CS 4644-DL / 7643-A: LECTURE 8 DANFEI XU

Topics:

- Convolution and Convolution Layers
- Pooling
- Convolutional Neural Networks Architectures (Part 1)

Convolutional Neural Networks

Recall:

Hubel & Wiesel, 1959

RECEPTIVE FIELDS OF SINGLE NEURONES IN THE CAT'S STRIATE CORTEX

1962

RECEPTIVE FIELDS, BINOCULAR INTERACTION AND FUNCTIONAL ARCHITECTURE IN THE CAT'S VISUAL CORTEX

Image features are spatially localized!

Relevant features repeated across the image

- Color
- Motifs (corners, etc.)
- No reason to believe one feature tends to appear in a fixed location. Need to search in entire image.

Can we enforce a structure in the design of a neural network layer to reflect this?

The connectivity in linear layers **doesn't always make sense**

How many parameters?

 M^*N (weights) + N (bias)

Hundreds of millions of parameters **for just one layer**

More parameters => More data needed

Can we design a layer with localized connection?

Convolution: A 1D Visual Example

Intuitively, we seek to learn **neural conv filters** that looks for patterns in the input

Convolution

1-D Convolution is defined as the **integral** of the **product** of two functions after one is reflected about the y-axis and shifted.

Cross-correlation is convolution without the y-axis reflection.

Intuitively: given function f and filter g . How similar is $g(-x)$ with the part of $f(x)$ that it's operating on.

For ConvNets, we don't flip filters, so we are really using Cross-Correlation Nets!

From https://en.wikipedia.org/wiki/Convolution

Convolution in Computer Vision (non-Deep)

Convolution with Gaussian Filter (Gaussian Blur) Convolution with Sobel Filter (Edge Detection)

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

32x32x3 image -> preserve spatial structure

Convolution Layer

32x32x3 image

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

32x32x3 image

Filters always extend the full depth of the input volume

32 32 3

5x5x3 filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

activation map

consider a second, green filter

For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

We stack these up to get a "new image" of size 28x28x6!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview *isomate the preview and Fergus 2013 Visualization of VGG-16 by Lane McIntosh. VGG-16* architecture from [Simonyan and Zisserman 2014]. architecture from [Simonyan and Zisserman 2014].

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

7x7 input (spatially) assume 3x3 filter

The # of grid that the filter shifts is called **stride.**

E.g., here we have stride $= 1$

7x7 input (spatially) assume 3x3 filter **with stride = 1**

7x7 input (spatially) assume $3x3$ filter with stride = 1

=> 5x5 output

7x7 input (spatially) assume $3x3$ filter with stride = 1

=> 5x5 output

But what about the features at the border?

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially) e.g. $F = 3 \Rightarrow$ zero pad with 1 $F = 5 \Rightarrow$ zero pad with 2 $F = 7 \Rightarrow$ zero pad with 3

In practice: Common to zero pad the border

e.g. input 7x7 **3x3** filter, applied with **stride 1 pad with 1 pixel** border => what is the output?

7x7 output!

- $N =$ input dimension
- $P =$ padding size
- $F =$ filter size

Output size = $(N - F + 2P)$ / stride + 1 $= (7 - 3 + 2 * 1)/1 + 1 = 7$

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

7x7 input (spatially) assume 3x3 filter applied **with stride 2**

7x7 input (spatially) assume 3x3 filter applied **with stride 2 => 3x3 output!**

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

7x7 input (spatially) assume 3x3 filter applied **with stride 3?**

doesn't fit! cannot apply 3x3 filter on 7x7 input with stride 3.

N

Output size: **(N - F) / stride + 1**

e.g. N = 7, F = 3:
stride 1 = >
$$
(7 - 3)/1 + 1 = 5
$$

stride 2 = > $(7 - 3)/2 + 1 = 3$
stride 3 = > $(7 - 3)/3 + 1 = 2.33$:

With padding of 1 x 1: stride $3 \Rightarrow (7 - 3 + 2)/3 + 1 = 3$

Remember back to…

E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Remember back to…

With padding, we can keep the same spatial feature dimension throughout the convolution layers.

Examples time:

Input volume: **32x32x3** Conv layer: 10 5x5 filters with stride 1, pad 2

Output volume size: ?

Examples time:

Input volume: **32x32x3** Conv layer: 10 5x5 filters with stride 1, pad 2

Output volume size: $(32+2^*2-5)/1+1 = 32$ spatially, so **32x32x10**

Input volume: **32x32x3** Conv layer: 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Examples time:

Input volume: **32x32x3** 10 5x5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has $5*5*3 + 1 = 76$ params (+1 for bias) => 76*10 = **760**

Convolution layer: summary

Let's assume input is W_1 x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride **S**
- The zero padding **P**

This will produce an output of W_2 x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- $H_2 = (H_1 F + 2P)/S + 1$

Number of parameters: F²CK and K biases

Convolution layer: summary

Let's assume input is W_1 x H₁ x C Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride **S**
- The zero padding **P**

This will produce an output of W_2 x H₂ x K where:

- $W_2 = (W_1 F + 2P)/S + 1$
- H₂ = (H₁ F + 2P)/S + 1

Number of parameters: F²CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)

$$
-
$$
 F = 3, S = 1, P = 1

$$
-
$$
 F = 5, S = 1, P = 2

$$
- F = 5, S = 2, P = ? (whatever fits)
$$

-
$$
F = 1
$$
, $S = 1$, $P = 0$

(btw, 1x1 convolution layers make perfect sense)

(btw, 1x1 convolution layers make perfect sense)

Example: CONV layer in PyTorch

Conv layer needs 4 hyperparameters:

- Number of filters **K**
- The filter size **F**
- The stride **S**
- The zero padding **P**

Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, [SOURCE] dilation=1, groups=1, bias=True)

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (N, C_{in}, H, W) and output $(N, C_{\rm out}, H_{\rm out}, W_{\rm out})$ can be precisely described as:

$$
\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1}\operatorname{weight}(C_{\operatorname{out}_j},k) \star \operatorname{input}(N_i,k)
$$

where \star is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

- stride controls the stride for the cross-correlation, a single number or a tuple.
- · padding controls the amount of implicit zero-paddings on both sides for padding number of points for each dimension.
- · dilation controls the spacing between the kernel points; also known as the à trous algorithm. It is harder to describe, but this link has a nice visualization of what dilation does.
- · groups controls the connections between inputs and outputs. in_channels and out_channels must both be divisible by groups. For example,
	- o At groups=1, all inputs are convolved to all outputs.
	- o At groups=2, the operation becomes equivalent to having two conv layers side by side, each seeing half the input channels, and producing half the output channels, and both subsequently concatenated.
	- \circ At groups= in_channels , each input channel is convolved with its own set of filters, of size: $\left| \frac{C_{\text{out}}}{C_{\text{in}}} \right|$.

The parameters kernel_size, stride, padding, dilation can either be:

- a single int in which case the same value is used for the height and width dimension
- a tuple of two ints in which case, the first int is used for the height dimension, and the second int for the width dimension

Pooling layer (down-sampling)

- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

MAX POOLING

Single depth slice

y

x

max pool with 2x2 filters and stride 2 6 8

- Intuitively, only forward the most important features in the region.
- Also improve spatial invariance (output is agnostic to where the max value comes from)

Pooling layer: summary

Let's assume input is W_1 x H₁ x C Conv layer needs 2 hyperparameters:

- The spatial extent **F**
- The stride **S**

This will produce an output of W_2 x H₂ x C where:

- $W_2 = (W_1 F)/S + 1$
- $H_2 = (H_1 F)/S + 1$

Number of parameters: 0

Fully Connected Layer (FC layer)

- After flattening convolution feature maps to 1-D vector

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Historically architectures looked like **[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX** where N is usually up to \sim 5, M is large, 0 \lt = K \lt = 2.
	- but recent advances such as ResNet/ViT have changed this paradigm

ConvNets: Where are we today?

The **ImageNet** dataset contains 14,197,122 annotated images according to the WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is a benchmark for image classification and object detection based on the dataset.

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ConvNets: Where are we today?

• Other models • State-of-the-art models

CNN Architectures

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet
- EfficientNet

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

[Krizhevsky et al. 2012]

Architecture: CONV1 MAX POOL1 NORM1 CONV2 MAX POOL2 NORM2 CONV3 CONV4 CONV5 Max POOL3 FC6 FC7 FC8

[Krizhevsky et al. 2012]

Input: 227x227x3 images

 $W' = (W - F + 2P)/S + 1$

[Krizhevsky et al. 2012]

First layer (CONV1): 96 11x11 filters applied at stride 4 \Rightarrow

 $W' = (W - F + 2P)/S + 1$

Output volume **[55x55x96]**

[Krizhevsky et al. 2012]

First layer (CONV1): 96 11x11 filters applied at stride 4 \Rightarrow

Output volume **[55x55x96]**

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

First layer (CONV1): 96 11x11 filters applied at stride 4 \Rightarrow

Output volume **[55x55x96]** Parameters: (11*11*3 + 1)*96 = **35K**

[Krizhevsky et al. 2012]

 $W' = (W - F + 2P)/S + 1$

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: $(55-3)/2+1 = 27$

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission.

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Q: what is the number of parameters in this layer?

 $W' = (W - F + 2P)/S + 1$

[Krizhevsky et al. 2012]

Input: 227x227x3 images

Output volume: 27x27x96 Parameters: 0!

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: 27x27x96

Case Study: AlexNet

...
[Krizhevsky et al. 2012]

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

 $[55x55x96]$ CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2

- [4096] FC6: 4096 neurons
- [4096] FC7: 4096 neurons
- [1000] FC8: 1000 neurons (class scores)

[55x55x48] x 2

Historical note: Trained on GTX 580 GPU with only 3 GB of memory. Network spread across 2 GPUs, half the neurons (feature maps) on each GPU.

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: Connections only with feature maps on same GPU

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: Connections with all feature maps in preceding layer, communication across GPUs

192

192

192

 128

 128

Max

pooling

Max

pooling

dense

1000

dense

pooling

 128 Max

densé

2048

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

ZFNet *[Zeiler and Fergus, 2013]*

AlexNet but:

CONV1: change from (11x11 stride 4) to (7x7 stride 2) CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Next time: More CNN Architectures!

Case Studies

- AlexNet
- VGG
- GoogLeNet
- ResNet

Also....

- SENet
- Wide ResNet
- ResNeXT
- DenseNet
- MobileNets
- NASNet
- EfficientNet