CS 4644-DL / 7643-A: Lecture 20
Danfei xu

Self-Supervised Learning (Continued)

Large Vision and Language Models



Pretext tasks from image transformations

w9 u B

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?



A more general pretext task?

same object



A more general pretext task?

same object

different object



Contrastive Representation Learning

attract




Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC



Contrastive Representation Learning

attract




Contrastive Representation Learning
_|_
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A formulation of contrastive learning

What we want:

score(f(x), f(x™)) >> score(f(x), f(z7))

x: reference sample; x* positive sample; x negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-FEx

exp(s(f(z), f ($+))

log

exp(s(f(z),

f(z

)+ 30 exp(s(f(z),

flz
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A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(-’B*))
® exp(s(f(), (1)) + 300 eX]D(S(f(fl?) f( i)

L=—-Ex |log




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-FEx

exp(s(f(z), f(ﬂv*))

log _
exp(s(f(2), f(z+)) + S0 exp(s(f (@), £ (z7))
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

= —-Ex log

exp(s(f(z), f(w+))

exp(s(f(z),

f(z

) + 350, exp(s(f (@),

score for the positive

pair

This seems familiar ...

flz

).

Cross entropy loss for a N-way softmax classifier!

l.e., learn to find the positive sample from the N samples

pairs

score for the N-1 negative




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f($+))
exp(s(f(x), f(2+)) + 272, exp(s(f(2), f(z))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

L = —EX lOg

A lower bound on the mutual information between f(x) and f(x*)
MI[f(z), f(z*)] - log(N) > ~L
The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019



https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SImCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$(u, V) = e

Use a projection network h(-) to project
features to a space where contrastive learning

is applied

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

Zi < > Zj
o fg0)
h; <— Representation —> h;
fQ) fQ)
T i

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SimCLR: generating positive samples from data
augmentation

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
S | m C I_ R input: batch size IV, constant 7, structure of f, g, 7.

for sampled minibatch {z;}_, do
forallk e {1,....N}do

draw two augmentation functions t ~ 7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair _—"

hor—1 = J (@2k—1) # representation
by sampling data Zor—1 = g(har_1) # projection
augmentation functions # the second augmentation
T Top = t’(wk)
hoy = f(T2k) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; = z; zi/(|zillll%]) # pairwise similarity
end for

exp(s;,5/7)
N Likozi) exp(ss,6/T)

L= 30 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(z, j) as £(z,7)=—log 52
k

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SImMCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t ~ 7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

— Pok—1 = J(®2k—1)
zok—1 = g(hog—1)
# the second augmentation
i:gk = t’(wk)
hor = f(®2x)
2ok = g(hak)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz])  #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SImMCLR

et

Generate a positive pair
by sampling data
augmentation functions

Iterate through and use
each of the 2N sample as
reference, compute
average loss

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Tok—1 = t(xk)

/

hok—1 = [ (®2k-1)

zok—1 = g(hok-1)
# the second augmentation

i:gk = t’(wk)

hop, = f(x2r)
zok = g(hax)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz])  #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

—— L =00 [6(2k—1,2k) + £(2k, 2k—1)]

update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

T

SimCLR: mini-batch training o F

S;5 —
N PATNEA
“Affinity matrix”
ﬁ——» encoder Z < RzNXD
list of positive - 2N
pairs

> encoder

Each 2k and 2k +1
element is a positive 2N
pair



SImCLR: mini-batch training 5i5 = Zi %
W el sl

“Affinity matrix”

—  encoder — Z C RzNXD .!
list of positive ., E 2N
pairs

—_»  encoder —/ ]
Each 2k and 2k + 1

element is a positive 2N

air e .
P .= classification label for each
row




Training linear classifier on SImCLR features

*Supervised %*SimCLR (4x)
__ 75F b B .
X .- KSImCLR (2x) Train feature encoder on ImageNet
) oCPCv2-L (entire training set) using SImCLR.
S 7OF %simCLR MoCo (4x)
3 oPIRL-coX°MC
< q oMoCo (2x) AMDIM Freeze feature encoder, train a linear
g; | qCPCv2 PIRL-ens. classifier on top with labeled data.
= PIRL e
5 eBigBiGAN
%) 60 L QMOCO
z LA
S
£ A eRotation
o9 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

Semi-supervised learning on SImCLR features

Label fraction

Method Architecture 1% 10%
Top 5

Supervised baseline ResNet-50 48.4 80.4
Methods using other label-propagation:

Pseudo-label ResNet-50 516 824
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5
FixMatch (w. RandAug) ResNet-50 - 89.1
S4L (Rot+VAT+En. M.) ResNet-50 (4 %) - 91.2
Methods using representation learning only:

InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 552  78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912
SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 2x) 83.0 91.2

SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet
(entire training set) using SimCLR.

Finetune the encoder with 1% / 10%
of labeled data on ImageNet.

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SimCLR design choices: projection head

60 I II II Linear / non.-linear p.rojection heads improve
E,lso Projection representation learning.
= B Linear
0 : Eﬁﬂe"”ear | | | | I A possible explanation:
> 0&%

=0 = " © ® contrastive learning objective may discard
> 2 1 . .
oo useful information for downstream tasks
Projection output dlmensmnallty . . .
® representation space z is trained to be

— Voumgemen invariant to data transformation.
{ 0] o0 ] ® by leveraging the projection head g(*), more
he  + Representation —» information can be preserved in the h
f(ég Gg) representation space
t“?* 7 Hff

Source: Chen et al.,

2020
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SIimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
65.0
62.5 .

— Large batch size causes large memory

260.0 . . .

S Batch N footprint during backpropagation:
57.5 ﬁg requires distributed training on TPUs
550 1024 (ImageNet experiments)

2048
52.5 4096

8192
500 [ LT ([ []]

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-

ent batch size and epochs. Each bar is a single run from scratch. '
Source: Chen et al.,

2020
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Momentum Contrastive Learning (MoCo)

contrastive loss Key differences to SimCLR:

no_grad
similarity / e Keep arunning queue of keys (negative
samples).
q kO kl k2 XX e Compute gradients and update the
queue encoder only through the queries.
e Decouple min-batch size with the number
momentum .
encoder oncodar of key.s. can support a large number of
negative samples.
ke ke ke
ey Ty Ty Too ...

Source: He et al., 2020



https://arxiv.org/abs/1911.05722

Momentum Contrastive Learning (MoCo)

contrastive loss no_gra d

similarity /

q ko k1 ko ...
queue
el momentum
encoder
ke ke ke
query Yy Yy Yy
x Lo~ Ty~ Tg 5 ...

Key differences to SimCLR:

Keep a running queue of keys (negative
samples).

Compute gradients and update the
encoder only through the queries.

Decouple min-batch size with the number
of keys: can support a large number of
negative samples.

The key encoder is slowly progressing through
the momentum update rules:

O +— mby + (1 — m)Qq

Source: He et al., 2020



https://arxiv.org/abs/1911.05722

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_qg, f_k: encoder networks for query and key
I\/I OCO # queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_g.params # initialize
H : for x in loader: # load a minibatch x with N samples
Generate a pOSItlve palr X_gq = aug(x) # a randomly augmented version
. x_k = aug(x) # another randomly augmented version
by sampling data ~.
. . g = f_qg.forward(x_qg) # queries: NxC
augmenta“on functions k = f k.forward(x k) # kevs: NxC
k = k.detach() # no gradient to keys]
# positive logits: Nx1 :
. 1l_pos = bmm(g.view(N,1,C), k.view(N,C,1)) Use the runnlng queue
No gradient through } rerE Lo R <« of keys as the negative
ey e 1 = .vi N,C), .vi C,K
the p05|t|ve Sample _neg mm (qg.view ( ), queue.view ( )) Samples

# logits: Nx(1+K)
logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, Egn. (1)

labels = zeros(N) # positives are the 0-th
: D —— N
loss = CrossEntropyLoss (logits/t, labels) I fONCE IOSS

# SGD update: query network
loss.backward ()
update (f_g.params)

# momentum update: key network Update f k through
f_k.params = mxf_k.params+ (1-m)*f_qg.params | €——— -
momentum

Update the FIFO negatlve # update dictionary
-

enqueue (queue, k) # enqueue the current m1n1batch|
sample queue

dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. S ource: H e et a I 2 O 2 O
. .y



https://arxiv.org/abs/1911.05722

“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
® From SimCLR: non-linear projection head and strong data
augmentation.
® From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APsyg AP APys
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 81.5 559 62.6
(a) v 200 66.2 82.0 564 62.6

®) v 200 63.4 82.2 56.8 63.2

(©) v v 200 67.3 82.5 572 639

(d v v v 200 67.5 824 57.0 63.6

(e v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLP aug+ ~cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

mechanism  batch  memory /GPU  time / 200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020
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Instance vs. Sequence Contrastive Learning

Predictions

AL e S
/L 3\ /@ | [\ f \/w\/w\/m\/w\

e e

Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examp|es; SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)


https://arxiv.org/abs/1807.03748

Contrastive Predictive Coding (CPC)

Predictions

Contrastive: contrast between “right”
@ and “wrong” sequences using
*zm *ZHQ +zt+3 *zm contrastive learning.

/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ Predictive: the m.odel has to predict

| s | @es Zen | 2 | Tes | T future patterns given the current

l 7 B . o
Coding: the model learns useful
. . . ' positive feature vectors, or “code”, for

toxt downstream tasks, similar to other
contex self-supervised methods.

negative

Figure source Source: van den Oord et al.,

2018,


https://arxiv.org/abs/1807.03748
https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Ct Pt 1. Encode all samples in a sequence
""""""""""""" into vectors z; = genc(X;)

[ AR ? ? -

Lol [ [ [l [ o o [

1\$\37+\37+\1’+|33+\

EEEE
/
ovee ] 15 @ 1

negative
- J
Figure source Source: van den Oord et al.,
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2018,
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https://github.com/davidtellez/contrastive-predictive-coding

Contrastive Predictive Coding (CPC)

Predictions

1. Encode all samples in a sequence

( N\
Ct
=_‘ffffii:j\‘_"'*:ifijj """ s into vectors z; = genc(X;)
(2 )—()—(o) @ R 2. Summarize context (e.g., half of a
zt 1 zt+2 +zt+3 *zm sequence) into a context code ¢, using

/gm\/ \/gnc\ /gm\/ \/gm\ /gnc\/ \ an auto-regressive model (g,,).

| -3 | Ty—2 | Te—1 | e | Te41 | Te42 | Te43 | Teqa |
EEBEE v
/
over @1 15 @ 1

negative

Source: van den Oord et al.,

Figure source
2018,
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Contrastive Predictive Coding (CPC)

1. Encode all samples in a sequence
"?'I'A':_::?III,'“ """" . into vectors z; = genc(X;)

@ @ ' 2. Summarize context (e.g., half of a
‘,zm *mg ézws §2t+4 sequence) into a context code ¢, using

an auto-regressive model (g,,).
genc genc genc /genc\ /genc\ /genc\ /genc\ /genc\

| e ‘ —_ ‘ T vt | T | G | e 3. Compute InfoNCE loss between the
& context ¢; and future code z,,, using
v / - . the following time-dependent score
EEHBEE v ior
y /
N : Sk (Zt+k, Ct) Wie
ovee 1 151 @ "

) , Wwhere W, is a trainable matrix.
negative

Figure source Source: van den Oord et al.,
2018,
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CPC example: modeling audio sequences

Predictions

M () ;
* 2t+1 * 2t42 + 2t+3 Zt4+4
genc genc genc / genc \ / genc \ / genc \ / genc \ genc

i3 Tt—1 Ti4+1 Ti42 Zt+3 Ti+a |

WWWWWWWWWWWWW%WWWW

Source: van den Oord et al.,

2018,


https://arxiv.org/abs/1807.03748

CPC example: modeling audio sequences

Method | ACC

Phone classification
Random initialization 27.6

MEFCC features 39.7
CPC 64.6
Supervised 74.6
Speaker classification
Random initialization 1.87
MEFCC features 17.6
Figure 2: t-SNE visualization of audio (speech) gPCr ‘sed g;g
representations for a subset of 10 speakers (out upervise :
of 251). Every color represents a different _ o _
speaker. Linear classification on trained
representations (LibriSpeech
dataset)

Source: van den Oord et al.,

2018,


https://arxiv.org/abs/1807.03748

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.

Jenc - Output

L

4 -

= — = //’// |_|
=z 7
- - -7 A
P A
64 px .
7 7
7 7 7
et o o o th"2 <-[—
/// // zt—|—3 <t
rd 4 1
7
-7 a Ct4-4|  |ee|-
L
50% overlap |
256 px: :
v input image |

_/’

_/‘

Gar - Output

o7
P
=7
/ .
-/

_-~ Predictions

/-

Source: van den Oord et al.,
2018,
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CPC example: modeling visual context

Method | Top-1 ACC
Using AlexNet conv5

Video [28] 29.8
Relative Position [11] 30.4
BiGan [35] 34.8
Colorization [10] 35.2
Jigsaw [29] * 38.1
Using ResNet-V2

Motion Segmentation [36] 27.6
Exemplar [36] 31.5
Relative Position [36] 36.2
Colorization [36] 39.6
CPC 48.7

Table 3: ImageNet top-1 unsupervised classifi-
cation results. *Jigsaw is not directly compa-
rable to the other AlexNet results because of
architectural differences.

ImageNet Top-1 Accuracy (%)

Compares favorably with other pretext task-
based self-supervised learning method.
Doesn’t do as well compared to newer instance-
based contrastive learning methods on image
feature learning.

% Supervised K SIMCLR (4x)
r *SimCLR (2x)
k oCPCv2-
70F -sin MoCo (4x
*SimCLR oCMC ¢ (4x)
oPIRL-c2x
AMDIM
65k 1 oMoCo (2x)
CPCv2 PIRL-ens.
eBigBiGAN
6o} gMoCo 9
LA
L eRotation
55 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: van den Oord et al.,

2018,


https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(x), f()) >> score(f(z), f(z))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z ™))

L= —EX log N_1
exp(s(f(x), f(z)) + 22— exp(s(f(z), f(z}))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x*)

MI|[f(z), f(z")] — log(N) = —L


https://arxiv.org/abs/1807.03748

Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive | Maximize agreement

representation learning
e Key ideas: non-linear projection head to allow .
flexible representation learning hi ¢ Representation —
e Simple to implement, effective in learning visual
representation
® Requires large training batch size to be effective;
large memory footprint



Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum

sample encoder

e Decouples negative sample size from minibatch
size; allows large batch training without TPU

® MoCo-v2 combines the key ideas from SimCLR,
i.e., nonlinear projection head, strong data
augmentation, with momentum contrastive

learning

contrastive loss

similarity
q ko k1 ko ...
queue
encoder momentum
encoder
ke ke ke
xquy xOY'$1Y'x2Y'“.



Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”
sequence.
e InfoNCE loss with a time-dependent score
function.
e Can be applied to a variety of learning
problems, but not as effective in learning

image representations compared to instance- . “ a positive

level methods. context I's Q l

negative




Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text

pepp.er the Text
aussie pup — Encoder ] 1 1 1 a ?r:no o}f Tex;
a{object}. Encoder
U] ) T3 Tn
— I I;'T, I, T, I,'T; I,Ty
_ — L LT I, IpTy - Iy 3. Use for zero-shot prediction
- i
4 ’llb L i 11 Ts 7y
] I mage
" ill Encoder I3 I3T, IzT, IxTy - IgTy
&
d Image
; ; ; i ; : e Encoder 1 LORENREREN 1l I Ty
— Iy Iyt InTy IyTs - InTy {

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss

Dense Object Net, Florence et al., 2018



Other examples

Dense Object Net, Florence et al., 2018



Vision and Language Models:
Connecting the Pixel and Semantic Worlds at Scale



Why Vision-Language Models?

e Language is the most intuitive interface for an unstructured data
space (e.g., natural images)

e Important to ground sensory information to semantic concepts

e Complementary information sources for a given task

e Claim: you cannot learn language without grounding



History: the first captioning model (Ordonez, 2011)

Im2Text: Describing Images Using 1 Million
Captioned Photographs

Vicente Ordonez Girish Kulkarni Tamara L Berg

Stony Brook University
Stony Brook, NY 11794

{vordonezroma or tlberg}@cs.stonybrook.edu

Abstract



History: the first captioning model (Ordonez, 2011)

Matched Images &
extracted content

Top re-ranked images

Top associated captions
Across the street from Yannicks
apartment. At night the
headlight on the handlebars
above the door lights up.

The building in which | live. My
window is on the right on the
4th floor

This is the car | was in after they
had removed the roof and
successfully removed me to the
ambulance.

| really like doors. | took this
photo out of the car window
while driving by a church in
Pennsylvania.



History: the first deep captioning model (Vinyals, 2015)

Show and Tell: A Neural Image Caption Generator

Oriol Vinyals Alexander Toshev Samy Bengio Dumitru Erhan
Google Google Google Google

vinyals@google.com toshevl@google.com bengiol@google.com dumitru@google.com



History: the first deep captioning model (Vinyals, 2015)
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History: the first VQA model (Agrawal, 2015)

VQA: Visual Question Answering

www.visualqa.org

Aishwarya Agrawal*, Jiasen Lu*, Stanislaw Antol*,
Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural
language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such
as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas
of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a
more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA
is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can
be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers
(www.visualga.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared
with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vga).



History: the first VQA model (Agrawal, 2015)

. yes no no no . . bakery art supplies
ﬁ‘sor'nitgm?( un7der yes ke :‘Zan ;'ou park e e tvx'hgt kind of store is bakery grocery
& SIISOTOREN yes no S no yes L pastry grocery
33 5 : white and orange red . no no
i 5 Wnatcolor e andorange _red bfedsaycues  no e
y ’ 33 7 Y i white and orange yellow : no yes

How many bikes % 2
are there? > 12
What number is 45 4
the bus? 48 46
i 48 number 6

Does this man have ~ Y&* e Has the pizza been yes ye How many pickles d %
. es es es es 1 I
children? ));es zes baked? ges %5 are on the plate? 1 1
no no ; : feta mozzarella : circle circle
Is this man crying? no  yes ;lghategrg:‘ ?rﬁiiheiezigvls feta mozzarella g'{ate's ltal;:;hape round round
no yes PP pizzas ricotta mozzarella prates round round

What does Slop Sop
: stop stop
the sign say? stop yield
. octagon diamond
nlir.:,as(i slr\\i;pe 'S octagon octagon
gn octagon round



Foundation VLM (2019-)

Hand-drawn sketch to website source code
GPT 4v(ision) (OpenAl, 2023)



Major Areas

e Representation: how to convert raw data into meaningful features

e Translation: transform one modality to another

e Alignment: discover relationships between elements across modalities
e Fusion: join features from modalities to support prediction

e Co-learning: transferring knowledge from one modality to another

Slide credit: Desmont Elliott



Language->Vision

TTTTTTTTTTTTTTT

An astronaut

riding a horse

in a photorealistic style

https://openai.com/dall-e-2/

: Language-guided Image Gen




A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
Suitcase on the floor branch grass with a frisbee the grass

Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track


https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/

Image — Language Association

Contrastive learning between

1. Contrastive pre-training

Image
Encoder

Iy

I;'T,

I T

I3T,

IyTy

I,T,

I,T,

I3,

InT,

I, T3

I, T3

I3T3

IyTs

I,Ty

I, Ty

I3Ty

In-Ty

image and natural language sentences

2. Create dataset classifier from label text

Text
Encoder

3. Use for zero-shot prediction

< Image
Encoder 1 I LT Ll I Ty

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Image — language encoding architectures

Associative Joint

/NCE
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CLIP: Associative Encoding

1. Contrastive pre-training

pepper the Text
aussie pup Encoder

——
—
Image
Encoder
—

11‘T1

I T

I3 T,

Iy

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021
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CLIP: Training

image_encoder ResNet or Vision Transformer
text_encoder - CBOW or Text Transformer

I[n, h, w, c] minibatch of aligned images
T[n, 1] - minibatch of aligned texts
W_i[d_i, d_e] - learned proj of image to embed
W_t[d_t, d_e] - learned proj of text to embed
T - learned temperature parameter

H o H o HH

xtract feature representations of each modality
image_encoder(I) #[n, d_i]

# e
I_f
T_f = text_encoder(T) #[n, d_t]

oint multimodal embedding [n, d_e]

12_normalize(np.dot(I_f, W_i), axis=1)

# ]
I_e
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=8)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



CLIP: Zero-shot Classification

2. Create dataset classifier from label text

a photo of Text
e — = —_—
a {object}. Encoder

3. Use for zero-shot prediction

N Image 1,

Encoder

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021

II 'TI

LT, Iy

a photo of
adog.

I Ty



CLIP: Zero-shot Classification

# Load the model
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load('ViT-B/32"', device)

# Download the dataset
cifarl0@ = CIFAR100(root=os.path.expanduser('~/.cache"), download=True, train=False)

# Prepare the inputs

image, class_id = cifar100[3637]

image_input = preprocess(image).unsqueeze(@).to(device)

text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifarl1@0.classes]).to(device)

# Calculate features

with torch.no_grad():
image_features = model.encode_image(image_input)
text_features = model.encode_text(text_inputs)

# Pick the top 5 most similar labels for the image

image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)

similarity = (100.0 x image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[0].topk(5)

https://github.com/openai/CLIP



CLIP: Zero-shot Classification

PatchCamelyon (PCam) ImageNet-A (Adversarial)
healthy lymph node tissue (77.2%) Ranked 2 out of 2 labels lynx (47.9%) Ranked 5 out of 200 labels
Al ? f ‘ X this is a photo of lymph node tumor tissue X aphoto of a fox squirrel.
| F [ — —_—

+ this is a photo of healthy lymph node tissue X aphoto of a mongoose.

L I
—
X aphoto of a skunk.

—
X aphoto of a red fox.

:I_!'.:'. ~/_a photo of a lynx.
P
.".-, ._ .'|§: y-l_. .. Camera Name 300110t 37F @ -
CIFAR-10 CLEVR Count
bird (40.9%) Ranked 1out of 10 labels 4 (75.0%) Ranked 2 out of 8 labels

+ aphoto of a bird. X aphoto of 3 objects.

——
X aphoto of a cat. + aphoto of 4 objects.

X aphoto of a deer. X aphoto of 5 objects.

—
X aphoto of a frog.

-
X a photo of 6 objects.
—

'
X aphoto of adog. X aphoto of 10 objects.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Generating Images from CLIP Latents (DALL-E 2)

CLIP objective img

encoder

|
\

“a corgi
playing a
flame T
throwing s
trumpet” AR 66000 S 3
O+O~
---------------------------------------- T~ —8-8- 3 3
O O

* Train image diffusion with classifier-free guidance using CLIP image embedding
* Train another diffusion model to predict CLIP image embedding from the CLIP
embedding of the input text.

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)



Generating Images from CLIP Latents (DALL-E 2)

“a corgi
playing a
flame
throwing
trumpet”

CLIP objective

img
encoder

Q0
ON©)
O
O O
QO

decoder

Learning objective for the text to image CLIP embedding diffusion model:
t
Losor = Eqjy 11,0, [Ifo(z1" 1,9) = 2]

i

Hierarchical Text-Conditional Image Generation with CLIP Latents (Ramesh, Dhariwal, Nichol, Chu, Chen, 2022)



Joint Encodings: ViLBERT (2019)

4 Vo
Embed
<IMG>
\
(<CLS> Man shopping for fruit  <SEP> e
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Vision and Language Joint Pretraining

VIiLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: ViLBERT (2019)

Faster RCNN =
Loy
Region Proposal / l Feature embedding
v, £ vy I
' Co-TRM|—{ TRM I—.—»[h,,o,hm.---,hw]
<IMG> !
. |
(<CLS> Man shopping for fruit ... <SEP>.(Embed]il TAM R )
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Vision and Language Joint Pretraining

VIiLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: ViLBERT (2019)

< || Man shopping Aligned / Not Aligned

mf‘ﬂmm ﬁmﬁﬁm = Jﬁﬁﬁﬁﬁ%ﬁﬁﬁ

V|S|on Language BERT Vision & Language BERT

(a) Masked multi-modal learning (b) Multi-modal alignment prediction

Vision and Language Joint Pretraining

VIiLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks (Lu et al., 2019)



Joint Encodings: VIiLT (2021)

Modality Modali_ty Ix:r(:liltlig’n Ix:riiltlitgn
Interaction Interaction
C D
Visual Textual | | Visual Visual
Textual | Embed Embed | | Embed Textual |Embed Textual Visual
Embed Embed Embed Embed
:¢) ( ; ) ( ; )
Text Image Text Image Text Image Text Image
(2) VE > TE > MI (b) VE = TE > MI (c) VE > MI > TE (d) MI > VE = TE

Categories of vision-language model in terms of
model complexity / capacity

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)



Joint Encodings: VILT (2021)

Image Text Matching Masked Language Modelmg Word Patch Alignment
..... p -
[ Pooler H FC : True MLP : office '
----------- 1
N N I -
@8 Extra learnable [class] embedding
Transformer Encoder

Mdaltyp e embedding

édédddddddﬁdéd —

Word Embedding Lmear Projection of Flattened Patches

] —
a stone statue near an [MASK] @ rad ﬁ ‘ ﬁi ﬁ‘—. g‘

Vision and Language Joint Pretraining

ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision (Kim and Son, 2021)



Data matters
Scaling Up Foundation Vision and Language Models



Pre-foundation model era (2015 — 2020)

Who is wearing glasses? Where is the child sitting?
man i woman

The man at bat readies to swing at the A large bus sitting next to a very tall
pitch while the umpire looks on. building.

Is the umbrella upside down?
yes

A horse carrying a large load of hay and Bunk bed with a narrow shelf sitting
two people sitting on it. underneath it.
Visual Question Answering Image Captioning

(Goyal and Knot, 2017) (MS-COCO)



Pre-foundation model era (2015 — 2020)

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Diagnostic Language and Visual Reasoning
(CLEVR, Johnson et al., 2016)



The "Foundation Model Era” (2020-now)

CAT, LED Lamps,

slingly,

Tonkin
~ture

* LAION-400M: 400 million image-text pairs
e Built using Common Crawl datasets,
e Extracting image-text pairs from HTML data.

e Post-processing filters unsuitable pairs using OpenAl's CLIP model.
 A10TB webdataset with CLIP embeddings and kNN indices.



The "Foundation Model Era” (2020-now)

Backend url:
fench ca Qm,

Index:

Clip retrieval works
by converting the
text query to a

=
CLIP embedding ,
then using that
embedding to query
a knn index of clip =

image embedddings

Hilarious pics of funny
cats! funnycatsgif.com

N

french cat

[ How to tell if your

Display captions@ feline is french. He
french cat

Display full wears a b...
captions() 1T AVBETIV

Display similarities T F+>%7y
k1 Ao T -
Safe mode@ NAVER & &6
Hide duplicate urls
- P
Hide (near) 2 E )‘ " n
duplicate images@ 1 Y < ) . (7>
Search over ; R @
=] . - cat in a suit Georgian
Search with BEHRE TEEE s omatoes
multilingual clip | HRAIEHKE S | ;
Hipster cat Pk % ACES French Brcad Cat Loaf
- Metal Print

e LAION-5B: Significantly larger than LAION-400M

e Crawled using 50 billion webpages + CLIP filtering

e 2.3 billion pairs in English + 2.2 billions in other languages + 1
billion unassignable languages (e.g., names).



The "Foundation Model Era” (2020-now)

Stable Diffusion ¢

Stable Diffusion was made possible thanks to a collaboration with Stability Al and Runway and builds upon our
previous work:

High-Resolution Image Synthesis with Latent Diffusion Models
Robin Rombach* Andreas Blattmann* Dominik Lorenz, Patrick Esser, Bjorn Ommer
CVPR '22 Oral | GitHub [ arXiv | Project page

Stable Diffusion is a latent text-to-image diffusion model. Thanks to a generous compute donation from Stability Al
and support from LAION, we were able to train a Latent Diffusion Model on 512x512 images from a subset of the
LAION-5B database. Similar to Google's Imagen, this model uses a frozen CLIP ViT-L/14 text encoder to condition
the model on text prompts. With its 860M UNet and 123M text encoder, the model is relatively lightweight and
runs on a GPU with at least 10GB VRAM. See this section below and the model card.



A snapshot of vision-language dataset
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Automatic data crawling is great but ...

tomclancysthedivision2_gc18images_0001 Enchantments-JUN16-13.jpg

B """""""They Shall Not Grow Old"""". Watching Peter The International Code Council (ICC) has ratified a
Jackson tinker with WW1 is like watching George Lucas 5 change to the 2021 International Building Code (IBC) to
tinker with """"Star Wars"""". Only way more offensive. allow the use of shipping containers in commercial

pic.twitter.com/PkteSrh9tR""" construction. Photo © www.bigstockphoto.com

https://laion-aesthetic.datasette.io/laion-aesthetic-6pls/images?_next=300



Composing Vision and Language Models



How to compose trained L and V models?




How to compose trained L and V models?

Fast finetuning

[ answer J

A

e e

A

A

[ text J [image}

Language as interface

answer J
A

=0

text image




Finetuning VLM: Frozen LM, finetune VM

on the water

Blue <EOS> This is a dax . <EO0S>
t ot ottty ot f f t t t t t
S:I?'/‘thl:aﬁ:):négglrs # Frozen Self Attention Layers Self Attention Layers
T
éﬁﬁééi[ﬁéé LI [[[[[[T[ ][[[[T[[[[[[[[[[[[[[[[[[T[[[[[[[T[[[[[[[[ J
Y4 vision Language Model % Frozen Vision Text Vision Text Vision Text Vision Text
Encoder Text Embedder Encoder || Embedder Encoder || Embedder || Encoder || Embedder || Encoder || Embedder
ot i

T T T

N } Question: This is a Th:!.s is a Quest::.on:
A small red boat \ ”. \fl\lf;azh:oégtrxg dax. ) blicket. t’niz?ls
() o = AnSueT: Answer:
0-shot VQA few-shot image classification
N J L J
Y Y
Training Testing
* Train image encoder with frozen language model.
[ ]

At test time, can do 0-shot VQA or few-shot classification
through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

0-repeat Support Question
0-shof from ImageNet from ImageNet

-

()
4

[)

o

®
E
£

E .
@ jlaskdinduction Model Completion

Answer with d .
or blicket. blicket.
Support Question "
from ImageNet from VisualGenome // blicket (vase)

< ' 1 l , dax (table)

(<}

14 |

=

7]

©

w |

o 0O-repeats

0-shots Model Completion
Th a This is a dax. This is a
blicket. blicket. wood

* Train image encoder with frozen language model.
* At test time, can do 0-shot VQA or few-shot classification
through in-context learning

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: Frozen LM, finetune VM

n-shot Acc. n=0 | n=1 | n=4 | 7
Frozen 295 | 3577 | 382 | X
Frozen yratch 0.0 0.0 00 | X
Frozen gnetuned 240 | 282 | 292 | X
Frozen ¢ain-biing || 26.2 | 33.5 | 333 | X
Frozen vqa 484 | - - |V
Frozen VQA-blind 390.1 - - v
Oscar [23] 73.8 — — v

n-shot Acc. n=0 | n=1 | n= T
Frozen 59 | 97 | 126 | X
Frozen 400mLM 4.0 5.9 6.6 X
Frozen gnetuned 42 | 4.1 | 46 | X
Frozen train-blind 3.3 7.2 0.0 X
Frozen vqa 19.6 — — X
Frozen VQA-blind 12.5 - - X
MAVEXx [42] 394 — - ve

Training large VLM from scratch does not work at all
Finetuning LM degrades performance

“Blind” baselines till works, showing the innate power of LM

Multimodal Few-Shot Learning with Frozen Language Models (Tsimpoukelli et al., 2021)



Finetuning VLM: freeze both LM and VM

Output: text
. Pretrained and frozen

Trained from scratch a very serious cat.
during Flamingo training

| ——

Perceiver Perceiver n-th GATED XATTN-DENSE

Resampler Resampler |
t

1st GATED XATTN-DENSE

L

Processed text

<image> This is a very cute dog. <image> This is

Input: text and visual
data interleaved

This is a very cute dog. This is
Visual data

processing 5

* Interleaved text-image input
* Only finetune the cross attention (XATTN-DENSE) layers

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM

SotA Comparison Effect of Number of Shots Effect of Model Scale

NextQA
VoA s - e
Flick30K ' _— ﬁ
STARA 107%. 115% ; #

MSVDQA - 73% 109% E
OKVQA -—80%- 106%
HatefulMemes j‘
VizWiz

VQAV?2 A 48% -

93%

coco { ] E0A] == ;'26”;“2?50 (808B) Flamingo (80B) 32 shots
L ) i [ 32 shots I Flamingo (80B)
VisDial —@_ Previous .
1 zero/few-shot [ 8 shots [ Flamingo-9B
TextVQA SotA [ 0 shots [ Flamingo-3B
MSRVTTQA 5 | |
YouCook2 i | i
0% 50% 100% 150% 50% 75% 100% 125% 150% 50% 75% 100% 125% 150%

Performance relative to Fine-Tuned SotA
* Largely outperforms previous zero/few shot SotA
* More in-context learning examples do help
e Larger model gives better results

Flamingo: a Visual Language Model for Few-Shot Learning (Alayrac et al., 2022)



Finetuning VLM: freeze both LM and VM

I I
] I I )
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Freeze VM and LM. Train the linear layer and LORA finetune Llama 2

MiniGPT-v2: large language model as a unified interface for vision-language multi-task learning (Chen et al., 2023)



Low-rank finetuning (LORA)

quickly finetune a billion-parameter model

Problem: finetuning still takes a lot of data, especially if
the model is huge and/or the domain gap is large.
Fact: finetuning is just adding a Wy to the existing

ZERN
weight matrix W, i.e.,, W™ =W + W \_/

Hypothesis: W5 is low-rank, meaning that Wy can be
decomposed into two smaller matrices A and B, i.e.,
Wg = A'B. N 4 A
So what?: 4 and B have a lot fewer parameters than
the full W. Requires less data and faster to train.

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models.”, 2021



Low-rank finetuning (LORA

quickly finetune a billion-parameter model

import torch
PEET from peft import inject_adapter_in_model, LoraConfig
)
class DummyModel(torch.nn.Module):
@ def __init__(self):
super().__init_ ()
self.embedding = torch.nn.Embedding(10, 10)

State-of-the-art Parameter-Efficient Fine-Tuning (PEFT) methods
self.linear = torch.nn.Linear(10, 10)

[ self.lm_head = torch.nn.Linear(10, 10)
Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models
(PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale def forward(self, input_ids):
PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model x = self.embedding(input_ids)
parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT x = self.linear(x)
techniques achieve performance comparable to that of full fine-tuning. x = self.lm_head(x)
Seamlessly integrated with & Accelerate for large scale models leveraging DeepSpeed and Big Model Inference. return x
Supported methods: lora_config = LoraConfig(
1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS lo Fa_alpha=16.
2. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can lora_dropout=0.1,
Be Comparable to Fine-tuning Universally Across Scales and Tasks r=64,
3. P-Tuning: GPT Understands, Too bias="none",
4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning target_modules=["1linear"],
5. AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning )
6. (IA)%: Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning
7. MultiTask Prompt Tuning: Multitask Prompt Tuning Enables Parameter-Efficient Transfer Learning model = DummyModel()
8. LoHa: FedPara: Low-Rank Hadamard Product for Communication-Efficient Federated Learning model = inject_adapte r_in_model(lo ra_config, model)
9. LoKr: KronA: Parameter Efficient Tuning with Kronecker Adapter based on Navigating Text-To-Image
Customization:From LyCORIS Fine-Tuning to Model Evaluation implementation dummy_inputs = torch.LongTensor([[0, 1, 2, 3, 4, 5, 6, 711)

dummy_outputs = model(dummy_inputs)

https://github.com/huggingface/peft



How to compose trained L and V models?

Fast finetuning Language as interface

[ answer ] [ answer ]
A A

He) | e

A A A A

[ text ] [image] @ @




Neural Module Networks (Andreas et al., 2015)

I classify[color] yellow

Idea: train modular networks (attend, classify). Use a controller network to
decide how to compose the modules together to solve a task




Neural Module Networks (Andreas et al., 2015

how many different lights
in various different shapes
and sizes?

what is the color of the
horse?

what color is the vase?

is the bus full of passen-
gers?

is there a red shape above
a circle?

measure[count]( classify[color]( classify[color]( measure[is]( measurel[is](
attend[lightl) attend[horsel) attend[vasel) combine[and]( combine[and](
attend[bus], attend[red],
attend[fulll) re-attend[above] (
attend[circlel)))
four (four) brown (brown) green (green) yes (yes) 1o (no)

{

& |
what is stuffed with

toothbrushes wrapped in
plastic?

where does the tabby cat
watch a horse eating hay?

what material are the
boxes made of?

is this a clock?

is a red shape blue?

classify[what]( classify[where]( classify[materiall( measure[is]( measure[is](
attend[stuffl) attend[watchl) attend[box]) attend[clock]) combine[and](
attend[red],
attend[bluel))
container (cup) pen (barn) leather (cardboard) yes (n0) yes (no)




Inferring and Executing Programs for Visual
Reasoning (Johnson et al., 2017)

Question: Are there more cubes than yellow things? Answer: Yes

things— LSTM || LSTM |—» 9=52te= Clas‘?ifier
A ¥ .
yellow—=/ LSTM | > LSTM [—>| count E’r‘lgf:;'on
* * Fil
than—»‘ LSTM ‘ —>| LSTM }_> colze: | g:eater_than |
A v [yellow] "
cubes—>] LSTM | (-] LSTM || <scawe> | | | °°:"t I —— |
* * filter filter
more — LSTM | (| LSTM [—>{ count e e
* * filter é é
there—+ LSTM | (| LSIM | shape o

A
Are —»| LSTM | b+ LSTM [—»{ <scene>
Predicted
Program Generator  p o, 1

Similar to NMN, but train a program generator using REINFORCE
Reward comes from whether the answer is correct




Visual Programming: Compositional visual
t training (Gupta et al., 2023)

reasoning withou

In-context Examples

Instruction: Hide the face of Nicole Kidman with :p

Program:

0OBJ@=Facedet (image=IMAGE)

0OBJ1=Select(image=IMAGE, object=0BJ®, query=‘Nicole Kidman’)
IMAGE@=Emoji(image=IMAGE, object=0BJ1, emoji=‘face_with_tongue’)
RESULT=IMAGE®

Instruction: Create a color pop of the white Audi
Program:

0BJ0@=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0B]@, query=‘white Audi’)
IMAGE@=ColorPop(image=IMAGE, object=0BJ1)

RESULT=IMAGE®@

Instruction: Replace the red car with a blue car

Program:

0BJ0@=Seg(image=IMAGE)

0OBJ1=Select(image=IMAGE, object=0BJ@, query=‘red car’)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘blue car’)
RESULT=IMAGE®

Instruction: Replace the BMW with an Audi and cloudy sky with clear sky
Program:

Statement: At least three
animals are in a flowered field

Program

0BJ@=Seg(image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘BMW’)
IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘Audi’)
0BJ1=Seg(image=IMAGE®)

0OBJ2=Select(image=IMAGE®, object=0BJ1, query=‘cloudy sky’)
IMAGE1=Replace(image=IMAGE@, object=0BJ2, prompt=‘clear sky’)
RESULT=IMAGE1

Prediction: True

True

&

LEFT

RIGHT

ANSWER@=Vqa (
image=LEFT,
question=‘How many animals
are in the flowered field?’)

ANSWER1=Vqa(
image=RIGHT,
question=‘How many animals
are in the flowered field?’)

ANSWER2=Eval(expr=‘{ANSWER@} + {ANSWER1} >= 3?’)
=Eval(expr=‘2 + 1 >= 3?’)




Visual Programming: Compositional visual
reasoning without training (Gupta et al., 2023)

IMAGE
Instruction: Replace the ground
with white snow and the bear
with a white polar bear

0BJ@=Seg(

image=IMAGE)

OBJ1=Select(
image=IMAGE,
object=0BJO,
query=‘ground’)

IMAGE©@=Replace(
image=IMAGE,
object=0BJ1,
prompt=‘white snow’)

0BJ2=Seg(
image=IMAGEQ)

0BJ3=Select(
image=IMAGE®,
object=0BJ2,
query="‘bear?)

IMAGE1=Replace(
image=IMAGE®,
object=0BJ3,
prompt=‘white polar bear’)




ProgPrompt (Singh et al., 2023): Program to Actions

from actions import grab_and_putin <obj><obj>,
grab_and_puton <obj><obj>, switchon <obj>,
switchoff <obj>, open <obj>, ...

def throw_away_banana():
objects = ['banana', 'garbage can',...]
# 1: put banana in garbage can
grab_and_putin('banana', 'garbagecan')
W # 2: Done

def put_fork_and_spoon_on_the_box():
objects = ['fork', 'spoon', 'knife',]

def put_fork_on_plate_and_spoon_in_box():

def sort_fruits_on_plate_and_bottles_in_box():
objects = ['banana‘', 'bottle', 'box',
‘plate', ‘table', 'drill', 'strawberry']

LLM [GPT-3]

Generated Plan A SEE
# 1: put banana on plate # 3: put bottle in box
grab_and_puton('banana’', 'plate') |grab_and_putin( 'bottle’, 'box')

# 2: put strawberry on plate # 4: Done
+|§rab and_puton(‘strawberry’, ‘plate’))

Use large language models (LLMs) to generate program-like semantic
plans from natural language command.



VoxPoser (Huang et al., 2023): Program to Grounded Actions

-
def affordance_map(Q):
. o msize = (100,100,100)
Visual a map = np.zeros(msize)
handles = detect('handle')
—> Language w/ k = lambda x: x.pos[2]
handles. sort(Ckey=k)
MOdeI top_handle = handles[-1]
X,Y,z = top_handle.pos
map[x,y,z] = 1
return smooth(map)
def constraint_map(Q):
msize = (100,100,100)

Lar e a map = npazerosgmsize))
= detect(’ !
Open the top drawer. g L gl

Please also watch - Language | xyz = vase.occupancy_grid
out for that vase! Model map[xyz] = -1

return smooth(map)

- View #1

L )

Constraint Maps

(a) 3D Value Map Composition (b) Motion Planning

Use LLMs to guide VMs to find where to act next in a 3D scene



VoxPoser (Huang et al., 2023): Program to Grounded Actions

“Sort the paper trash into the blue tray.”



Summary: Large Vision and Language Models

e \ery active field of research, with a history as long as modern deep
learning (2011 -)

e Foundation vision and language models have revolutionized the research
paradigm post 2019.

e Trending towards larger model and dataset.

e Many active research on how to finetune / adapt VLMs with small amount
of compute / data.

e The future is going to be multimodal.



