
CS 4644-DL / 7643-A: LECTURE 8
DANFEI XU

Topics:
• Convolution and Convolution Layers
• Pooling
• Convolutional Neural Networks Architectures (Part 1)



Convolutional Neural Networks



Recall:

Hubel & Wiesel,
1959
RECEPTIVE FIELDS OF SINGLE 
NEURONES IN
THE CAT'S STRIATE CORTEX

1962
RECEPTIVE FIELDS, BINOCULAR 
INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT'S VISUAL CORTEX

1968...
Cat image by CNX OpenStax is licensed 
under CC BY 4.0; changes made

3 Slide credit: Stanford CS231n Instructors

https://commons.wikimedia.org/wiki/File:Figure_35_03_05.jpg


Image features are spatially 
localized!

Relevant features repeated across 
the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 
tends to appear in a fixed location. 
Need to search in entire image.

Locality of Features

Can we enforce a structure 
in the design of a neural 
network layer to reflect this?



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 
parameters for just one layer

More parameters => More 
data needed

Can we design a layer with 
localized connection?

1024 x 1024
Pixel Image

~1M element
Vector (M)

Fully-
Connected
Layer (N)



Convolution: A 1D Visual Example

Convolution
Intuitively, we seek to learn neural conv filters that looks for patterns in the input

From https://en.wikipedia.org/wiki/Convolution

input 𝑓
filter 𝑔
response 𝑓 ∗ 𝑔



Convolution

Locality of Features

1-D Convolution is defined as the integral of the product of two functions 
after one is reflected about the y-axis and shifted. 

From https://en.wikipedia.org/wiki/Convolution

Cross-correlation is convolution without 
the y-axis reflection.

Intuitively: given function 𝑓 and filter 𝑔. 
How similar is 𝑔(−𝑥) with the part of 
𝑓(𝑥) that it’s operating on. 

For ConvNets, we don’t flip filters, so we 
are really using Cross-Correlation Nets!



Convolution in Computer Vision (non-Deep)

Locality of Features

Convolution with Gaussian Filter (Gaussian Blur) Convolution with Sobel Filter (Edge Detection)



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

9



32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

3

Convolution Layer
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32

3

Convolution Layer
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32
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Convolution Layer



32

32

3

Convolution Layer



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10

24

24



Preview [Zeiler and Fergus 2013] Visualization of VGG-16 by Lane McIntosh. VGG-16 
architecture from [Simonyan and Zisserman 2014].



Preview



example 5x5 filters
(32 total)

Recall: we call the layer 
convolutional because it is related 
to convolution of two signals:

elementwise multiplication and sum of 
a filter and the signal (image)

one filter => 
one activation map

Figure copyright Andrej Karpathy.
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preview:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter

The # of grid that the filter shifts 
is called stride.

E.g., here we have stride = 1

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter with stride = 1

=> 5x5 output

7

7

A closer look at spatial dimensions:

But what about the features at the border?  



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?
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In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

N = input dimension
P = padding size
F = filter size
Output size = (N – F + 2P) / stride + 1
= (7 – 3 + 2 * 1) / 1 + 1 = 7



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.
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N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

With padding of 1 x 1:
stride 3 => (7 – 3 + 2)/3 + 1 = 3 

42



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6
filters

CONV,
ReLU

….

10

24

24

43



Remember back to… 
With padding, we can keep the same spatial feature dimension throughout the 
convolution layers.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 filters 
with 2 x 2 
padding

32

32

6

CONV,
ReLU
e.g. 10 
5x5x6
filters with 
2 x 2 
padding 

CONV,
ReLU

….

10

32

32

44



Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2

Output volume size: ?

45



Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with 
stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

46



Examples time:

Input volume: 32x32x3
Conv layer: 10 5x5 filters with stride 
1, pad 2

Number of parameters in this layer?

47



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760

48
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases
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Convolution layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

This will produce an output of W2 x H2 x K 
where:
- W2 = (W1 - F + 2P)/S + 1
- H2 = (H1 - F + 2P)/S + 1

Number of parameters: F2CK and K biases

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0



(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Grows or shrinks feature 
channel dimension

52



Conv layer needs 4 hyperparameters:
- Number of filters K
- The filter size F
- The stride S
- The zero padding P

Example: CONV 
layer in PyTorch

PyTorch is licensed under BSD 3-clause.

53

https://pytorch.org/
https://github.com/pytorch/examples/blob/master/LICENSE


Pooling layer (down-sampling)
- makes the representations spatially smaller
- saves computation (GPU mem & speed), allows go deeper
- operates over each activation map independently:

54



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

55

• Intuitively, only forward the most important features 
in the region.

• Also improve spatial invariance (output is agnostic 
to where the max value comes from)



56

Pooling layer: summary

Let’s assume input is W1 x H1 x C
Conv layer needs 2 hyperparameters:
- The spatial extent F
- The stride S

This will produce an output of W2 x H2 x C where:
- W2 = (W1 - F )/S + 1
- H2 = (H1 - F)/S + 1

Number of parameters: 0



Fully Connected Layer (FC layer)
- After flattening convolution feature maps to 1-D vector
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Historically architectures looked like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/ViT have 

changed this paradigm

58



ConvNets: Where are we today?

59

The ImageNet dataset contains 14,197,122 annotated images according to the 
WordNet hierarchy. ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 
is a benchmark for image classification and object detection based on the dataset.



60

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

“Pre- Deep Learning”



ConvNets: Where are we today?

61



CNN Architectures 

62

Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

Architecture:
CONV1
MAX POOL1
NORM1
CONV2
MAX POOL2
NORM2
CONV3
CONV4
CONV5
Max POOL3
FC6
FC7
FC8
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

96
55 x 55

227

227

3

W’ = (W - F + 2P) / S + 1
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

11 x 11

3
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3 + 1)*96 = 35K

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

11 x 11

3
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 

W’ = (W - F + 2P) / S + 1
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores) Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives: 
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Historical note: Trained on GTX 580 
GPU with only 3 GB of memory. 
Network spread across 2 GPUs, half 
the neurons (feature maps) on each 
GPU.

[55x55x48] x 2

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV1, CONV2, CONV4, CONV5: 
Connections only with feature maps 
on same GPU

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

CONV3, FC6, FC7, FC8: 
Connections with all feature maps in 
preceding layer, communication 
across GPUs

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, 2012. Reproduced with permission. 
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersFirst CNN-based winner
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
ZFNet: Improved 
hyperparameters over 
AlexNet
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ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layersDeeper Networks



Next time: More CNN Architectures!
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Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT


