder ‘ ehiCuLy ‘ Connected | (5 FlE st
(e.g. OPT) :
Do-00 S~
Input Image Learned Queries

BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models (Li et al., 2023)



How to compose trained L and V models?

Fast finetuning Language as interface

[ answer ] [ answer ]

o Hw ] Te e

A

Cro ) (imse o) [imese]




Neural Module Networks (Andreas et al., 2015)

] combine[and] |—>| measure[is] ]—»( yes )
attend[tie] b\| - | attend[circle] H re-attend[above]
| classify[color] yellow : H

Idea: train modular networks (attend, classify). Use a controller network to
decide how to compose the modules together to solve a task




Neural Module Networks (And

reas et al., 2015)

how many different lights
in various different shapes
and sizes?

what is the color of the
horse?

what color is the vase?

is the bus full of passen-
gers?

is there a red shape above
acircle?

measure[count] ( classify[color]( classify[color]l( measure[is]( measure[is](
attend[light]) attend[horse]) attend[vase]) combine[and]( combineland] (
attend[bus], attend[red],
attend[full]) re-attend[above](
attend[circlel)))
four (four) brown (brown) green (green) yes (yes) no (no)

what is stuffed with
toothbrushes wrapped in
plastic?

where does the tabby cat
watch a horse eating hay?

what material are the
boxes made of?

is this a clock?

is a red shape blue?

classify[what]( classify[where]( classify[materiall( measure[is]( measure[is](
attend[stuff]) attend[watch]) attend[box]) attend[clock]) combineland] (
attend[red],
attend[bluel))
container (cup) pen (barn) leather (cardboard) yes (no) yes (no)




Inferring and Executing Programs for Visual
Reasoning (Johnson et al., 2017)

Question: Are there more cubes than yellow things? Answer: Yes

things—| LSTM [ LSTM |—» 9eates | Classifier |
) v

than A

yellow—=>| LSTM | || LSTM [—> count Eﬁ‘;‘i:::on
filter |

v
ten-TeLSTM | Fo{LoTM || setee | | SRR

Y
cubes— LSTM | |-»| LSTM |—» <scame> | | 1 H T ‘

* * filter filter
n color shape
more—ﬁ LS;FM ‘ —>{ LSIM } > count [yellow] || [cube]

filter 1‘. .1.

there — LS;I'M == LS;'M > s /o

Are —» LSTM | L»| LSTM |—»| <scene>
Predicted
Program Generator Program |

Similar to NMN, but train a program generator using REINFORCE
Reward comes from whether the answer is correct

greater than |




Visual Programming: Compositional visual

In-context Examples

Instruction: Hide the face of Nicole Kidman with :p

Program:

0BJ@=Facedet (image=IMAGE)

OBJ1=Select(image=IMAGE, object=0B1@, query=‘Nicole Kidman’)
IMAGE@=Emoji(image=IMAGE, object=0BJ1, emoji=‘face_with_tongue’)
RESULT=IMAGE@

Instruction: Create a color pop of the white Audi
Program:

0BJ0=Seg(image=IMAGE)

0OBJ1=Select(image=IMAGE, object=0B]@, query=‘white Audi’)
IMAGE@=ColorPop(image=IMAGE, object=0BJ1)

RESULT=IMAGE®

Instruction: Replace the red car with a blue car

Program:

0BJO@=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘red car’)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘blue car’)
RESULT=IMAGE®

Instruction: Replace the BMW with an Audi and cloudy sky with clear sky
Program:

reasoning without training (Gupta et al., 2023)

Program

0BJO=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘BMW’)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘Audi’)
0BJ1=Seg(image=IMAGE®)

0BJ2=Select(image=IMAGE®, object=0BJ1, query=‘cloudy sky’)
IMAGE1=Replace(image=IMAGE®, object=0B]2, prompt=‘clear sky’)
RESULT=IMAGE1

Statement: At least three
animals are in a flowered field

LEFT:

Prediction: True

True

&«

LEFT

RIGHT

ANSWER®=Vqa(
image=LEFT,
question=‘How many animals
are in the flowered field?”)

ANSWER1=Vqa(
image=RIGHT,
question=‘How many animals
are in the flowered field?’)

ANSWER2=Eval(expr="{ANSWER®} + {ANSWER1} >= 3?’)
=Eval(expr=2 + 1 >= 3?’)




Visual Programming: Compositional visual
reasoning without training (Gupta et al., 2023)

IMAGE
Instruction: Replace the ground
with white snow and the bear
with a white polar bear
=
0BJ@=Seg(

image=IMAGE)

OBJ1=Select(
image=IMAGE,
object=0BJ0,
query="‘ground’)

IMAGE@=Replace(
image=IMAGE,
object=0BJ1,
prompt="‘white snow’)

0BJ2=Seg(
image=IMAGEQ)

0OBJ3=Select(
image=IMAGE®Q,
object=0BJ2,
query="‘bear’)

IMAGE1=Replace(
image=IMAGE®,
object=0BJ3,
prompt=‘white polar bear’)




ProgPrompt (Singh et al., 2023): Program to Actions

from actions import grab_and_putin <obj><obj>,
grab_and_puton <obj><obj>, switchon <obj>,
switchoff <obj>, open <obj>, ...

def throw_away_banana():
objects = ['banana', 'garbage can',...]
# 1: put banana in garbage can
grab_and_putin('banana', 'garbagecan')
L # 2: Done

def put_fork_and_spoon_on_the_box():
objects = ['fork', 'spoon', 'knife',]

def put_fork_on_plate_and_spoon_in_box():

def sort_fruits_on_plate_and_bottles_in_box():
objects = ['banana’', 'bottle', 'box',
‘plate', ‘table', 'drill', 'strawberry']

: LLM [GPT-3]
Generated Plan el ¢

# 1: put banana on plate # 3: put bottle in box
grab_and_puton('banana', 'plate') |grab_and_putin(‘bottle', ‘box"')
# 2: put strawberry on plate # 4: Done
—(grab_and_puton('strawberry’, ‘plate'))

Use large language models (LLMS) to generate program-like semantic
plans from natural language command.



VoxPoser (Huang et al., 2023): Program to Grounded Actions

7~
def affordance_map(): )

. & msize = (100,100,100)
Vlsual 4 map = np.zeros(msize)
handles = detect('handle')
- Language w k = lambda x: x.pos[2]
handles. sort(key=k)
MOdeI top_handle = handles[-1]
X,Y,z = top_handle.pos
map[x,y,z] =1
return smooth(map)
def constraint_map(Q):
msize = (100,100,100)

G map = np.zeros(rpsize?
Open the top drawer. Large et R

Please also watch - Language > xyz = vase.occupancy_grid
out for that vase! Model map[xyz] = -1

return smooth(map)

T y e View #1

Constraint Maps

(a) 3D Value Map Composition (b) Motion Planning

Use LLMs to guide VMs to find where to act next in a 3D scene



VoxPoser (Huang et al., 2023): Program to Grounded Actions

“Sort the paper trash into the blue tray.”



Where do we go from here?



The Platonic Representation Hypothesis (2024)

Hypothesis: When trained at large scale,
representations learned from different

The Platonic Representation Hypothesis

Neural networks, trained with different objectives

objectives / modalities are converging to on different data and modalities, are converging to a
L. shared statistical model of reality in their representa-
the same statistical model that reflects tion spaces.

the underlying reality of the world Z

https://arxiv.org/pdf/2405.07987



The Platonic Representation Hypothesis (2024)

PERCEPTION VISION LANGUAGE

Pointwise Mutual Information Contrastive Learning (SimCSE) Predictive Learning (RoBERTa)

From Human Perception From Pixel From Masked Language From Masked Language

Figure 8. Color cooccurrence in VISION and LANGUAGE yields perceptual organization: Similar representations of color are
obtained via, from LEFT to RIGHT, the perceptual layout from CIELAB color space, cooccurrence in CIFAR-10 images, and language
cooccurrence modeling (Gao et al. (2021); Liu et al. (2019); computed roughly following Abdou et al. (2021)). Details in Appendix D.

“... color distances in learned language representations, when trained to predict
cooccurrences in text, closely mirror human perception of these distances.”



The Platonic Representation Hypothesis (2024)

e
& oP A0

R0 AC 50 0 PR aoee
& SE Q G S
&F FF el F S F P PP
> P F R R @@
010 e ¥ 014 $e%
o o0 //s 0.09 1 e N ./:'E: %
2 016 S s %7 . ./ @ 0121 /
O :/ * o0 g e .,../ % P tiny
Z ® L 0.07+ /' base D 5104 ': ¢ o small |
—_— [ ] ®  large © - l/' ®  base
0.06 1 £ ] .
Q 0.14 @ ®  huge - ./ ® large
0.05 - - - - - 0.084 . . —
9 e 01 02 03 04 05 01 02 03 04 05
4
C 0.18 1 —
@ 012 0201 2.5t =) P
& dino small s 5 0161 5>
018 1 / /-
‘ o N
% ® dino base = 0161 . — 0147 P
Doio ‘ | : = .
= ® dinolarge © ol / base o 0121 /:: base |
P = ®  large - . . ® large
.. .d\rlwo g!arjt 01248 e huge O o104° e huge |

01 072 03 0.4 05 01 02 03 04 05 01 02 03 04 05

LANGUAGE performance

Stronger LLMs tend to align better with vision model in representation space
(measured in mutual nearest neighbor)

https://arxiv.org/pdf/2405.07987



The Platonic Representation Hypothesis (2024)

Loss

- H Ypmhesls { Hyp thesls
P * Space 2 . | _ Scale up — E_.- *, Space 2
: * architectures Loy WA
Hypothesis ... Hypothesis ...

space 1 e 7 Spate 1 i

Figure 5. The Capacity Hypothesis: If an optimal representation exists in function space, larger hypothesis spaces are more likely to
cover it. LEFT: Two small models might not cover the optimum and thus find different solutions (marked by outlined ¥r). RIGHT: As
the models become larger, they cover the optimum and converge to the same solution (marked by filled ¥).

https://arxiv.org/pdf/2405.07987



The Platonic Representation Hypothesis (2024)

Hypothesis space Hypothesis space

task gradient

\ Y

simplicity bias

Functions that solve
the tasks

Solves task

o 2 Simple
task gradient / functions

—

4— 4— <4— simplicity bias

Figure 6. The Multitask Scaling Hypothesis: Models trained  Figure 7. The Simplicity Bias Hypothesis: Larger models have

with an increasing number of tasks are subjected to pressure to  larger coverage of all possible ways to fit the same data. However,

learn a representation that can solve all the tasks. the implicit simplicity biases of deep networks encourage larger
models to find the simplest of these solutions.

https://arxiv.org/pdf/2405.07987



Summary: Large Vision and Language Models

e Very active field of research, with a history as long as modern deep
learning (2011 -)

e Foundation vision and language models have revolutionized the
research paradigm post 2019.

e Trending towards larger model and dataset.
Many active research on how to finetune / adapt VLMs with small
amount of compute / data.

e The future is going to be multimodal.

e The representations are converging.
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