
Machine Learning Applications

CS 4803-DL / 7643-A: LECTURE 23
DANFEI XU

Topics:

• Reinforcement Learning Part 1

• Markov Decision Processes

• Value Iteration

• (Deep) Q Learning

Administrative

What is Reinforcement Learning?

• HW4 is due EOD 11/12. Grace period ends 11/14

Reinforcement

Learning

Introduction

Reinforcement

Learning

⬣ Evaluative

feedback in the
form of reward

⬣ No supervision on

the right action

Types of Machine Learning

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning
output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation,

generative modeling

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Decision Making

• Interactive Environment: Unlike other ML paradigms, decision

making is to act optimally in a dynamic, interactive environment.

• Feedback Loop: The agent's actions directly influence the future

distribution of inputs, creating a continuous feedback loop.

• Optimality: The goal is to learn actions that maximize sum of future

rewards, focusing on long-term outcomes.

• Learn to predict: The model must be able to predict, either

implicitly or explicitly, how the environment changes in response to

the agent's actions.

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Figure Credit: Rich Sutton

Examples of RL tasks

Example: Robot Locomotion

⬣ Objective: Make the robot move

forward without falling

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright

and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Agent

Action for each joint
(torque, position, etc.)

Joint pos,
3D pos

Upright?
Forward?

Environment
(world)

Examples of RL tasks

Example: Robot Manipulation
⬣ Objective: Pick up object and place

to sorting bin

⬣ State: Pose of the object and the bin,

joint state and velocity of robots

⬣ Action: End effector motion

⬣ Reward: inverse distance between

the object and the bin

Agent

End effector
motion

Robot state
Object state Inv. dist. between

object and goal

Environment
(world)

Examples of RL tasks

Example: Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Examples of RL tasks

Example: Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece

down

⬣ Reward: +1 if win at the end of game,

0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

?

All we know is the step-wise task reward

Deep Learning for Decision Making

Deep

Neural Nets

state

input

action

output

Deep Learning for Decision Making

Problem: we don’t know the correct action label to supervise the output!

reward 𝑟𝑡

?

All we know is the step-wise task reward

How do we pose the learning problem?
(Deep) Reinforcement Learning!

Markov

Decision

Processes

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as 𝑝(𝑠’|𝑠, 𝑎)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as 𝑝(𝑠’|𝑠, 𝑎)

 : Discount factor

⬣ Experience:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as 𝑝(𝑠’|𝑠, 𝑎)

 : Discount factor

⬣ Experience:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state

st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own

partial observation ot of the

state st at time t, using past

states e.g. with an RNN

⬣ Example: Poker, First-

person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

MDP Variations

Fully observed MDP Partially observed MDP

⬣ Agent receives the true state

st at time t

⬣ Example: Chess, Go

⬣ Agent perceives its own

partial observation ot of the

state st at time t, using past

states e.g. with an RNN

⬣ Example: Poker, First-

person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

We will assume fully observed MDPs for this lecture

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

MDPs in the context of RL

MDP

Put simply: without learning, the agent doesn’t know how their actions will
change the environment and what reward they will receive.

Reinforcement Learning is to learn to act optimally given experience data
(transition, reward) from interacting with the environments.

The outcome is a control policy 𝜋(𝑎|𝑠) that maps a state 𝑠 to a (good) action 𝑎

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell

left or right of direction of motion

(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell

left or right of direction of motion

(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned

⬣ 20% chance that agent drifts one cell

left or right of direction of motion

(except when blocked by wall).

Figure credits: Pieter Abbeel

A Grid World MDP

⬣ Agent lives in a 2D grid environment

⬣ State: Agent’s 2D coordinates

⬣ Actions: N, E, S, W

⬣ Rewards: +1/-1 at absorbing states

⬣ Walls block agent’s path

⬣ Actions to not always go as planned 𝑇(𝑠, 𝑎, 𝑠′)

⬣ 20% chance that agent drifts one cell left

or right of direction of motion (except

when blocked by wall).

Figure credits: Pieter Abbeel

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Future is inherently uncertain!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Future is inherently uncertain!

⬣ How much to value future rewards

⬣ Discount factor:

⬣ Typically 0.9 - 0.99

Large 𝛾 → far-sighted

Small 𝛾 → near-sighted

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy,
next states from transition distribution

We need a function to quantify the optimality of a policy!

⬣ A value function predicts the sum of discounted future reward for a given policy

Value Function

⬣ A value function predicts the sum of discounted future reward for a given policy

⬣ State value function / V-function /

⬣ How good is this state?

⬣ Am I likely to win/lose the game from this state (reward-to-go)?

Value Function

⬣ A value function predicts the sum of discounted future reward for a given policy

⬣ State value function / V-function /

⬣ How good is this state under a policy?

⬣ Am I likely to win/lose the game from this state (reward-to-go)?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair under a policy?

⬣ In this state, what is the impact of this action on my future?

Value Function

⬣ A value function predicts the sum of discounted future reward for a given policy

⬣ State value function / V-function /

⬣ How good is this state under a policy?

⬣ Am I likely to win/lose the game from this state (reward-to-go)?

⬣ State-Action value function / Q-function /

⬣ How good is this state-action pair under a policy?

⬣ In this state, what is the impact of this action on my future?

Value Function

Value functions are measuring both the quality of a state (state-action pair)
and the quality of a policy!

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward

from state s:

Value Function

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward

from state s:

⬣ For a policy that produces a trajectory sample

⬣ The V-function of the policy at state s, is the expected cumulative reward

from state s:

Value Function

Action-Value Function

⬣ For a policy that produces a trajectory sample

⬣ The Q-function of the policy at state s and action a, is the expected

cumulative reward upon taking action a in state s (and following policy

thereafter):

How do we learn a good policy?

⬣ The V and Q functions corresponding to the optimal policy

Optimal V & Q functions

Optimal policy from Q value function:

⬣ The V and Q functions corresponding to the optimal policy

Optimal V & Q functions

Optimal policy from Q value function:

How do we learn the value
functions?

Bellman Optimality Equations

Bellman equation:

Bellman Optimality Equations

Value of a
given state

Expectation over
all possible next
states if taking
action 𝑎

Discounted
future value

Reward if taking
action 𝑎 at
current state

If we act
optimally

Bellman equation:

Bellman Optimality Equations

Value of a
given state

Expectation over
all possible next
states if taking
action 𝑎

Discounted
future value

Reward if taking
action 𝑎 at
current state

If we act
optimally

Bellman equation:

Bellman equation: the optimal value of a state equals to the immediate
reward plus discounted future rewards, when acting optimally

Bellman Optimality Equations

Value of a
given state

Expectation over
all possible next
states if taking
action 𝑎

Discounted
future value

Reward if taking
action 𝑎 at
current state

If we act
optimally

Bellman equation:

Bellman equation: the optimal value of a state equals to the immediate
reward plus discounted future rewards, when acting optimally

Can we use this equation to construct a learning algorithm of V*?

Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Bellman equation:

Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Facts:
• If a value function 𝑉 is correct, then this equation should hold exactly.

Bellman equation:

Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Facts:
• If a value function 𝑉 is correct, then this equation should hold exactly.
• If the value function is incorrect, we can use this equation to update the

value estimate.

Bellman equation:

Bellman Optimality Equations

Goal: Learn a value function 𝑉 that correctly maps states to optimal values.

Facts:
• If a value function 𝑉 is correct, then this equation should hold exactly.
• If the value function is incorrect, we can use this equation to update the

value estimate.

Bellman equation:

Value Iteration

Value Iteration

https://developer.nvidia.com/blog/deep-learning-nutshell-reinforcement-learning/

Initialize Value Function table
For each iteration 𝑖:
- For each state 𝑠:

- For each action 𝑎:
- Get reward 𝑟(𝑠, 𝑎)
- For each possible future states 𝑠’:

- Get current 𝑉(𝑠’) from table
- Compute the expectation term

- Select the highest future value
- Update new 𝑉(𝑠)

This algorithm looks familiar ...
It’s dynamic programming!

Algorithm: Value Iteration

Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

Q: What’s the time complexity per iteration?

Value Iteration Update:

Q-Iteration Update:

Value Iteration

Given a learned Q function, we can derive the optimal policy:

𝜋 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎)

Value iteration is almost never used in practice!

Value Iteration

Time complexity per iteration

|𝑆| = 11, |𝐴| = 4 𝑆 ≅ 3361, 𝐴 ≅ 361 𝑆 ≅ ? , 𝐴 = ?

Can’t iterate over all (𝑠, 𝑎) pairs -> need approximation!

We also don’t know the transition function (model) -> need a model-free method!

Q-Learning
• We’d like to do Q-value updates to each Q-state:

𝑄′ 𝑠𝑡 , 𝑎𝑡 ≅

𝑠′

𝑇(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎]

– But can’t compute this update without knowing the transition function and enumerate all
possible next states 𝑠’!

• Instead, approximate the expectation (sum over next states) with (lots of) experience samples

– Take an action in the environment following policy argmaxa𝑄 𝑠, 𝑎

– receive a sample transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1

– This sample suggests: 𝑄 𝑠𝑡 , 𝑎𝑡 ≅ 𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎)

– Keep a running average to approximate the expectation:
𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max

𝑎
𝑄 𝑠𝑡+1, 𝑎]

Old estimates New estimates

Q-Learning
Approximate the expectation (sum over next states) with (lots of) experience samples

– Take an action in the environment following policy argmaxa𝑄 𝑠, 𝑎

– receive a sample transition 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1

– This sample suggests: 𝑄 𝑠𝑡 , 𝑎𝑡 ≅ 𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎)

– Keep a running average to approximate the expectation:
𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max

𝑎
𝑄 𝑠𝑡+1, 𝑎]

• We can now learn Q values without having access to a transition model

• Getting experience data through interaction instead of assuming access to
all states: more practical in real-world situation (e.g., robots learning through

trial-and-error)

• Still need to represent all (𝑠, 𝑎) pairs in a Q value table!

Q-Learning
Idea: represent the Q value table as a parametric function 𝑄𝜃(𝑠, 𝑎)!

How do we learn the function? We need a loss metric!

𝑄′ 𝑠𝑡 , 𝑎𝑡 = (1 − 𝛼)𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎]

= 𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Now, at optimum, 𝑄 𝑠𝑡 , 𝑎𝑡 = 𝑄′(𝑠𝑡 , 𝑎𝑡) = 𝑄∗(𝑠𝑡 , 𝑎𝑡); This gives us:

0 = 0 + 𝛼(𝑟𝑡 + 𝛾 max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄(𝑠𝑡 , 𝑎𝑡))

Learning problem:
argmin𝜃||𝑟𝑡 + 𝛾 max

𝑎
𝑄𝜃 𝑠𝑡+1, 𝑎 − 𝑄𝜃(𝑠𝑡 , 𝑎𝑡)) ||

Target Q value How to model Q?

Deep

Q-Learning

⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take arbitrary input (e.g. RGB images)

⬣ Assume discrete action space (e.g., left, right)

Deep Q-Learning

Value per action dim

⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value

⬣ Minibatch of

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

⬣ We don’t want the policy to change its behavior too frequently

⬣ Freeze and update parameters

⬣ Set at regular intervals or update as running average

⬣ 𝜃𝑜𝑙𝑑 = 𝛽𝜃𝑜𝑙𝑑 + 1 − 𝛽 𝜃𝑛𝑒𝑤

Deep Q-Learning

Deep Q-Learning

How to gather experience?

This is why RL is hard

How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

⬣ What should be?

⬣ Greedy? -> no exploration, always choose the most confident action

⬣ An exploration strategy:

⬣

Exploration Problem

⬣ Samples are correlated => high variance gradients => inefficient learning

⬣ Current Q-network parameters determines next training samples => can lead

to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be

dominated by samples going right, may fall into local minima

Correlated Data Problem

⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions

➢ Continually update replay buffer as game (experience) episodes are

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay

Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay

Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Case study: Playing Atari Games

Atari Games

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy with a parametrized policy

⬣ Model-based RL

⬣ Approximate transition function and reward function

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

Different RL Paradigms

Next Time: RL continued --- Policy

Gradient and Actor-Critic

What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid

What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid

Implicit representation describes 3D shapes
using mathematical functions rather than
explicit voxels, points, or mesh.
Example: Signed Distance Function

𝐹𝜃: ℝ3 → ℝ

What is an implicit representation for 3D data?

Explicit: A tensor of 3D voxel grid 𝑉 ∈ 0, 1 𝐻,𝑊,𝐿

Implicit: A function that maps locations to occupancies
𝐹𝜃: 𝑥, 𝑦, 𝑧 → {0, 1}

Example: representing a 3D occupancy grid

Implicit representation describes 3D shapes
using mathematical functions rather than
explicit voxels, points, or mesh.
Example: Signed Distance Function

𝐹𝜃: ℝ𝑁 → ℝ

How far is a point
from the nearest
surface, and is the
point inside or
outside of the shape?

SDF distance map

d=0.8 d=-0.4

Can we represent more than just geometry?

Implicit 3D Representation: Beyond Geometry

Can we implicitly represent a full 3D scene, including its fine-grained
geometry (e.g., surface occupancy) and appearance?

𝑓𝜃 𝑣𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡 = 𝐼𝑚𝑎𝑔𝑒

Goal: Learn an implicit 3D
representation function that
maps any camera viewpoint to
full RGB images

https://en.wikipedia.org/wiki/Volume_rendering https://coronarenderer.freshdesk.com/support/solutions/arti
cles/12000045276-how-to-use-the-corona-volume-grid-

Basics: Volume Rendering

https://en.wikipedia.org/wiki/Volume_rendering
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-
https://coronarenderer.freshdesk.com/support/solutions/articles/12000045276-how-to-use-the-corona-volume-grid-

Volume Rendering: Scene Representation

Volume Rendering: Scene Representation

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Each location (𝑥, 𝑦, 𝑧) emits certain color 𝑟, 𝑔, 𝑏 when viewed with direction 𝑑.
We represent point occupancy continuously as density 𝜎.

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Each location (𝑥, 𝑦, 𝑧) emits certain color 𝑟, 𝑔, 𝑏 when viewed with direction 𝑑.
We represent point occupancy continuously as density 𝜎.

Volume Rendering: Scene Representation

...

Ray
Marching

This is
Differentiable!

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Volume Rendering: Ray Marching

Ray Marching: Integrate color and density of points along a ray (via discretization)
to render an RGB value. Render many points -> An image!

...

Ray
Marching

This is
Differentiable!

𝑥, 𝑦, 𝑧, 𝑑 → 𝑟, 𝑔, 𝑏, 𝜎

Volume Rendering: Ray Marching

Neural Radiance Field (NeRF): Train a neural network to represent the scene volume:
𝐹𝜃 𝑥, 𝑦, 𝑧, 𝑑 = (𝑟, 𝑔, 𝑏, 𝜎). Each NN encodes a 3D scene.

∇∥ − ∥2

Train a Single Neural Network to Reproduce the Ground Truth
Images of a Scene

Volume rendering of

MLP colors/densities

Ground truth

image

Adapted from material from Pratul Srinivasan

NeRF Overview

NeRF: Optimization

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample point in each bin.
3. Compute numerical integration.

NeRF: Optimization

Solution: Numerically estimate the integral (quadrature).
1. Discretize the ray into bins.
2. Sample point in each bin.
3. Compute numerical integration.

Key Insight 1: Positional Encoding

Challenge: Having 𝐹𝜃operate directly on 𝑥, 𝑦, 𝑧, 𝑑 performs poorly.

Solution: Positional encoding

Key Insight 2: Hierarchical Volume Rendering

Challenge: Waste of compute on empty space.

Solution: coarse-to-fine prediction.

NeRF encodes convincing view-dependent effects using
directional dependence

Slide credit: Noah Snavely

NeRF encodes convincing view-dependent effects using
directional dependence

Slide credit: Noah Snavely

NeRF encodes detailed scene geometry with occlusion effects

Slide credit: Noah Snavely

NeRF encodes detailed scene geometry

Slide credit: Noah Snavely

Space vs. Time Tradeoff

3D Gaussian Splatting (Kerbl and Kopanas et al., 2023)

Key idea: 3D Gaussians as an explicit representation of a scene
• Train Gaussian blobs via inverse rendering (similar to NeRF)
• Store scene as Gaussian blobs instead of neural network weights (NeRF)
• Much faster during inference, but takes a lot of space to store

Summary: 3D Representation and Neural Rendering

● Representation matters a lot for 3D computer vision tasks (detection,
reconstruction, etc.)

● 3D Voxels are intuitive representation of space but struggles with high-
resolution shape and large scenes

● Implicit function emerge as a new paradigm in representing scenes with
Neural Networks

● Neural volume rendering: represent scenes implicit as point-direction to

color-density neural networks. Photorealistic rendering, slow to train and

evaluate

● More recent works on trading off space and time

	Slide 1: CS 4803-DL / 7643-A: Lecture 23 Danfei Xu
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Decision Making
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Q-Learning
	Slide 67: Q-Learning
	Slide 68: Q-Learning
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84: What is an implicit representation for 3D data?
	Slide 85: What is an implicit representation for 3D data?
	Slide 86: What is an implicit representation for 3D data?
	Slide 87: Implicit 3D Representation: Beyond Geometry
	Slide 88
	Slide 89
	Slide 90: Volume Rendering: Scene Representation
	Slide 91: Volume Rendering: Scene Representation
	Slide 92
	Slide 93
	Slide 94
	Slide 95: Train a Single Neural Network to Reproduce the Ground Truth Images of a Scene
	Slide 96: NeRF Overview
	Slide 97: NeRF: Optimization
	Slide 98: NeRF: Optimization
	Slide 99: Key Insight 1: Positional Encoding
	Slide 100: Key Insight 2: Hierarchical Volume Rendering
	Slide 101
	Slide 102: NeRF encodes convincing view-dependent effects using directional dependence
	Slide 103: NeRF encodes convincing view-dependent effects using directional dependence
	Slide 104: NeRF encodes detailed scene geometry with occlusion effects
	Slide 105: NeRF encodes detailed scene geometry
	Slide 106: Space vs. Time Tradeoff
	Slide 107: 3D Gaussian Splatting (Kerbl and Kopanas et al., 2023)
	Slide 108: Summary: 3D Representation and Neural Rendering

