Topics:

- Deep Learning Hardware and Software
Administrative

- Time to work on the project
- We will release the milestone presentation schedule soon
- Start on PS3/HW3 if you haven’t
 - Coding: If you passed individual testing cases but are failing end-to-end testing, double check your Multi-Headed Attention. The unit test doesn’t catch all errors.
 - DO NOT MODIFY YOUR TEST CODE
Recap: Attention, Transformer, LLMs

we are eating bread

estamos comiendo

Repeat: Use s_1 to compute attention and get the new context vector c_2
Use c_2 to compute s_2, y_2

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015
Recap: Attention, Transformer, LLMs

Example: English to French translation

Input: “The agreement on the European Economic Area was signed in August 1992.”

Output: “L’accord sur la zone économique européenne a été signé en août 1992.”

Attention figures out different word orders

Visualize attention weights $a_{t,i}$

Diagonal attention means words correspond in order
In order to make processing position-aware, concatenate input with positional encoding E.

$E(i)$ encodes the position of the i-th element in a sequence.

$E()$ can be a simple function (e.g., linear or sin functions) or a learned lookup table.
Recap: Transformer Block

Transformer Block:

Input: Set of vectors x

Output: Set of vectors y

Self-attention is the only interaction among vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable
Recap: The Transformer

Transformer Block:
- **Input:** Set of vectors x
- **Output:** Set of vectors y

Self-attention is the only interaction among vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

A **Transformer** is a sequence of transformer blocks
Recap: Encoder-Decoder Transformer
Recap: LLMs
Recap: LLMs

Masked Attention Again!

Similarities: \(E = \frac{QXT}{\sqrt{DQ}} \cdot \text{MASK} \)

Attention Matrix: \(A = \text{softmax}(E, \text{dim}=1) \)

Output vectors: \(Y = AX \)

\(Y_i = \sum_j A_{i,j}X \)

Tokens only affected by preceding tokens
Recap: LLMs

- First successful GPT Model, Purely Autoregressive
- Input
- Masking
- Hello
- World
- !
- [PAD]
- Transformer
- Decoder
- Next Token Prediction
- World
- !
- [EOS]

Optimize Negative Log Likelihood of Whole Sequence

loss = -(log(P("World" | "Hello") + log(P("!" | "Hello World") +
log(P("[EOS]" | "Hello World!"))))

Radford et al. 2019 (GPT-2)
Recap: LLMs

Paris is the capitol of france!
Recap: LLMs

Today's LLMs are driven by data and model scaling.
<table>
<thead>
<tr>
<th>Corpus</th>
<th>Size</th>
<th>Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llama 2 Corpus</td>
<td>> 2 Trillion Tokens</td>
<td>Minimal details known</td>
</tr>
<tr>
<td>PALM-2 Corpus</td>
<td>> 3.6 Trillion Tokens</td>
<td>No details known</td>
</tr>
<tr>
<td>GPT-4 Corpus</td>
<td>Unknown (Est. 11T Tokens)</td>
<td>No details known</td>
</tr>
</tbody>
</table>

Touvron et al. 2023 (b)

Anil et al. 202320

OpenAI 2023
Today

- Deep learning hardware
 - CPU, GPU
- Deep learning software
 - PyTorch and TensorFlow
 - Static and Dynamic computation graphs
Deep Learning
Hardware
Inside a computer
Spot the CPU!
(central processing unit)
Spot the GPUs!
(graphics processing unit)
CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Clock Speed</th>
<th>Memory</th>
<th>Price</th>
<th>Speed (throughput)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>10</td>
<td>4.3 GHz</td>
<td>System RAM</td>
<td>$385</td>
<td>~640 GFLOPS FP32</td>
</tr>
<tr>
<td>(Intel Core i9-7900k)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPU</td>
<td>10496</td>
<td>1.6 GHz</td>
<td>24 GB GDDR6X</td>
<td>$1499</td>
<td>~35.6 TFLOPS FP32</td>
</tr>
<tr>
<td>(NVIDIA RTX 3090)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks.

GPU: More cores, but each core is much slower and “dumber”; great for parallel tasks.
Example: Matrix Multiplication

\[\begin{align*}
A \times B & \\
B \times C & \\
\end{align*} \]

\(\text{cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)} \)
CPU vs GPU in practice

(CPU performance not well-optimized, a little unfair)

Data from https://github.com/jcjohnson/cnn-benchmarks
CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than “unoptimized” CUDA

N=16 Forward + Backward time (ms)

- Intel E5-2620 v3
- Pascal Titan X (no cuDNN)
- Pascal Titan X (cuDNN 5.1)

2.8x 3.0x 3.1x 3.4x 2.8x
GigaFLOPs per Dollar

- CPU
- GPU
- TPU

TITAN V
Tensor Cores

Deep Learning Explosion

GeForce 8800 GTX

GeForce GTX 580 (AlexNet)

GTX 1080 Ti

Time:
- 1/2004
- 10/2006
- 7/2009
- 4/2012
- 12/2014
- 9/2017
NVIDIA vs AMD
NVIDIA vs AMD
CPU vs GPU

<table>
<thead>
<tr>
<th></th>
<th>Cores</th>
<th>Clock Speed</th>
<th>Memor y</th>
<th>Price</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU (Intel Core i7-7700k)</td>
<td>10</td>
<td>4.3 GHz</td>
<td>System RAM</td>
<td>$385</td>
<td>~640 GFLOPs FP32</td>
</tr>
<tr>
<td>GPU (NVIDIA RTX 3090)</td>
<td>10496</td>
<td>1.6 GHz</td>
<td>24 GB GDDR6 X</td>
<td>$1499</td>
<td>~35.6 TFLOPs FP32</td>
</tr>
<tr>
<td>GPU (Data Center) NVIDIA A100</td>
<td>6912 CUDA, 432 Tensor</td>
<td>1.5 GHz</td>
<td>40/80 GB HBM2</td>
<td>$3/hr (GCP)</td>
<td>~9.7 TFLOPs FP64 ~20 TFLOPs FP32 ~312 TFLOPs FP16</td>
</tr>
<tr>
<td>TPU Google Cloud TPUv3</td>
<td>2 Matrix Units (MXUs) per core, 4 cores</td>
<td>?</td>
<td>128 GB HBM</td>
<td>$8/hr (GCP)</td>
<td>~420 TFLOPs (non-standard FP)</td>
</tr>
</tbody>
</table>

CPU: Fewer cores, but each core is much faster and much more capable; great at sequential tasks

GPU: More cores, but each core is much slower and “dumber”; great for parallel tasks

TPU: Specialized hardware for deep learning
Aside: NPUs

Neural Processing Units (NPUs) are specialized hardware designed for Deep Learning applications. Example: GraphCore IPUs

General pros: larger on-device memory, lower power consumption

General cons: specialized computation units (compared to GPU and CPUs). Smaller instruction sets. Less supported by popular platforms (PyTorch, TensorFlow)

Graphcore M2000

Apple M1
Programming GPUs

● CUDA (NVIDIA only)
 ○ Write C-like code that runs directly on the GPU
 ○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
 ○ Similar to CUDA, but runs on anything
 ○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
 ○ New project that automatically converts CUDA code to something that can run on AMD GPUs
 ○ CS 8803 – GPU at GaTech
 ○ Taught by Prof. Hyesoon Kim
CPU / GPU Communication

Model is here

Data access rate: RAM and the GPU over PCIe lanes is about \textbf{16 GB/s}. GPU's internal memory (like GDDR6) is about \textbf{448 GB/s}.

Data is here
CPU / GPU Communication

Data is here

Model is here

Data access rate: RAM and the GPU over PCIe lanes is about 16 GB/s. GPU's internal memory (like GDDR6) is about 448 GB/s.

If you aren’t careful, training can bottleneck on reading data and transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads to prefetch data
Deep Learning Software
A zoo of frameworks!

Caffe (UC Berkeley) -> Caffe2 (Facebook) -> PyTorch (Facebook)
Caffe2 mostly features absorbed by PyTorch

Torch (NYU / Facebook) -> PyTorch (Facebook)

Theano (U Montreal) -> TensorFlow (Google)

PaddlePaddle (Baidu)
Chainer (Preferred Networks)
The company has officially migrated its research infrastructure to PyTorch

MXNet (Amazon)
Developed by U Washington, CMU, MIT, Hong Kong U, etc but main framework of choice at AWS

CNTK (Microsoft)

JAX (Google)

And others...
A zoo of frameworks!

Caffe (UC Berkeley)

Torch (NYU / Facebook)

Theano (U Montreal)

Caffe2 (Facebook)
mostly features absorbed by PyTorch

PyTorch (Facebook)

TensorFlow (Google)

PaddlePaddle (Baidu)

MXNet (Amazon)

Chainer (Preferred Networks)
The company has officially migrated its research infrastructure to PyTorch

CNTK (Microsoft)

JAX (Google)

We’ll focus on these

And others...
Recall: Computational Graphs

\[f = Wx \]

\[L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \]
Recall: Computational Graphs

input image

weights

loss

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.
Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
The point of deep learning frameworks

(1) Quick to develop and test new ideas
(2) Automatically compute gradients
(3) Run it all efficiently on GPU (wrap cuDNN, cuBLAS, OpenCL, etc)
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)
```
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)
N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a = x * y
b = a + z
c = np.sum(b)
grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

Good:
- Clean API, easy to write numeric code

Bad:
- Have to compute our own gradients
- Can’t run on GPU
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)
```

PyTorch

```python
import torch

N, D = 3, 4
x = torch.randn(N, D)
y = torch.randn(N, D)
z = torch.randn(N, D)

a = x * y
b = a + z
c = torch.sum(b)
```

Looks exactly like numpy!
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

PyTorch

```python
import torch

N, D = 3, 4
x = torch.randn(N, D, requires_grad=True)
y = torch.randn(N, D)
z = torch.randn(N, D)

a = x * y
b = a + z
c = torch.sum(b)

c.backward()
print(x.grad)
```

PyTorch handles gradients for us!
Computational Graphs

Numpy

```python
import numpy as np
np.random.seed(0)

N, D = 3, 4
x = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)

a = x * y
b = a + z
c = np.sum(b)

grad_c = 1.0
grad_b = grad_c * np.ones((N, D))
grad_a = grad_b.copy()
grad_z = grad_b.copy()
grad_x = grad_a * y
grad_y = grad_a * x
```

PyTorch

```python
import torch

N, D = 3, 4
x = torch.randn(N, D, requires_grad=True,
               device='cuda:0')
y = torch.randn(N, D, device=device)
z = torch.randn(N, D, device=device)

a = x * y
b = a + z
c = torch.sum(b)

c.backward()
print(x.grad)
```

Trivial to run on GPU - just construct arrays on a different device!
PyTorch
(More details)
PyTorch: Fundamental Concepts

torch.Tensor: Like a numpy array, but can run on GPU

torch.autograd: Package for building computational graphs out of Tensors, and automatically computing gradients

torch.nn.Module: A neural network layer; may store state or learnable weights
PyTorch: Versions

For this class we are using **PyTorch version >= 2.0.0** (newest is v2.1.0)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!
PyTorch: Tensors

Running example: Train a two-layer ReLU network on random data with L2 loss

```python
import torch
device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(N, D_out, device=device)
w2 = torch.randn(H, D_in, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

Create random tensors for data and weights

```python
import torch
device = torch.device('cpu')
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

```python
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(N, D_out, device=device)
w2 = torch.randn(D_in, H, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```

Forward pass: compute predictions and loss
PyTorch: Tensors

Backward pass: manually compute gradients

```python
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

```python
import torch

device = torch.device('cpu')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Tensors

To run on GPU, just use a different device!

```python
import torch

device = torch.device('cuda:0')

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in, device=device)
y = torch.randn(N, D_out, device=device)
w1 = torch.randn(D_in, H, device=device)
w2 = torch.randn(H, D_out, device=device)

learning_rate = 1e-6
for t in range(500):
    h = x.mm(w1)
    h_relu = h.clamp(min=0)
    y_pred = h_relu.mm(w2)
    loss = (y_pred - y).pow(2).sum()

    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h_relu.t().mm(grad_y_pred)
    grad_h_relu = grad_y_pred.mm(w2.t())
    grad_h = grad_h_relu.clone()
    grad_h[h < 0] = 0
    grad_w1 = x.t().mm(grad_h)

    w1 -= learning_rate * grad_w1
    w2 -= learning_rate * grad_w2
```
PyTorch: Autograd

Creating Tensors with requires_grad=True enables autograd

Operations on Tensors with requires_grad=True cause PyTorch to build a computational graph

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()

    loss.backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()
```
PyTorch: Autograd

Forward pass looks exactly the same as before, but we don’t need to track intermediate values - PyTorch keeps track of them for us in the graph.
PyTorch: Autograd

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

with torch.no_grad():
    w1 -= learning_rate * w1.grad
    w2 -= learning_rate * w2.grad
    w1.grad.zero_()
    w2.grad.zero_()
```

Compute gradient of loss with respect to \(w_1 \) and \(w_2 \)
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
 y_pred = x.mm(w1).clamp(min=0).mm(w2)
 loss = (y_pred - y).pow(2).sum()
 loss.backward()

with torch.no_grad():
 w1 = learning_rate * w1.grad
 w2 = learning_rate * w2.grad
 w1.grad.zero_()
 w2.grad.zero_()}
PyTorch: Autograd

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_
```

Make gradient step on weights, then zero them. Torch.no_grad means “don’t build a computational graph for this part”
PyTorch methods that end in underscore modify the Tensor in-place; methods that don’t return a new Tensor
PyTorch: New Autograd Functions

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to “cache” values for the backward pass

class MyReLU(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.save_for_backward(x)
 return x.clamp(min=0)

 @staticmethod
 def backward(ctx, grad_y):
 x, = ctx.saved_tensors
 grad_input = grad_y.clone()
 grad_input[x < 0] = 0
 return grad_input
PyTorch: New Autograd Functions

Define your own autograd functions by writing forward and backward functions for Tensors

Use ctx object to “cache” values for the backward pass

Define a helper function to make it easy to use the new function

class MyReLU(torch.autograd.Function):
 @staticmethod
 def forward(ctx, x):
 ctx.save_for_backward(x)
 return x.clamp(min=0)

 @staticmethod
 def backward(ctx, grad_y):
 x, = ctx.saved_tensors
 grad_input = grad_y.clone()
 grad_input[x < 0] = 0
 return grad_input

def my_relu(x):
 return MyReLU.apply(x)
PyTorch: New Autograd Functions

Can use our new autograd function in the forward pass

```python
class MyReLU(torch.autograd.Function):
    @staticmethod
def forward(ctx, x):
        ctx.save_for_backward(x)
        return x.clamp(min=0)
    @staticmethod
def backward(ctx, grad_y):
        x, = ctx.saved_tensors
        grad_input = grad_y.clone()
        grad_input[x < 0] = 0
        return grad_input

def my_relu(x):
    return MyReLU.apply(x)
```

```python
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()
```
In practice you almost never need to define new autograd functions! Only do it when you need custom backward. In this case we can just use a normal PyTorch function:

```python
def my_relu(x):
    return x.clamp(min=0)
```

```python
N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = my_relu(x.mm(w1)).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()

    with torch.no_grad():
        w1 -= learning_rate * w1.grad
        w2 -= learning_rate * w2.grad
        w1.grad.zero_()
        w2.grad.zero_()
```
PyTorch: nn

Higher-level wrapper for working with neural nets

Use this! It will make your life easier

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

model.zero_grad()
```
PyTorch: nn

Define our model as a sequence of layers; each layer is an object that holds learnable weights.

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

model.zero_grad()
```
PyTorch: nn

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

    with torch.no_grad():
        for param in model.parameters():
            param -= learning_rate * param.grad

model.zero_grad()
```

Forward pass: feed data to model, and compute loss
PyTorch: nn

Forward pass: feed data to model, and compute loss

torch.nn.functional has useful helpers like loss functions

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

with torch.no_grad():
    for param in model.parameters():
        param -= learning_rate * param.grad
model.zero_grad()
```
PyTorch: nn

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()

with torch.no_grad():
    for param in model.parameters():
        param -= learning_rate * param.grad
model.zero_grad()
```

Backward pass: compute gradient with respect to all model weights (they have requires_grad=True)
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
 torch.nn.Linear(D_in, H),
 torch.nn.ReLU(),
 torch.nn.Linear(H, D_out))

learning_rate = 1e-2
for t in range(500):
 y_pred = model(x)
 loss = torch.nn.functional.mse_loss(y_pred, y)
 loss.backward()

 with torch.no_grad():
 for param in model.parameters():
 param -= learning_rate * param.grad
 model.zero_grad()

PyTorch: nn

Make gradient step on each model parameter (with gradients disabled)
Use an **optimizer** for different update rules.
PyTorch: optim

After computing gradients, use optimizer to update params and zero gradients

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    torch.nn.Linear(D_in, H),
    torch.nn.ReLU(),
    torch.nn.Linear(H, D_out))

learning_rate = 1e-4
optimizer = torch.optim.Adam(model.parameters(),
    lr=learning_rate)

for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)

    loss.backward()

    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn Define new Modules

A PyTorch **Module** is a neural net layer; it inputs and outputs Tensors.

Modules can contain weights or other modules.

You can define your own Modules using autograd!

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn

Define new Modules

Define our whole model as a single Module

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

Initializer sets up two children (Modules can contain modules)
PyTorch: nn
Define new Modules

Define forward pass using child modules

No need to define backward - autograd will handle it
PyTorch: nn
Define new Modules

```python
import torch

class TwoLayerNet(torch.nn.Module):
    def __init__(self, D_in, H, D_out):
        super(TwoLayerNet, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, H)
        self.linear2 = torch.nn.Linear(H, D_out)

    def forward(self, x):
        h_relu = self.linear1(x).clamp(min=0)
        y_pred = self.linear2(h_relu)
        return y_pred

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = TwoLayerNet(D_in, H, D_out)

optimizer = torch.optim.SGD(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```

Construct and train an instance of our model
PyTorch: nn
Define new Modules

Very common to mix and match custom Module subclasses and Sequential containers

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn

Define new Modules

Define network component as a Module subclass

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: nn
Define new Modules

Stack multiple instances of the component in a sequential

```python
import torch

class ParallelBlock(torch.nn.Module):
    def __init__(self, D_in, D_out):
        super(ParallelBlock, self).__init__()
        self.linear1 = torch.nn.Linear(D_in, D_out)
        self.linear2 = torch.nn.Linear(D_in, D_out)
    def forward(self, x):
        h1 = self.linear1(x)
        h2 = self.linear2(x)
        return (h1 * h2).clamp(min=0)

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)

model = torch.nn.Sequential(
    ParallelBlock(D_in, H),
    ParallelBlock(H, H),
    torch.nn.Linear(H, D_out))

optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)

for t in range(500):
    y_pred = model(x)
    loss = torch.nn.functional.mse_loss(y_pred, y)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()
```
PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

```python
import torch
import torchvision

alexnet = torchvision.models.alexnet(pretrained=True)
vgg16 = torchvision.models.vgg16(pretrained=True)
resnet101 = torchvision.models.resnet101(pretrained=True)
```
PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.
PyTorch: **Dynamic** Computation Graphs

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
PyTorch: **Dynamic** Computation Graphs

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Create Tensor objects
PyTorch: **Dynamic** Computation Graphs

Build graph data structure AND perform computation

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
mm
clamp
y_pred

y = torch.randn(N, D_out)
mm

w1 = torch.randn(D_in, H, requires_grad=True)
mm

w2 = torch.randn(H, D_out, requires_grad=True)
mm

learning_rate = 1e-6

for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
PyTorch: **Dynamic** Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation
PyTorch: **Dynamic Computation Graphs**

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()

loss.backward()
```

Search for path between loss and w1, w2 (for backprop) AND perform computation
PyTorch: Dynamic Computation Graphs

```
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning rate = 1e-6

for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Throw away the graph, backprop path, and rebuild it from scratch on every iteration.
PyTorch: **Dynamic** Computation Graphs

Build graph data structure AND perform computation
PyTorch: Dynamic Computation Graphs

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```

Build graph data structure AND perform computation
PyTorch: *Dynamic* Computation Graphs

Search for path between loss and w1, w2 (for backprop) AND perform computation
Building the graph and computing the graph happen at the same time.

Seems inefficient, especially if we are building the same graph over and over again...

```python
import torch

N, D_in, H, D_out = 64, 1000, 100, 10
x = torch.randn(N, D_in)
y = torch.randn(N, D_out)
w1 = torch.randn(D_in, H, requires_grad=True)
w2 = torch.randn(H, D_out, requires_grad=True)

learning_rate = 1e-6
for t in range(500):
    y_pred = x.mm(w1).clamp(min=0).mm(w2)
    loss = (y_pred - y).pow(2).sum()
    loss.backward()
```
Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph describing our computation (including finding paths for backprop)

Step 2: Reuse the same graph on every iteration

```python
graph = build_graph()
for x_batch, y_batch in loader:
    run_graph(graph, x=x_batch, y=y_batch)
```
TensorFlow
TensorFlow Versions

Pre-2.0 (1.14 latest)
Default static graph, optionally dynamic graph (eager mode).

2.0+
Default dynamic graph, optionally static graph.
TensorFlow: Neural Net (Pre-2.0)

```python
import numpy as np
import tensorflow as tf

N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
               w1: np.random.randn(D, H),
               w2: np.random.randn(H, D),
               y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                    feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: Neural Net (Pre-2.0)

First **define** computational graph

Then **run** the graph many times

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)

diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])

with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                   feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default

```
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```

Tensorflow 1.13

```
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tf.gradients(loss, [w1, w2])
```

```
with tf.Session() as sess:
    values = {x: np.random.randn(N, D),
              w1: np.random.randn(D, H),
              w2: np.random.randn(H, D),
              y: np.random.randn(N, D),}
    out = sess.run([loss, grad_w1, grad_w2],
                   feed_dict=values)
    loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: 2.0+ vs. pre-2.0

TensorFlow 1.13:

```python
N, D, H = 64, 1000, 100
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.Variable(tf.random.uniform((D, H)), dtype=tf.float32) # weights
w2 = tf.Variable(tf.random.uniform((H, D)), dtype=tf.float32) # weights

with tf.GradientTape() as tape:
  h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
  loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
  gradients = tape.gradient(loss, [w1, w2])

with tf.Session() as sess:
  values = {
    'x': np.random.randn(N, D),
    'w1': np.random.randn(D, H),
    'w2': np.random.randn(H, D),
    'y': np.random.randn(N, D),
  }
  out = sess.run((loss, gradients, feed_dict=values)
  loss_val, grad_w1_val, grad_w2_val = out
```

TensorFlow 2.0+:

“Eager” Mode by default

```python
assert(tf.executing_eagerly())
```
TensorFlow: 2.0+ vs. pre-2.0

TensorFlow 2.0+

"Eager" Mode by default

```
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
```

TensorFlow 1.13

```
x = tf.placeholder(tf.float32, shape=(N, D))
y = tf.placeholder(tf.float32, shape=(N, D))
w1 = tf.placeholder(tf.float32, shape=(D, H))  # weights
w2 = tf.placeholder(tf.float32, shape=(H, D))

h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))

grad_w1, grad_w2 = tf.gradients(loss, [w1, w2])
```

```
values = {x: np.random.randn(N, D),
          w1: np.random.randn(D, H),
          w2: np.random.randn(H, D),
          y: np.random.randn(N, D),}

out = sess.run([loss, grad_w1, grad_w2],
               feed_dict=values)
loss_val, grad_w1_val, grad_w2_val = out
```
TensorFlow: Neural Net

Convert input numpy arrays to TF tensors. Create weights as `tf.Variable`.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
Use `tf.GradientTape()` context to build **dynamic** computation graph.

```
N, D, H = 64, 1000, 100

x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
TensorFlow: Neural Net

All forward-pass operations in the contexts (including function calls) get traced for computing gradient later.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2]).
```
TensorFlow: Neural Net

Forward pass

\[
\begin{align*}
x &= \text{tf.convert_to_tensor}(\text{np.random.randn}(N, D), \text{np.float32}) \\
y &= \text{tf.convert_to_tensor}(\text{np.random.randn}(N, D), \text{np.float32}) \\
w1 &= \text{tf.Variable}(\text{tf.random.uniform}((D, H))) \quad \# \text{weights} \\
w2 &= \text{tf.Variable}(\text{tf.random.uniform}((H, D))) \quad \# \text{weights}
\end{align*}
\]

\[
\text{with tf.GradientTape() as tape:} \\
\quad h = \text{tf.maximum}(\text{tf.matmul}(x, w1), 0) \\
\quad y_{\text{pred}} = \text{tf.matmul}(h, w2) \\
\quad \text{diff} = y_{\text{pred}} - y \\
\quad \text{loss} = \text{tf.reduce_mean}(\text{tf.reduce_sum}(\text{diff} ** 2, \text{axis}=1)) \\
\quad \text{gradients} = \text{tape.gradient}(\text{loss}, [w1, w2]).
\]
TensorFlow: Neural Net

tape.gradient() uses the traced computation graph to compute gradient for the weights

```python
tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
    y_pred = tf.matmul(h, w2)
    diff = y_pred - y
    loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```

TensorFlow: Neural Net

Backward pass

```
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

with tf.GradientTape() as tape:
    h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
gradients = tape.gradient(loss, [w1, w2])
```
Train the network: Run the training step over and over, use gradient to update weights
TensorFlow: Neural Net

Train the network: Run the training step over and over, use gradient to update weights

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H))) # weights
w2 = tf.Variable(tf.random.uniform((H, D))) # weights

learning_rate = 1e-6
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
        y_pred = tf.matmul(h, w2)
        diff = y_pred - y
        loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
        gradients = tape.gradient(loss, [w1, w2])
w1.assign(w1 - learning_rate * gradients[0])
w2.assign(w2 - learning_rate * gradients[1])
```
Can use an **optimizer** to compute gradients and update weights.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights

optimizer = tf.optimizers.SGD(1e-6)

learning_rate = 1e-6
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
        y_pred = tf.matmul(h, w2)
        diff = y_pred - y
        loss = tf.reduce_mean(tf.reduce_sum(diff ** 2, axis=1))
        gradients = tape.gradient(loss, [w1, w2])

    optimizer.apply_gradients(zip(gradients, [w1, w2]))
```
TensorFlow: Loss

Use predefined loss functions

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
w1 = tf.Variable(tf.random.uniform((D, H)))  # weights
w2 = tf.Variable(tf.random.uniform((H, D)))  # weights
optimizer = tf.optimizers.SGD(1e-6)
for t in range(50):
    with tf.GradientTape() as tape:
        h = tf.maximum(tf.matmul(x, w1), 0)
y_pred = tf.matmul(h, w2)
diff = y_pred - y
    loss = tf.losses.MeanSquaredError()(y_pred, y)
gradients = tape.gradient(loss, [w1, w2])
    optimizer.apply_gradients(zip(gradients, [w1, w2]))
```
TensorFlow: High-Level Wrappers

Keras (https://keras.io/)
tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)
tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)
Sonnet (https://github.com/deepmind/sonnet)
TFLearn (http://tflearn.org/)
TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)
@tf.function: compile static graph

tf.function decorator (implicitly) compiles python functions to static graph for better performance
@tf.function: compile static graph

Here we compare the forward-pass time of the same model under dynamic graph mode and static graph mode.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)

@tf.function
def model_static(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)
    return y_pred, loss

def model_dynamic(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)

print("dynamic graph: ", timeit.timeit(lambda: model_dynamic(x, y), number=10))
print("static graph: ", timeit.timeit(lambda: model_static(x, y), number=10))
dynamic graph:  0.02520249200000535
static graph:  0.03932226699998864
```
@tf.function: compile static graph

Static graph is \textit{in theory} faster than dynamic graph, but the performance gain depends on the type of model / layer / computation graph.
@tf.function:
compile static graph

Static graph is *in theory* faster than dynamic graph, but the performance gain depends on the type of model / layer / computation graph.

```python
N, D, H = 64, 1000, 100
x = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
y = tf.convert_to_tensor(np.random.randn(N, D), np.float32)
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(H, input_shape=(D,), activation=tf.nn.relu))
model.add(tf.keras.layers.Dense(D))
optimizer = tf.optimizers.SGD(1e-1)

@tf.function
def model_static(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)
    return y_pred, loss

def model_dynamic(x, y):
    y_pred = model(x)
    loss = tf.losses.MeanSquaredError()(y_pred, y)

print("dynamic graph:", timeit.timeit(lambda: model_dynamic(x, y), number=1000))
print("static graph:", timeit.timeit(lambda: model_static(x, y), number=1000))

dynamic graph: 2.3648411540000325
static graph: 1.1723986679999143
```
Static vs Dynamic: Optimization

With static graphs, framework can **optimize** the graph for you before it runs!

The graph you wrote:

```
Conv
ReLU
Conv
ReLU
Conv
ReLU
```

Equivalent graph with fused operations:

```
Conv+ReLU
Conv+ReLU
Conv+ReLU
```
Static PyTorch: TorchScript

```python
class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)

    def forward(self, x, h):
        new_h = torch.tanh(self.linear(x) + h)
        return new_h, new_h

my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
traced_cell = torch.jit.trace(my_cell, (x, h))
print(traced_cell)
traced_cell(x, h)
```

Build static graph with torch.jit.trace

```python
graph(%self.1 :
    __torch__.torch.nn.modules.module.___torch_mangle_4.Module,
    %input : Float(3, 4),
    %h : Float(3, 4)):
    %19 : __torch__.torch.nn.modules.module.___torch_mangle_3.Module =
        prim::GetAttr[name="linear"](%self.1)
    %21 : Tensor =
        prim::CallMethod[name="forward"](%19, %input)
    %12 : int = prim::Constant[value=1]() # <ipython-input-40-26946221023e>:7:0
    %13 : Float(3, 4) = aten::add(%21, %h, %12) # <ipython-input-40-26946221023e>:7:0
    %14 : Float(3, 4) = aten::tanh(%13) # <ipython-input-40-26946221023e>:7:0
    %15 : (Float(3, 4), Float(3, 4)) =
        prim::TupleConstruct(%14, %14)
    return (%15)
```

Build static graph with torch.jit.trace
PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
- Dynamic Graphs
- Static: TorchScript

TensorFlow
- Dynamic: Eager
- Static: @tf.function
Static vs Dynamic: Serialization

Static
Once graph is built, can **serialize** it and run it without the code that built the graph!

Dynamic
Graph building and execution are intertwined, so always need to keep code around
Dynamic Graph Applications

- Recurrent networks
Dynamic Graph Applications

- Recurrent networks
- Recursive networks

The cat ate a big rat
Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016

Figure copyright Justin Johnson, 2017. Reproduced with permission.
Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)
Model Parallel vs. Data Parallel

Model parallelism: split computation graph into parts & distribute to GPUs/ nodes

Data parallelism: split minibatch into chunks & distribute to GPUs/ nodes
PyTorch: Data Parallel

`nn.DataParallel`
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number of GPUs (8+).

`nn.DistributedDataParallel`
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each process / nodes.

Horovod (https://github.com/horovod/horovod): Supports both PyTorch and TensorFlow

PyTorch vs. TensorFlow
My Advice:

PyTorch is my personal favorite. Clean API, native dynamic graphs make it very easy to develop and debug. Can build model using the default API then compile static graph using JIT. Almost all academic research uses PyTorch.

TensorFlow’s syntax became a lot more intuitive after 2.0. Not perfect but still has a wide industry usage. Can use same framework for research and production.