CS 4644-DL / 7643-A: LECTURE 8
DANFEI XU

Topics:
e Convolution and Convolution Layers
* Pooling

e Convolutional Neural Networks Architectures (Part 1)

Convolutional Neural Networks

Recall:

Hubel & Wiesel,
1959

RECEPTIVE FIELDS OF SINGLE
NEURONES IN
THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR

INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...

t t

X @1
{ \ Electrical
signal from
L <T \\ brain
o‘ r
Stlmulus
N\

Stimulus ~ Response

Cat image by CNX OpenStax is licensed
under CC BY 4.0; changes made

Slide credit: Stanford CS231n Instructors

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg

Image features are spatially
localized!

Relevant features repeated across
the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature Can we enforce a structure
tends to appear in a fixed location. in the design of a neural
Need to search in entire image. network layer to reflect this?

) Locality of Features Gegrola)

=

The connectivity in linear layers doesn’t always make sense

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-

Connected
Layer (N)

)

Limitation of Linear Layers

How many parameters?
M*N (weights) + N (bias)

Hundreds of millions of
parameters for just one layer

More parameters => More
data needed

Can we design a layer with
localized connection?

Georgia
Tec

Al

=]

Convolution: A 1D Visual Example

input f
filter g

response f * g

Intuitively, we seek to learn neural conv filters that looks for patterns in the input

|} I | I I T I I 1
1k R LT e :ma under f(att-o H
pebo .. P DR N R f(x) |

. . -1
1] AP S S DU att-v)

: : (f+axt)
s R R EETETE PR PP T |
o2k e T T e Do

ol]] i ! 1
2 -1.5 1 0.5 0 0.5 1 15 2
&t
T T T T T T T I I I
1 R E. DR -.--. “ e R EEEEE R e ..--. :ma underf(tbﬁ-‘) -
: f(x)
: gt-x)
DSEF: - (f-vg);t)
o L1 ! 1 1 1 1 1 N I
15 -1 -0.5 0 0.5 1 1.5 2 25 3
&t

From https://en.wikipedia.org/wiki/Convolution

Convolution

1-D Convolution is defined as the integral of the product of two functions
after one is reflected about the y-axis and shifted.

Cross-correlation is convolution without Convolution Cross-correlation
the y-axis reflection. f f
Intuitively: given function f and filter g. g \ 9 \

How similar is g(—x) with the part of

f(x) that it's operating on. kg A [\ g+f /] 1\
For ConvNets, we don't flip filters, so we A]—m —DADJ L\D_EEI —Eb“[i
are really using Cross-Correlation Nets! 14 N

From https://en.wikipedia.org/wiki/Convolution

) Locality of Features Geqth

4&

=

Convolution in Computer Vision (non-Deep)

Convolution with Gaussian Filter (Gaussian Blur) Convolution with Sobel Filter (Edge Detection)

) Locality of Features Gegrola)

=

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wx
1 1 2 119
3072 0 x 307 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

32 width

3 depth

Convolution Layer

32x32x3 image

ox5x3 filter
32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

CO nVOI Ut|0n I—ayer Filters always extend the full

. ————— depthofthe input volume
32x32x3 image /
oxox3 filter
32 7
I Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Convolution Layer
_— 32x32x3 image

5x5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wliz +b

">~ 1 number:

Convolution Layer

32

0

32

Convolution Layer

32

==

32

Convolution Layer

32

Convolution Layer

32

Convolution Layer

activation map

_— 32x32x3 image

5x5x3 filter /
2
@>@ .

convolve (slide) over all

spatial locations
32 28

Convolution Layer

A

I

_

V
——0

32

consider a second, green filter

32x32x3 image
5x5x3 filter

»
»

convolve (slide) over all
spatial locations

activation maps

y .

L

28

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

32

3

32

Convolution Layer

v

activation maps

y 4

28

.

We stack these up to get a “new image” of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

»
L

CONYV,
RelLU
e.g.6

5x5x3
32 filters 28

Preview: ConvNet is a sequence of Convolution Layers, interspersed with

activation functions

32

32

»
L

CONYV,
RelLU
e.g.6
5x5x3
filters

28

28

»
L

CONYV,
RelLU
e.g. 10
5x5x6
filters

10

24

v

CONV,
RelLU

24

Visualization of VGG-16 by Lane MclIntosh. VGG-16

PrEView [Zeller and Fergus 2013] architecture from [Simonyan and Zisserman 2014].
. . Linearl
Low-level Mid-level High-level y
—> — —| separable —
features features features .
classifier

VGG-16 Conv1_1

Preview

VGG-16

Low-level
features

Mid-level
features

High-level
features

v

separable

Linearly

classifier

onvi_

Retinal ganglion cell
receptive fields

LGN and V1
simple cells

Complex cells:
Response to light
orientation and movement

Hypercomplex cells:
response to movement
with an end point

N

No response Response
(end point)

ne filter =>

SRCINEEROACIIA N ENE SO AETIENERE SRS
\ 0

one activation map

pr

Activations:

| ¥
. . \‘ g .‘. ﬁ‘lh'l_“ | | -
1 q " o

. i . . RIS Gy it AT ey

example 5x5 filters
(32 total)

Recall: we call the layer
convolutional because it is related
to convolution of two signals:

[eyl=glx,yl = D, Y fln.m-glx—n.y—n,]

ny=—c0 p,=—00 I

elementwise multiplication and sum of
a filter and the signal (image)

25

preview:

RELUSREIU RELUSRELL RELU RELU
CONVlCONVl CONVlCONVl CONVlCONVl FC

} |

| }

Y

T LT

QJ W 5

A closer look at spatial dimensions:

activation map

_— 32x32x3 image

5x5x3 filter
=
@>@ *

convolve (slide) over all
spatial locations

32 28

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter

The # of grid that the filter shifts
IS called stride.

E.g., here we have stride = 1

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter with stride = 1

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

A closer look at spatial dimensions:

/X7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

But what about the features at the border?

n practice: Common to zero pad the border

0/0|10]0]0]O0

e.g. input 7x7

0 3x3 filter, applied with stride 1

0 pad with 1 pixel border => what is the output?

n practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F =3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

n practice: Common to zero pad the border

010

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

N = input dimension

P = padding size

F = filter size

Output size = (N — F + 2P) / stride + 1
=(7-3+2*1)/1+1=7

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2

38

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

40

A closer look at spatial dimensions:

I

/X7 input (spatially)
assume 3x3 filter
applied with stride 3?

doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

41

Output size:
(N - F) / stride + 1

eg.N=7,F=3:
stride1=>(7-3)1+1=5
stride2=>(7-3)/2+1=3
stride 3=>(7-3)/3+1 =233\

With padding of 1 x 1:
stride 3=>(7/—-3+2)/3+1=3

42

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!

(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32 28 24
CONYV, CONYV, CONYV,
RelLU RelLU RelLU
e.g.6 e.g. 10
9x5x3 9x5x6
32 filters 28 filters 24

Remember back to...
With padding, we can keep the same spatial feature dimension throughout the

convolution layers.

32

32

v

CONYV,
RelLU

e.g.6
5x5x3 filters
with 2 x 2

padding 6

32

32

v

CONV,
RelLU

e.g. 10
5x5x6

filters with

2x2 10
padding

32

4

CONV,
RelLU

32

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with

stride 1, pad 2

Output volume size: ?

<

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with
stride 1, pad 2

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10

N

Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with stride
1, pad 2

Number of parameters in this layer?

N

Examples time: / /

Input volume: 32x32x
10 5x5 filters with stride 1, pad 2 _/

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)
=> /610 =760

Convolution layer: summary

Let's assume inputis W, xH; x C

Conv layer needs 4 hyperparameters:

- Number of filters K

- Thefilter size F

- The stride S

- The zero padding P

This will produce an output of W, x H, x K
where:

- W,=(W,-F +2P)/S + 1

- Hy=H,-F+2P)/S+ 1

Number of parameters: F2CK and K biases

Convolution layer: summary Common settings:

Let's assume inputis W, x H, xC "~ (Eozwser%ff - 132 64,128, 512

Conv layer needs 4 hyperparameters: . F=5g5=1p=2

- Number of filters K F=5,8 =2, P=7? (whatever fits)
F=1,8S=1,P=0

- Thefilter size F

- The stride S

- The zero padding P

This will produce an output of W, x H, x K
where:

- W,=(W,-F +2P)/S + 1

- Hy=H,-F+2P)/S+ 1

Number of parameters: F2CK and K biases

50

(btw, 1x1 convolution layers make perfect sense)

64

56

56

1x1 CONV
with 32 filters

|

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

32

56

56

(btw, 1x1 convolution layers make perfect sense)

L

64

56

56

1x1 CONV
with 32 filters

|

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Grows or shrinks feature
channel dimension

32

56

56

Example: CONV
layer in PyTorch

Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Conv2d

CLASS torxch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0,

e ; [SOURCE]
dilation=1, groups=1, bias=True)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, Ciy, H, W) and output
(N, Clouts Hoiivs Wuut) can be precisely described as:
Cin—1
out(N;, Cout;) = bias(Cout,) + Z weight(Cou, , k) * input(NV;, k)
k=0
where % is the valid 2D cross-correlation operator, N is abatch size, C denotes a number of channels, H isa height of
input planes in pixels, and W is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
« padding controls the amount of implicit zero-paddings on both sides for padding number of points for each
dimension.
e dilation controls the spacing between the kernel points; also known as the a trous algorithm. It is harder to
describe, but this link has a nice visualization of what dilation does.
e groups controls the connections between inputs and outputs. in_channels and out_channels must both be
divisible by groups. For example,
o Atgroups=1, all inputs are convolved to all outputs.
o At groups=2, the operation becomes equivalent to having two conv
layers side by side, each seeing half the input channels, and producing
half the output channels, and both subsequently concatenated.

o Atgroups= in_channels, each input channel is convolved with its

own set of filters, of size: [%“-J g

The parameters kernel_size, stride, padding, dilation can either be:

* asingle int - in which case the same value is used for the height and
width dimension
« a tuple of two ints - in which case, the first int is used for the height

dimension, and the second int for the width dimension

53

PyTorch is licensed under BSD 3-clause.

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE

Pooling layer (down-sampling)
- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

224x224x64

112x112x64

pool

[

|

> o 112
224 downsampling

224

54

Single depth slice

MAX POOLING

1 (1] 2| 4
5|16 | 7|38
312 |1]|0
1 (2|3 | 4

v

max pool with 2x2 filters
and stride 2 6 3

v

* Intuitively, only forward the most important features
in the region.

* Also improve spatial invariance (output is agnostic
to where the max value comes from)

55

Pooling layer: summary

Let’'s assume inputis Wy x H; x C
Conv layer needs 2 hyperparameters:
- The spatial extent F

- The stride S

This will produce an output of W, x H, x C where:
- W, =(W,-F)/S+1
- H,=(H,-F)/[S+1

Number of parameters: 0

D vector

After flattening convolution feature maps to 1

Fully Connected Layer (FC layer)

RELU RELU

CONV

RELU RELU

)
=
L
fy:
=)
=
L
14

airplane

—LIBTEMESEY

57

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Historically architectures looked like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/ViT have
changed this paradigm

ConvNets: Where are we today?

Y B d

The ImageNet dataset contalns 14 197 122 annotated images accordlng to the
WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
is a benchmark for image classification and object detection based on the dataset.

59

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

|
30 282 |
258 |
25 i
|
|
20 |
: 16.4
15 |
I 11.7
10 l
| 7.3 6.7
I Sll
| H =
. | =
2010 2011 . 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & IKrizhevsky etal Zeiler& Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)
“Pre- Deep Learning” I

60

TOP 1 ACCURACY

ConvNets: Where are we today?

100

90

80

70

60

50

AlexNet

2013

VGG-19

MSRA

Five Base + Five"HiRes

2014

2015

ResNeXt-101 64x4.

Inception V3

2016

2017

Other models

ResNeXt-101 32x48d
PNASNet:=5

2018 2019

State-of-the-art models

Meta Pseudo Labels (EfficientNet-L2)ViT-G/14
NoisyStudent (EfficientNet-B7)

2020

61

2021

CoCa (finetuned)

2022

CNN Architectures

Case Studies
- AlexNet
- VGG

- GoogLeNet
- ResNet

Also....
- SENet
- Wide ResNet
- ResNeXT

DenseNet
MobileNets
NASNet
EfficientNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

25

20

15

10

28.2
First CNN-based winner 152 layers| |152 layers| |152 layers
/ Ak
16.4
11.7 |19layers| |22 layers|
7.3 6.7 ,’I
3 6 Sll

shallow Blayers | IR : 3 23 -

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky etal| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

63

Case Study: AlexNet

[Krizhevsky et al. 2012]

><2—4>< 5as \dense

dense dens

1000

Architecture:
CONV1

MAX POOL1 ®
NORM1

CONV?2

MAX POOL2

NORM?2

CONV3

CONV4

CONV5

Max POOL3

FC6

FC7

FC8

128 Max
Max 128 Max pooling
pooling pooling

204 048

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

64

[Krizhevsky et al. 2012]

Case Study: AlexNet B ><:X

dense dense

1000

128 Max L
pooling “

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 W=(W-F+2P)/S+1

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

65

Case Study: AlexNet

[Krizhevsky et al. 2012]

2 ><zoaa dense
n

q
llllll

1000

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4 W=(W-F+2P)/S+1

=>

Output volume [55x55x96] 227

- | () 55x55

227 9%

3

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

66

[Krizhevsky et al. 2012]

Case Study: AlexNet) N ><:><

Input: 227x227x3 images /

First layer (CONV1): 96 11x11 filters applied at stride 4

=> m,/ 11 x 11
Output volume [55x55x96]

Q: What is the total number of parameters in this layer? 5/

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

67

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images /

First layer (CONV1): 96 11x11 filters applied at stride 4

=> m,/ 11 x 11
Output volume [55x55x96]

Parameters: (11*11*3 + 1)*96 = 35K /

W

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

68

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

After CONV1: 55x55x96 ,
W=(W-F+2P)/S+1

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

69

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

W= (W-F +2P)/S +1

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

70

Case Study: AlexNet

[Krizhevsky et al. 2012]

2 ><zoaa dense
n

q
llllll

1000

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96
Parameters: 0!

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

71

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

72

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

128 ><2W

dense

Max 128 Max
pooling pooling

q
llllll

pooling “

128 Max L

1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

73

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

j("““:vn
128 ><2W><zoaa dense

dense

q
llllll

1000

128 Max L
pooling “

Maxl 128
pooling

Max
pooling

Details/Retrospectives:

- first use of ReLU

- used Norm layers (not common anymore)
- heavy data augmentation

- dropout 0.5

- batch size 128

- SGD Momentum 0.9

- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4

-7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

74

[Krizhevsky et al. 2012]

Case Study: AlexNet i k!

dense dense

1000

Full (simplified) AlexNet architecture: 2\l o S . M g T o
[227x227x3] INPUT o R L pocting

[55x55x96][CONV1: 96 11x11 filters at stride 4, pad O

l[27x27x96] MAX POOL1: 33 filters at stride 2 [55x55x48] x 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Historical note: Trained on GTX 580
[13x13x256] MAX POOL2: 3x3 filters at stride 2 GPU with only 3 GB of memory.
[13x13x256] NORM2: Normalization layer Network spread across 2 GPUs, half
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 the neurons (feature maps) on each
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 GPU.

[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

75

Case Study: AlexNet

[Krizhevsky et al. 2012]

128 ><2W><zoaa dense

dense dense

1000

Full (simplified) AlexNet architecture: 2 haning 07
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 //'
[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer CONV1, CONV2, CONV4, CONVS5:
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 Connections only with feature maps
[13x13x256] MAX POOL2: 3x3 filters at stride 2 on same GPU

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3xa3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores) Figure copyright Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

76

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

B

IS . 4.,u""s,
192 128 204¢ zoag \dense
S, \ [\3
|l s
7 U3 |-.

13 dense’ dense)

1000

192 128 Max
Max s ax pooling

. 12 M
pooling pooling \ //

CONVS3, FCe6, FC7, FC8:
Connections with all feature maps in
preceding layer, communication
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

77

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

25

20

15

10

28.2
First CNN-based winner 152 layers| |152 layers| |152 layers
/ Ak
16.4
11.7 |19layers| |22 layers|
7.3 6.7 ,’I
3 6 Sll

shallow Blayers | IR : 3 23 -

2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & | Krizhevsky etal| Zeiler & Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

78

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

25

20

15

10

28.2

shallow

2010

Lin et al

2011

Sanchez &
Perronnin

ZFNet: Improved

hyperparameters over

AlexNet \

16.4

11.7

8 layers 8 layers

2012 2013
Krizhevsky et al| Zeiler &
(AlexNet) Fergus

152 layers| |152 layers| |152 layers
A e A
19 layers| |22 layers|
7.3 6.7 ,’I
3 6 Sll
- HEm = B
2014 2014 2015 2016 2017 Human
Simonyan & Szegedy et al He et al Shao et al Hu et al Russakovsky et al
Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

79

Z F N et [Zeiler and Fergus, 2013]

image size 224 110 26 13 13 13

filter size 7 » ‘Lﬁ3 13
1 %384 V1 384 256 M
I R256 N N
istride 2 96 3x3max 3x3 max C
3x3 max pool| | contras pool| |contrast pool 4096 4096 class
i Sige2] | womg, stride 2 units| | units| | softmax
3 L
N P 13 @3 6
Input Image L '\256 = - =
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer6 Layer7 Output
AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

80

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

152 layers| |152 layers

30 282
Deeper Networks
25 P
20 \
16.4
15
11.7 |19 layers| |22 layers|
10
7.3 6.7
s siovers |
2010 2011 2012 2013 2014 2014
Lin et al Sanchez & Krizhevsky etal Zeiler & Simonyan & Szegedy et al

Perronnin (AlexNet) Fergus |Zisserman (VGG) (GooglLeNet)

Ak
3.6 3
2015 2016
He et al Shao et al
(ResNet)

81

152 layers
A
Sll
2'3 -
2017 Human
Hu et al Russakovsky et al
(SENet)

Next time: More CNN Architectures!

Case Studies
AlexNet
VGG

GooglLeNet
ResNet

Also....

SENet - DenseNet
Wide ResNet - MobileNets

ResNeXT - NASNet
EfficientNet

