
Machine Learning Applications

CS 4803-DL / 7643-A: LECTURE 24
DANFEI XU

Topics:

• Reinforcement Learning Part 2

• Deep Q Learning (cont.)

• Policy Gradient

• Actor-Critic

• Advanced Policy Gradient Methods

• Applications

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Figure Credit: Rich Sutton

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Experience:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Algorithm: Value Iteration

Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

Q-Learning: a model-free method for RL
Idea: represent the Q value table as a parametric function 𝑄𝜃(𝑠, 𝑎)!

How do we learn the function?

𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎]

= 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Now, at optimum, 𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄′(𝑠𝑡 , 𝑎𝑡) = 𝑄∗(𝑠𝑡 , 𝑎𝑡); This gives us:

0 = 0 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Learning problem:
argmin𝜃||𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 𝑠𝑡+1, 𝑎 − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡)) ||

Target Q value

⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take arbitrary input (e.g. RGB images)

⬣ Assume discrete action space (e.g., left, right)

Deep Q-Learning

Value per action dim

⬣ Minibatch of

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

⬣ In practice, for stability:

⬣ Freeze and update parameters

⬣ Set at regular intervals or update as running average

⬣ 𝜃𝑜𝑙𝑑 = 𝛽𝜃𝑜𝑙𝑑 + 1 − 𝛽 𝜃𝑛𝑒𝑤

Deep Q-Learning

How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

⬣ What should be?

⬣ Greedy? -> no exploration, always choose the most confident action

⬣ An exploration strategy:

⬣

Exploration Problem

⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions

➢ Continually update replay buffer as game (experience) episodes are

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay

Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay

Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Case study: Playing Atari Games

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Summary: Value-based RL

• Solving an MDP by modeling / learning the values (Q and V) of
an optimal policy

• Examples: Value iteration, Q learning, DQN, SARSA, TD(0), …

• Pros:
– Conceptually simple

– Efficient in discrete action space

• Cons:
– Handling continuous / large action space is challenging.

– A proxy of what we actually want (a policy)

⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy with a parametrized policy

⬣ Model-based RL

⬣ Approximate transition function and reward function

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

Different RL Paradigms

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

?

All we know is the step-wise task reward

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

All we know is the step-wise task reward

Can we directly backprop reward???

𝜕𝑟𝑡

𝜕𝜃

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Just backprop from reward (sort of)!

Increase the likelihood of
selecting action dim = 0!

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient

Policy Gradient: Just backprop from reward (sort of)!

Increase the likelihood of
selecting action dim = 0!

Decrease the likelihood of
selecting action dim = 1!

Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let denote a trajectory

Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let denote a trajectory

⬣ Distribution of trajectories given a policy parameterized by 𝜃 is:

Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let denote a trajectory

⬣ Optimization objective:

⬣ Distribution of trajectories given a policy parameterized by 𝜃 is:

Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Let denote a trajectory

⬣ Optimization objective:

⬣ Distribution of trajectories given a policy parameterized by 𝜃 is:

⬣ What we need (policy gradient):

Deriving The Policy Gradient

Brief derivation of policy gradient (REINFORCE)

Expectation as integral

Exchange integral and gradient

Log derivative rule:
𝑑log𝑓 𝑥

𝑑𝑥
=

𝑓′(𝑥)

𝑥

Deriving The Policy Gradient

Doesn’t depend on
Transition probabilities!

Can use continuous action space!

Brief derivation of policy gradient (REINFORCE)

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

Run the policy and
sample trajectories

Compute policy
gradient

Update policy

Slide credit: Sergey Levine

Policy gradient: algorithm sketch

Drawbacks of Policy Gradients

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy gradient intuition

log 𝜋𝜃(𝑎|𝑠)

Issues with Policy Gradients

• Credit assignment is hard!

– Which specific action led to increase in reward

– Suffers from high variance → leading to unstable training

Can we do better?

What if instead of just reward per episode, we know the expected future
return of taking an action? (This should remind you of something …)

 Q value function 𝑄(𝑠, 𝑎)!

Actor-Critic

• Learn both policy and Q function

– Use the “actor” to sample trajectories

– Use the Q function to “evaluate” or “critic” the policy

Actor-Critic

• Learn both policy and Q function

– Use the “actor” to sample trajectories

– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE:

• Actor-critic:

Actor-Critic

• Initialize 𝜃 (policy network) and 𝛽 (Q network)

Actor-Critic

• Initialize 𝜃 (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

Actor-Critic

• Initialize 𝜃 (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎)

Actor-Critic

• Initialize 𝜃 (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎)

– Update “critic”:

• Q-learning using argmin𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄 𝑠′, 𝑎 ∼ 𝜋𝜃(𝑠′]

Actor-Critic

• Initialize 𝜃 (policy network) and 𝛽 (Q network)

• For each step:

– sample action 𝑎 ∼ 𝜋𝜃 ⋅ 𝑠 , take action to get s’ and r

– evaluate “actor” using “critic”𝑄𝛽(𝑠, 𝑎) and update policy:

𝜃 ← 𝜃 + 𝛼∇𝜃(log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎)

– Update “critic”:

• Q-learning using argmin𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄 𝑠′, 𝑎 ∼ 𝜋𝜃(𝑠′]

Note the difference to DQN:

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

– Bad news: hard to tell the policy to prefer 𝑎2 over 𝑎1

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

– Bad news: hard to tell the policy to prefer 𝑎2 over 𝑎1

Idea: use advantage function 𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

– Bad news: hard to tell the policy to prefer 𝑎2 over 𝑎1

Idea: use advantage function 𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

- 𝐴 𝑠, 𝑎 : How much better is taking action 𝑎 over the average value at state 𝑠

Actor-Critic
Actor-critic Policy Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄𝛽 𝑠, 𝑎]

Consider a situation where 𝑄𝛽 𝑠, 𝑎1 = 10.1 and 𝑄𝛽 𝑠, 𝑎2 = 10.5

– Good news: 𝑠 is a great state to be in!

– Bad news: hard to tell the policy to prefer 𝑎2 over 𝑎1

Idea: use advantage function 𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

- 𝐴 𝑠, 𝑎 : How much better is taking action 𝑎 over the average value at state 𝑠

- Say 𝑉 𝑠 = 10.0, we have 𝐴 𝑠, 𝑎1 = 0.1 and 𝐴 𝑠, 𝑎2 = 0.5

Advantage Actor-Critic (A2C)
Advantage Actor-critic Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

Advantage Actor-Critic (A2C)
Advantage Actor-critic Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

Problem: need to learn both 𝑄 and 𝑉 to calculate 𝐴

Advantage Actor-Critic (A2C)
Advantage Actor-critic Gradient: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

Problem: need to learn both 𝑄 and 𝑉 to calculate 𝐴

Idea: use state value of experience sample to approximate 𝑄:

Given experience (𝑠, 𝑎, 𝑟, 𝑠’)
𝐴 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉 𝑠 ≅ 𝑟 + 𝑉 𝑠′ − 𝑉(𝑠)

Policy Gradient Methods

• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎]

• Actor-critic (AC): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄 𝑠, 𝑎]

• Advantage Actor-critic (A2C): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

Welcome to continuous control!

∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

State

Q-Network

DQN: limited to discrete action space

Policy net can output anything!

Policy Gradient Methods

• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎]

• Actor-critic (AC): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑄 𝑠, 𝑎]

• Advantage Actor-critic (A2C): ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃
[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝐴 𝑠, 𝑎]

Common Policy Gradient methods are on-policy.

On-policy vs. off policy algorithms
• REINFORCE: ∇𝜃𝐽 𝜋𝜃 = Ε𝑎∼𝜋𝜃

[∇𝜃log 𝜋𝜃 𝑎 𝑠 𝑅 𝑠, 𝑎]

Cannot use replay buffer, since the experience data is an outdated policy.
• Less data-efficient: cannot reuse old data
• Less stable to train: explore may lead to bad on-policy data ->

immediate performance degradation.
• Correlated samples in training data.

We are taking expectation wrt the policy being learned

Example of an off-policy learning algorithm: DQN

Bellman equation is true for all transitions!

𝑄′ 𝑠𝑡 , 𝑎𝑡 = 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + max
𝑎

𝑄 𝑠′, 𝑎]

Q: What’s the problem with this objective?

Difficult to compute for continuous action space!

Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + max
𝑎

𝑄 𝑠′, 𝑎]

Idea: approximate with a deterministic policy max
𝑎

𝑄 𝑠′, 𝑎 ≈ 𝑄(𝑠′, 𝜋 𝑠)

Deep Deterministic Policy Gradient (DDPG)
A direct adaptation of DQN for continuous action space

Learning the critic (value function): bellman consistency

min𝛽[𝑄𝛽 𝑠, 𝑎 − 𝑟 + 𝑄𝑜𝑙𝑑 𝑠′, 𝜋(𝑠′]

Learning the actor (policy model):

max𝜃Ε𝑠∼𝜌∗[𝑄𝛽(𝑠, 𝜋𝜃 𝑠)]

We are taking expectation wrt a behavior policy (replay buffer)

Deterministic policy gradient theorem (off-policy)

∇𝜃𝐽 𝜋𝜃 ≈ Ε𝑠∼𝜌∗[∇𝜃log 𝜋𝜃(𝑠)∇𝑎𝑄 𝑠, 𝑎]

Gradient of Q wrt to action

Just back prop to policy from the value function!

A2C vs. DDPG

• Two related families of algorithms.

• A2C is on-policy. Learn advantage-based critic. Train policy
through the policy gradient theorem (REINFORCE).

• DDPG is off-policy (train on replay buffer). Learn value-based
critic. Train policy through direct backpropagation from critic
to actor based on the deterministic policy gradient theorem.

• Drawback: DDPG is deterministic and often struggles with
exploration.

Advanced policy gradient methods

Soft Actor Critic (Haarnoja, 2018)

Entropy-regularized RL: achieve high reward while being as random as
possible

Bellman equation with entropy-regularized RL:

Entropy of the policy

Advanced policy gradient methods

Soft Actor Critic (Haarnoja, 2018)

Learning the policy model:

Requires integrating a distribution!

Reparameterization trick (truncated Gaussian):

Backprop through the value function (same as DDPG):

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

• Idea: constrain the update to a trust region using off-policy policy gradient

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

• Idea: constrain the update to a trust region using off-policy policy gradient

Subject to:

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

• Issue with vanilla actor critic: policy may receive huge update!

– Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

• Idea: constrain the update to a trust region using off-policy policy gradient

Subject to:

Optimizing this objective requires calculating Hessian
(second-order optimization)!

Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization
(calculating Hessian).

Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization
(calculating Hessian).

Idea: Approximate trust-region constraint with a penalty term

Advanced policy gradient methods

Schulman 2017

But Deep RL is still pretty expensive to train …

Idea: transfer policy trained in simulation (cheap) directly
to the real world (expensive)!

Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world!

Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world!

Potential gaps (not an exhaustive list):
• Position, shape, and color of objects,
• Material texture,
• Lighting condition,
• Other measurement noise,
• Position, orientation, and field of view of the camera in the simulator.
• Mass and dimensions of objects,
• Mass and dimensions of robot bodies,
• Damping, kp, friction of the joints,
• Gains for the PID controller (P term),
• Joint limit,
• Action delay,

Simulation to Real World Transfer (Sim2Real)

Idea: domain randomization

Issue: simulators is a very crude approximation of the real world!

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/

Simulation to Real World Transfer (Sim2Real)
Issue: simulators is a very crude approximation of the real world!

Idea: domain randomization

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/

Deep RL for Robotics

Source: OpenAI Source: ETH Zurich

Deep RL beyond robotics / games …

Neural Architecture Search
Zoph and Le, 2016

Chip Design
Roy, 2022

Deep RL beyond robotics / games …

Plasma Control (nuclear fusion)
Degrave, 2022

Data Center Cooling
Lazic, 2018

Summary

• It turns out we can directly backprop from reward (sort of)!

• Naïve policy gradient (REINFORCE) has high variance due to the use of
episodic reward. Credit assignment is hard.

• Use Action Value Function (Q) instead!

– Actor-Critic: learn Q value function jointly with policy

– Advantage Actor-Critic: estimate advantage A using V value function

– Deep Deterministic Policy Gradient for off-policy learning

– SAC for off-policy learning with stochastic policy model

• Other advanced policy gradient methods: TRPO, PPO

• Still pretty expensive to train! Mostly used for application that can be
simulated.

	Slide 1: CS 4803-DL / 7643-A: Lecture 24 Danfei Xu
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Q-Learning: a model-free method for RL
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Summary: Value-based RL
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Issues with Policy Gradients
	Slide 30: Actor-Critic
	Slide 31: Actor-Critic
	Slide 32: Actor-Critic
	Slide 33: Actor-Critic
	Slide 34: Actor-Critic
	Slide 35: Actor-Critic
	Slide 36: Actor-Critic
	Slide 37: Actor-Critic
	Slide 38: Actor-Critic
	Slide 39: Actor-Critic
	Slide 40: Actor-Critic
	Slide 41: Actor-Critic
	Slide 42: Actor-Critic
	Slide 43: Actor-Critic
	Slide 44: Advantage Actor-Critic (A2C)
	Slide 45: Advantage Actor-Critic (A2C)
	Slide 46: Advantage Actor-Critic (A2C)
	Slide 47: Policy Gradient Methods
	Slide 48: Welcome to continuous control!
	Slide 49: Policy Gradient Methods
	Slide 50: On-policy vs. off policy algorithms
	Slide 51: Deep Deterministic Policy Gradient (DDPG)
	Slide 52: Deep Deterministic Policy Gradient (DDPG)
	Slide 53: Deep Deterministic Policy Gradient (DDPG)
	Slide 54: A2C vs. DDPG
	Slide 55: Advanced policy gradient methods
	Slide 56: Advanced policy gradient methods
	Slide 57: Advanced policy gradient methods
	Slide 58: Advanced policy gradient methods
	Slide 59: Advanced policy gradient methods
	Slide 60: Advanced policy gradient methods
	Slide 61: Advanced policy gradient methods
	Slide 62: Advanced policy gradient methods
	Slide 63: Advanced policy gradient methods
	Slide 64: Advanced policy gradient methods
	Slide 65: Advanced policy gradient methods
	Slide 66: But Deep RL is still pretty expensive to train …
	Slide 67: Simulation to Real World Transfer (Sim2Real)
	Slide 68: Simulation to Real World Transfer (Sim2Real)
	Slide 69: Simulation to Real World Transfer (Sim2Real)
	Slide 70: Simulation to Real World Transfer (Sim2Real)
	Slide 71: Deep RL for Robotics
	Slide 72: Deep RL beyond robotics / games …
	Slide 73: Deep RL beyond robotics / games …
	Slide 74: Summary

