
CS 4644-DL / 7643-A: LECTURE 14
DANFEI XU

Topics:
• Deep Learning Hardware and Software

2

• Time to work on the project
• Read papers in more details, implement baselines,

process data, verify hypotheses, etc.
• We will release the milestone guideline soon
• Start on PS3/HW3 if you haven’t

• Coding: If you passed individual testing cases but are failing end-to-
end testing, double check your Multi-Headed Attention. The unit test
doesn’t catch all errors.

• DO NOT MODIFY YOUR TEST CODE

Administrative

3

Today

- Finishing Attention, Transformers
- Deep learning hardware

- CPU, GPU
- Deep learning software

- PyTorch and TensorFlow
- Static and Dynamic computation graphs

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Slide credit: Justin Johnson

Softmax()

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Attention seems to be really powerful …
Do we still need RNN?

6

RNN is bad at encoding long-range relationships!

Recurrent update can easily “forget” information

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Attention seems to be really powerful …
Do we still need RNN?

Can we use only attention layers to encode
an entire sequence?

“The Transformer Paper”

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

Self-Attention Layer

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Still need to somehow represent inter-
token connection in the input sequence.

Goal: encode the input sequence with only
attention, without a recurrent network.

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

Self-Attention Layer

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Goal: encode the input sequence with only
attention, without a recurrent network.

Encoding only -> no external queries
Use each element to query other elements

Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q,K,V are all generated from X!

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q,K,V are all generated from X!

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Sequence encode -> use each input element as query!

Q: Can we use self-attention to
encode an input with specific
sequential ordering?

Q,K,V are all generated from X!

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Self-Attention Layer
Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Queries and Keys will be
the same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Similarities will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Attention weights will be
the same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Values will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation Equivariant
f(s(x)) = s(f(x))

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self attention doesn’t “know”
the order of the vectors it is
processing! Not good for
sequence encoding.

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

In order to make processing
position-aware, concatenate
input with positional encoding E

E(i) encodes the position of the
i-th element in a sequence

E() can be a simple function
(e.g., linear or sin functions) or a
learned lookup table.

E(1) E(2) E(3)

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

0.1 0.2 0.3

Slide credit: Justin Johnson

Aside: Positional Encoding (PE) for Self-Attention
Motivation: Maintain the order of input data since attention mechanisms are
permutation invariant. PEs are shared across all input sequences.

Linear Positional Encoding: 𝑃𝐸(𝑝𝑜𝑠) = 𝑎 ⋅ 𝑝𝑜𝑠 + 𝑏.
Problem: encoding increases with the sequence length, causing gradient problem for
long sequences.

Sin/cos Positional Encoding (Default):

PE for each dimension (i) repeats periodically, combine different waveforms at each
dimension to get a unique embedding.

Learned Positional Encoding: 𝑃𝐸!(𝑝𝑜𝑠, 𝑖).
Learn the most suitable position embedding for the training set.

Masked Self-Attention Layer

Don’t let vectors “look
ahead” in the sequence

Used for sequence decoding
(predict next word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2

E3,1

0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

distribute

Concat

Use H independent
“Attention Heads” in
parallel

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

distribute

Concat

Use H independent
“Attention Heads” in
parallel

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multi-headed Self-Attention Layer

Highly parallelizable: Can compute attentions for all
input element from all head in parallel!

Three Ways of Processing Sequences

x1 x2 x3

y1 y2 y3

x4

y4

Recurrent Neural Network

Works on Ordered Sequences
(+) Natural sequential processing:
“sees” the input sequence in its
original ordering
(-) Forgetful: difficult to handle
long-range dependencies.
(-) Not parallelizable: need to
compute hidden states sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

Recurrent Neural Network 1D Convolution

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence
(+) Highly parallel: Each output can
be computed in parallel

x1 x2 x3 x4

Slide credit: Justin Johnson

Works on Ordered Sequences
(+) Natural sequential processing:
“sees” the input sequence in its
original ordering
(-) Forgetful: difficult to handle
long-range dependencies.
(-) Not parallelizable: need to
compute hidden states sequentially

Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3
K2
K1

E1,3
E1,2
E1,1

E2,3
E2,2
E2,1

E3,3
E3,2
E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence
(+) Highly parallel: Each output can
be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!
(+) Highly parallel: Each output can
be computed in parallel
(-) Very memory intensive
(-) Requires positional encoding

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson

Works on Ordered Sequences
(+) Natural sequential processing:
“sees” the input sequence in its
original ordering
(-) Forgetful: difficult to handle
long-range dependencies.
(-) Not parallelizable: need to
compute hidden states sequentially

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-AttentionAll vectors interact
with each other

Slide credit: Justin Johnson

x1 x2 x3 x4

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently on
each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

x1 x2 x3 x4

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently on
each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection

x1 x2 x3 x4

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

All vectors interact
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (shape: D)
scale: 𝛾 (shape: D)
shift: 𝛽 (shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i (shape: D)
yi = 𝛾 * zi + 𝛽 (shape: D)

Applied per element, not
across the sequence

Slide credit: Justin Johnson

MLP independently on
each vector

y1 y2 y3 y4

MLP MLP MLP MLP

x1 x2 x3 x4

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact
with each other

Residual connection

MLP independently on
each vector

Residual connection

Slide credit: Justin Johnson

x1 x2 x3 x4

The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction among vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide credit: Justin Johnson

x1 x2 x3 x4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+
Layer	Normalization

A Transformer is a sequence
of transformer blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction among vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide credit: Justin Johnson

Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Visualizing Transformer Attentions

https://github.com/jessevig/bertviz

Can Attention/Transformers be used from
more than text processing?

Encoding/Decoding Protein Structures (AlphaFold)

https://www.nature.com/articles/s41586-021-03819-2

Predicting Multi-agent Behaviors

Yuan et al., 2021 AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting

ViT: Vision Transformer

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
(Dosovitskiy et al., 2021)

ViT: Vision Transformer

Generally more expensive to train and execute than ConvNets-based models

Summary
Self-Attention Transformer Model Beyond Language

A Lecture on Large Language Models

Nov 5th by William Held (GT, Stanford)
Fully-remote

52

Today

- Finishing Attention, Transformers
- Deep learning hardware

- CPU, GPU
- Deep learning software

- PyTorch and TensorFlow
- Static and Dynamic computation graphs

Deep Learning
Hardware

53

54

Inside a computer

55

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

56

Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

57

CPU vs GPU
Cores Clock

Speed
Memory Price Speed (throughput)

CPU
(Intel Core i9-
7900k)

10 4.3 GHz System
RAM

$385 ~640 GFLOPS FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

58

Example: Matrix Multiplication
A x B

B x C
A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-
optimized, a little unfair)

66x 67x 71x 64x 76x

59

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

60

61

62https://en.wikipedia.org/wiki/FLOPS#Hardware_costs

NVIDIA
GeForce
RTX4090

63

NVIDIA AMDvs

64

NVIDIA AMDvs

65

CPU vs GPU
Cores Clock

Speed
Memor
y

Price Speed

CPU
(Intel Core i7-
7700k)

10 4.3 GHz System
RAM

$385 ~640 GFLOPs FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB
GDDR6
X

$1499 ~35.6 TFLOPs FP32

GPU
(Data Center)
NVIDIA A100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB
HBM2

$3/hr
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud
TPUv3

2 Matrix Units
(MXUs) per
core, 4 cores

? 128 GB
HBM

$8/hr
(GCP)

~420 TFLOPs (non-
standard FP)

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

TPU: Specialized
hardware for deep
learning

66

Aside: NPUs
Neural Processing Units (NPUs) are specialized hardware designed for Deep Learning
applications. Example: GraphCore IPUs
General pros: larger on-device memory, lower power consumption
General cons: specialized computation units (compared to GPU and CPUs). Smaller
instruction sets. Less supported by popular platforms (PyTorch, TensorFlow)

Graphcore M2000

Apple M1

67

Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to

something that can run on AMD GPUs
○ CS 8803 – GPU at GaTech

○ Taught by Prof. Hyesoon Kim

https://github.com/ROCm-Developer-Tools/HIP

CPU / GPU Communication

Model
is here

68Data is here

Data access rate: RAM and the GPU
over PCIe lanes is about 16 GB/s.
GPU's internal memory (like GDDR6)
is about 448 GB/s.

CPU / GPU Communication

Model
is here

Data is here

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to

prefetch data

69

Data access rate: RAM and the GPU
over PCIe lanes is about 16 GB/s.
GPU's internal memory (like GDDR6)
is about 448 GB/s.

Deep Learning
Software

70

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

71

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

72

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on these

Recall: Computational Graphs

x

W

hinge
loss

R

+ L
s (scores)

*

73

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Recall: Computational Graphs

74

Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

75

https://twitter.com/karpathy/status/597631909930242048?lang=en

76

The point of deep learning frameworks

(1)Quick to develop and test new ideas
(2)Automatically compute gradients
(3)Run it all efficiently on GPU (wrap cuDNN, cuBLAS,

OpenCL, etc)

77

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

78

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

79

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad:
- Have to compute

our own gradients
- Can’t run on GPU

Good:
Clean API, easy to
write numeric code

80

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

81

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!

82

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct
arrays on a different device!

83

PyTorch
(More details)

84

PyTorch: Fundamental Concepts

torch.Tensor: Like a numpy array, but can run on GPU

torch.nn.Module: A neural network layer; may store state
or learnable weights

torch.autograd: Package for building computational graphs
out of Tensors, and automatically computing gradients

85

PyTorch: Versions

For this class we are using PyTorch version >= 2.0.0
(newest is v2.1.0)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!

86

PyTorch: Tensors

Running example: Train
a two-layer ReLU
network on random data
with L2 loss

87

PyTorch: Tensors
Create random tensors
for data and weights

88

PyTorch: Tensors

Forward pass: compute
predictions and loss

89

PyTorch: Tensors

Backward pass:
manually compute
gradients

90

PyTorch: Tensors

Gradient descent
step on weights

91

PyTorch: Tensors

To run on GPU, just use a
different device!

92

PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

93

PyTorch: Autograd

Make gradient step on weights, then zero
them. Torch.no_grad means “don’t build a
computational graph for this part”

94

PyTorch: Autograd

PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor

95

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values
for the backward pass

96

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values
for the backward pass

Define a helper function to make it
easy to use the new function

97

PyTorch: New Autograd Functions

Can use our new autograd
function in the forward pass

98

PyTorch: New Autograd Functions

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal PyTorch function

PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

99

https://twitter.com/karpathy/status/597631909930242048?lang=en

100

PyTorch: Dynamic Computation Graphs

101

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects

102

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

103

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

104

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

105

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and
rebuild it from scratch on every iteration

106

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

107

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

108

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

109

PyTorch: Dynamic Computation Graphs

Building the graph and
computing the graph happen at
the same time.

Seems inefficient, especially if we
are building the same graph over
and over again...

110

Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph
describing our computation
(including finding paths for
backprop)

Step 2: Reuse the same graph on
every iteration

111

TensorFlow

112

TensorFlow Versions

Default static graph,
optionally dynamic
graph (eager mode).

Pre-2.0 (1.14 latest) 2.0+
Default dynamic graph,
optionally static graph.

113

TensorFlow:
Neural Net
(Pre-2.0)

(Assume imports at the
top of each snippet)

114

TensorFlow:
Neural Net
(Pre-2.0)

First define
computational graph

Then run the graph
many times

115

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())

Tensorflow 1.13

116

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())

117

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default
assert(tf.executing_eagerly())

118

TensorFlow:
Neural Net

Convert input numpy
arrays to TF tensors.
Create weights as
tf.Variable

119

TensorFlow:
Neural Net

Use tf.GradientTape()
context to build
dynamic computation
graph.

120

TensorFlow:
Neural Net

All forward-pass
operations in the
contexts (including
function calls) gets
traced for computing
gradient later.

121

TensorFlow:
Neural Net

Forward pass

122

TensorFlow:
Neural Net

tape.gradient() uses the
traced computation
graph to compute
gradient for the weights

123

TensorFlow:
Neural Net

Backward pass

124

TensorFlow:
Neural Net

Train the network: Run
the training step over
and over, use gradient
to update weights

125

TensorFlow:
Neural Net

Train the network: Run
the training step over
and over, use gradient
to update weights

126

TensorFlow:
Optimizer

Can use an optimizer to
compute gradients and
update weights

127

@tf.function:
compile static
graph

tf.function decorator
(implicitly) compiles
python functions to
static graph for better
performance

128

@tf.function:
compile static
graph

Here we compare the
forward-pass time of
the same model under
dynamic graph mode
and static graph mode

Ran on Google Colab, April 2020

129

@tf.function:
compile static
graph

Static graph is in theory
faster than dynamic graph,
but the performance gain
depends on the type of
model / layer / computation
graph.

Ran on Google Colab, April 2020

130

@tf.function:
compile static
graph

Static graph is in theory
faster than dynamic graph,
but the performance gain
depends on the type of
model / layer / computation
graph.

Ran on Google Colab, April 2020

Static vs Dynamic: Optimization
With static graphs,
framework can
optimize the
graph for you
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU

131

132

Static PyTorch: TorchScript
graph(%self.1 :
__torch__.torch.nn.modules.module.___torch_mangl
e_4.Module,

%input : Float(3, 4),
%h : Float(3, 4)):

%19 :
__torch__.torch.nn.modules.module.___torch_mangl
e_3.Module =
prim::GetAttr[name="linear"](%self.1)
%21 : Tensor =

prim::CallMethod[name="forward"](%19, %input)
%12 : int = prim::Constant[value=1]() #

<ipython-input-40-26946221023e>:7:0
%13 : Float(3, 4) = aten::add(%21, %h, %12) #

<ipython-input-40-26946221023e>:7:0
%14 : Float(3, 4) = aten::tanh(%13) #

<ipython-input-40-26946221023e>:7:0
%15 : (Float(3, 4), Float(3, 4)) =

prim::TupleConstruct(%14, %14)
return (%15)

Build static graph with torch.jit.trace

133

Static PyTorch: torch.compile()
Applies a suite of kernel optimization
techniques by analyzing your computation
graph. Optimizations include CUDA graphs,
kernel fusion, and pattern matching (e.g.,
flash attention).

Curious? Read more here:
https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html
https://pytorch.org/blog/accelerating-pytorch-with-cuda-graphs/

PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
Dynamic Graphs

Static: TorchScript,
torch.compile()

134

TensorFlow
Dynamic Graphs

Static: @tf.function

Static vs Dynamic: Serialization

Once graph is built, can
serialize it and run it
without the code that
built the graph!

Graph building and execution
are intertwined, so always
need to keep code around

Static Dynamic

135

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating
Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

136

- Recurrent networks

Dynamic Graph Applications

The cat ate a big rat

137

- Recurrent networks
- Recursive networks

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

138

Figure copyright Justin Johnson, 2017. Reproduced with permission.

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

139

140

Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism:
split computation
graph into parts &
distribute to GPUs/
nodes

Data parallelism: split
minibatch into chunks &
distribute to GPUs/ nodes

141

PyTorch: Data Parallel
nn.DataParallel
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number
of GPUs (8+).

nn.DistributedDataParallel
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each
process / nodes.

Horovod (https://github.com/horovod/horovod): Supports both PyTorch and
TensorFlow

https://pytorch.org/docs/stable/nn.html#dataparallel-layers-multi-gpu-distributed

https://github.com/horovod/horovod
https://pytorch.org/docs/stable/nn.html

142

PyTorch vs. TensorFlow

My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs
make it very easy to develop and debug. Can build model using the
default API then compile static graph using JIT. Almost all academic
research uses PyTorch

TensorFlow’s syntax became a lot more intuitive after 2.0. Not
perfect but still has a wide industry usage. Can use same
framework for research and production.

Explore other frameworks such as JAX if you are curious!

143

