
Lecture 6

CS 4644 / 7643-A: LECTURE 6
DANFEI XU

Topic: Course Project

Today’s Lecture

Topics:
• What is the course project about?
• How to pick a project?
• What is computer science research?
• How to develop a new idea?

What is the course project about?

What we want you to have:
• Hands-on experience with Deep Learning
• In-depth understanding of a specific problem / algorithm /

dataset / library / network architecture
• Experience with teamwork
• (Optional) Opportunity to do research
• Have fun!

What is the course project about?

Completed in group of 2, 3, or more people.
• Project expectations are higher for groups with more people

In general, three tracks of works (sometimes combined):
• Applications: If you have a specific background or interest (e.g., biology,

physics, medical). We’d love to see you apply Deep Learning to your
particular domain of interest.

• Experimental analysis: do an in-depth study on a class of algorithms /
models. Why does the model work so well on this problem?

• Research: build on top of an existing algorithm / model and try to improve
on it.

What’s the scope of project topics?

Any problem that involves deep neural networks.
Examples:
• Computer Vision: Classification, Detection, Reconstruction, …
• Natural Language Processing: Language Modeling, Translation, Story-telling, …
• Graphics: Rendering, Animation, Simulation, …
• Robotics: Grasping, Control, Planning, Driving, RL, …
• Bio/Medical: Medical Imaging, Pathology, Gene Data Analysis, Protein Folding, …
• Music / audio: Synthesis, Classification, Style Transfer, …
…

How will my project be graded?

• Project proposal (1%): Sep 27th
– Mainly for us to provide feedback to your project ideas.
– What: What is the problem you want to invest?
– So what: Why is it interesting? Why should others care?
– Now what: What is your proposed course of action?

• What readings will you examine to provide context and background?
• What data will you use? If you are collecting new data, how would you do it?
• What models or implementation will you use? How do you plan to improve or

modify the existing method?
• How will you evaluate your results quantitatively (performance measure) and

qualitatively (visualization)? What kind of analysis do you expect to run?

How will my project be graded?

• Project milestone (5%): Nov 1st
– Problem: Provide a concrete problem statement and formulation

(equations, input / output)
– Method: You should have already implemented a basic version of

your algorithm / model and show that it’s working (for your
problem)

– Dataset: Finished data preprocessing (if applicable). If you need to
collect new data, you should have already done that.

– Experiment: If you want to improve on a model, you should already
have the results on the baseline (the method you are based off of).

How will my project be graded?

• Final Project Report (25%): Dec 1
– Practically speaking, you are writing a short paper
• Introduction
• Related Works
• Method
• Dataset
• Methods
• Experiments
• Discussion & Conclusions

How will my project be graded?

• Poster Session (5%): Dec 6th

– Open to GT (we will advertise it)
– Present your project to your classmates / friends / professors / …
– Keep your target audience in mind. You are not talking to domain

experts!
– In person, Klaus Atrium.
– TAs will evaluate your poster on the spot

Does my project meet expectations?

Rule of thumb: Did I put enough effort into my project?
• Everyone has a different background. We do not expect you to do the same

kind of projects as students who are already doing DL research.
• We grade based on effort. We most likely can tell how much effort you put

into a project by looking at your project final report / poster.

Does my project meet expectations?

This does not mean:
• Your project has to be strictly novel to get a good grade (although encouraged)
• Your method has to beat the state-of-the-art method to get a good grade

This does mean:
• You need to put significant effort into your investigation, which may involve trying

many different approaches
• When you do analysis, ask yourself: are you explaining and understanding your

results, or merely stating them?

Adapted from Stanford CS231n Project Guideline

What is a bad project?
• Too ambitious:
– Need to spend weeks / months cleaning or collecting data
– Need $$$ to label data on Amazon Mechanical Turk
– Do something completely new / go against findings in existing research (ignore

this if you know what you are doing).

• Not ambitious enough:
– Apply model (existing implementation) X to dataset Y with minimal change.

• E.g., Clone a repo and do minimal stitching to make it work for a Kaggle competition.

• An idea that you are not interested in, but you are doing it because it’s
easy / convenient / other people have done similar things.
– You will be far more motivated if you are invested in what you are doing.

How do I pick a (good) project?

• What do you care about? Better medical AI? Better
Autonomous Driving? Automated Story Telling? Visual Art?

• Does it help me learn new things that will be useful later
• Practical Considerations:
– Data: Is there dataset / simulation environment for your

problem? Is it accessible?
– Code & framework: Do I have to implement everything from

scratch? Or can I base it off of something?
– What’s the simplest way (baseline) to approach the problem?

FAQ

Q: Can I change my project after proposal, before the milestone
A: Yes, the proposal is to make sure you have a plausible project direction. If
you need to change the direction, we understand.

Q: Can I change my project after the milestone?
A: No unless you can convince us. At this point in the course, there will be
little time to put together a sufficient project.

Q: How do I get help for my project?
A: Come to office hours! We will post a list of TA expertise.

Today’s Lecture

• What is the course project about?
• How to pick a project?
• What is computer science research?
• How to develop a new idea?

Computer Science Research

What is the goal of research?
Why has it driven major innovations in computing?
What separates research from engineering development?

Note: Research is not a requirement for the project

Adapted from Stanford CS197

A Tale of Three Turing Awards

Hennessy and Patterson: RISC

Computer architecture was increasing
in complexity, in order to enable more
and more advanced computation.

Everyone thought that increasingly
powerful processors needed
increasingly complicated instruction
sets to take advantage of them.

Adapted from Stanford CS197

Hennessy and Patterson: RISC

Adapted from Stanford CS197

“No, let’s do it this way instead:” have a
very simple instruction set. That way you
can compare performance, optimize,
and prevent errors.

This became known as Reduced
Instruction Set Computer (RISC). Today,
more than 99 percent of all new chips
use the RISC architecture they
developed.

Engelbart: interactive
computing

When computers originated, they were
used for, well, computing: calculating
mathematical functions.

This meant that computers were seen
as most appropriate for slow, batch
interaction, shared by entire teams.

Adapted from Stanford CS197

Engelbart: interactive
computing

“No, let’s do it this way instead:” computing
should be used as a tool for thought. We must
move from batch-style computing to
interactive computing.

His result was the “Mother of All Demos”:
mouse, hypertext, bitmapped screens,
collaborative software, and more.

This led to Xerox Star. Steve Jobs saw it, was
wow’ed, and infused the ideas into the Mac.

Adapted from Stanford CS197

Engelbart: interactive computing

The idea of neural networks had been
around for fifty years, but unsuccessful.
Major AI figures had trashed it, even
proving that early versions had very
limited expressiveness.

Instead, machine learning was based on
other models, for example the support
vector machine and graphical models.
Neural networks did not perform well.

Adapted from Stanford CS197

LeCun, Hinton, Bengio:
deep learning

LeCun, Hinton, Bengio: deep
learning

“No, let’s do it this way instead:” these
networks learn extremely complex
functions, so they need much more data
than existing machine learning
approaches, GPUs to train, and algorithms
to enable them to learn more effectively.

Around 2010, these models began
smashing records in speech and image
recognition. They are now foundational to
ML and AI in general.

Adapted from Stanford CS197

Not all research wins Turing Awards. But…

It all follows the same formula:

An implicit assumption: Industry and other researchers all
thought one way about a problem

“No, let’s do it this way instead:” The researcher offered a new
perspective that nobody had ever considered or made feasible
before. They proved out their idea as the better approach.

Adapted from Stanford CS197

What is research?

Research introduces a fundamental new idea into the world.

These ideas did not exist in any mature or well-articulated
way before their creators developed them.

If the idea is already in the world, for example published by
someone else, it is not considered novel, and thus not
research.

Adapted from Stanford CS197

How to develop a novel idea?

Novel ideas rarely come out of a vacuum

They’re much more often pivoted off of today’s work:

A realization that an idea has been applied in domains like X and
needs to be rethought in domains like ~X

A recognition that others have tried this technique in users of
context A, or data of up to size N, but ~A or >>N breaks the
technique, or enables new behaviors

Some constraint that exists but shouldn’t, or visa versa

Adapted from Stanford CS197

The "bit flip” method: invert an assumption

bit flip: an inversion of an assumption that the world has about
how the world is supposed to work.

Not trying to flip any bit. Guided by existing research, logic, and
good intuition.

Adapted from Stanford CS197

The "bit flip” method: invert an assumption

bit flip: an inversion of an assumption that the world has about
how the world is supposed to work.

Recipe for a bit flip:
1) Define the bit: articulate an assumption, often left implicit in

prior work
2) Introduce the flip: argue for an alternative to that assumption

/ “No, let’s do it this way instead”

Adapted from Stanford CS197

Bit Flip Project
RISC
architecture

Mother of all
demos

Deep learning

We need complicated
instruction sets to
accommodate powerful
computer processors.

Computing was just for
numerical calculations:
slow, done in batches,
and for teams.

Neural networks exist,
but don’t perform very
well and aren’t accurate.

Simple instruction sets are
better since they let you
compare performance,
optimize, and prevent
errors.
Computing should be
interactive, individual,
and support thought.

We need more data &
compute, and different
algorithms for this to work.

Adapted from Stanford CS197

Bit Flip Project

A minimum graph cut
algorithms should
always return correct
answers.

Activity tracking requires
custom hardware.

NLP machine learning
models should read
sentences word by word
(Recurrent Neural Nets)

A randomized, probabilistic
algorithm will be much faster,
and we can still prove a
limited probability of an error.

Transformer
Networks

Models should consume the
entire sentence at once to
make long-range
dependency learning easier

Activity tracking requires just
a standard cell phone.

Karger’s
algorithm

Single paper bit slip

Find a paper that is adjacent to your idea. Think of this as your
nearest neighbor paper.

Your project will be some sort of delta off of that paper. What
assumption or limitation did it have, that you’re erasing?

Adapted from Stanford CS197

Single paper bit slip

Adapted from Stanford CS197

Each separating line is a
possible bit flip.

Which one should you go
for?

Literature bit flip

Adapted from Stanford CS197

The broader an
understanding you have of
the literature and the
assumptions underneath
each paper and their
commonalities and
differences, the more
effectively you can pick
the right bit flip.

Literature bit flip

Adapted from Stanford CS197

The broader an
understanding you have
of the literature and the
assumptions underneath
each paper and their
commonalities and
differences, the more
effectively you can pick
the right bit flip.

How to read a paper
The "three-pass” approach [1]

first pass: a quick scan
second pass: with greater care, but ignore the details
third pass: re-implementing the paper

[1] S. Keshav. How to read a paper? http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/07/paper-reading.pdf

An anatomy of a (computer vision) paper
Scene Graph Generation by Iterative Message Passing

Danfei Xu1 Yuke Zhu1 Christopher B. Choy2 Li Fei-Fei1

1Department of Computer Science, Stanford University
2Department of Electrical Engineering, Stanford University
{danfei, yukez, chrischoy, feifeili}@cs.stanford.edu

Abstract

Understanding a visual scene goes beyond recognizing
individual objects in isolation. Relationships between ob-
jects also constitute rich semantic information about the
scene. In this work, we explicitly model the objects and
their relationships using scene graphs, a visually-grounded
graphical structure of an image. We propose a novel end-
to-end model that generates such structured scene repre-
sentation from an input image. The model solves the scene
graph inference problem using standard RNNs and learns
to iteratively improves its predictions via message passing.
Our joint inference model can take advantage of contex-
tual cues to make better predictions on objects and their
relationships. The experiments show that our model signif-
icantly outperforms previous methods for generating scene
graphs using Visual Genome dataset and inferring support
relations with NYU Depth v2 dataset.

1. Introduction
Today’s state-of-the-art perceptual models [15, 32] have

mostly tackled detecting and recognizing individual objects
in isolation. However, understanding a visual scene often
goes beyond recognizing individual objects. Take a look
at the two images in Fig. 1. Even a perfect object detec-
tor would struggle to perceive the subtle difference between
a man feeding a horse and a man standing by a horse. The
rich semantic relationships between these objects have been
largely untapped by these models. As indicated by a series
of previous works [26, 34, 41], one crucial step towards a
deeper understanding of visual scenes is building a struc-
tured representation that captures objects and their semantic
relationships. Such representation not only offers contex-
tual cues for fundamental recognition tasks [27, 29, 38, 39]
but also provide values in a larger variety of high-level vi-
sual tasks [18, 44, 40].

The recent success of deep learning-based recognition
models [15, 21, 36] has surged interest in examining the de-
tailed structures of a visual scene, especially in the form of

man horse

ob
je

ct

de
te

ct
io

n
sc

en
e

gr
ap

h
ge

ne
ra

tio
n horse

bucket

eat fromholding

feedingman

wearing glasses...

Figure 1. Object detectors perceive a scene by attending to indi-
vidual objects. As a result, even a perfect detector would produce
similar outputs on two semantically distinct images (first row). We
propose a scene graph generation model that takes an image as in-
put, and generates a visually-grounded scene graph (second row,
right) that captures the objects in the image (blue nodes) and their
pairwise relationships (red nodes).

object relationships [5, 20, 26, 33]. Scene graph, proposed
by Johnson et al. [18], offers a platform to explicitly model
objects and their relationships. In short, a scene graph is
a visually-grounded graph over the object instances in an
image, where the edges depict their pairwise relationships
(see example in Fig. 1). The value of scene graph represen-
tation has been proven in a wide range of visual tasks, such
as semantic image retrieval [18], 3D scene synthesis [4],
and visual question answering [37]. Anderson et al. re-
cently proposed SPICE [1] as an enhanced automated cap-
tion evaluation metric defined over scene graphs. However,
these models that use scene graphs either rely on ground-
truth annotations [18], synthetic images [37], or extract a
scene graph from text domain [1, 4]. To truly take advan-
tage of such rich structure, it is crucial to devise a model
that automatically generates scene graphs from images.

In this work, we address the problem of scene graph gen-
eration, where the goal is to generate a visually-grounded
scene graph from an image. In a generated scene graph,
an object instance is characterized by a bounding box with
an object category label, and a relationship is characterized
by a directed edge between two bounding boxes (i.e., ob-

1

ar
X

iv
:1

70
1.

02
42

6v
2

 [c
s.C

V
]

12
 A

pr
 2

01
7

An anatomy of a (computer vision) paper

Title and abstract:
• What is the paper about?
• Why should readers care about

the paper?
• What’s the one-sentence

synopsis of the key innovation?
• What’s the most exciting result?

Scene Graph Generation by Iterative Message Passing

Danfei Xu1 Yuke Zhu1 Christopher B. Choy2 Li Fei-Fei1

1Department of Computer Science, Stanford University
2Department of Electrical Engineering, Stanford University
{danfei, yukez, chrischoy, feifeili}@cs.stanford.edu

Abstract

Understanding a visual scene goes beyond recognizing
individual objects in isolation. Relationships between ob-
jects also constitute rich semantic information about the
scene. In this work, we explicitly model the objects and
their relationships using scene graphs, a visually-grounded
graphical structure of an image. We propose a novel end-
to-end model that generates such structured scene repre-
sentation from an input image. The model solves the scene
graph inference problem using standard RNNs and learns
to iteratively improves its predictions via message passing.
Our joint inference model can take advantage of contex-
tual cues to make better predictions on objects and their
relationships. The experiments show that our model signif-
icantly outperforms previous methods for generating scene
graphs using Visual Genome dataset and inferring support
relations with NYU Depth v2 dataset.

1. Introduction
Today’s state-of-the-art perceptual models [15, 32] have

mostly tackled detecting and recognizing individual objects
in isolation. However, understanding a visual scene often
goes beyond recognizing individual objects. Take a look
at the two images in Fig. 1. Even a perfect object detec-
tor would struggle to perceive the subtle difference between
a man feeding a horse and a man standing by a horse. The
rich semantic relationships between these objects have been
largely untapped by these models. As indicated by a series
of previous works [26, 34, 41], one crucial step towards a
deeper understanding of visual scenes is building a struc-
tured representation that captures objects and their semantic
relationships. Such representation not only offers contex-
tual cues for fundamental recognition tasks [27, 29, 38, 39]
but also provide values in a larger variety of high-level vi-
sual tasks [18, 44, 40].

The recent success of deep learning-based recognition
models [15, 21, 36] has surged interest in examining the de-
tailed structures of a visual scene, especially in the form of

man horse

ob
je

ct

de
te

ct
io

n
sc

en
e

gr
ap

h
ge

ne
ra

tio
n horse

bucket

eat fromholding

feedingman

wearing glasses...

Figure 1. Object detectors perceive a scene by attending to indi-
vidual objects. As a result, even a perfect detector would produce
similar outputs on two semantically distinct images (first row). We
propose a scene graph generation model that takes an image as in-
put, and generates a visually-grounded scene graph (second row,
right) that captures the objects in the image (blue nodes) and their
pairwise relationships (red nodes).

object relationships [5, 20, 26, 33]. Scene graph, proposed
by Johnson et al. [18], offers a platform to explicitly model
objects and their relationships. In short, a scene graph is
a visually-grounded graph over the object instances in an
image, where the edges depict their pairwise relationships
(see example in Fig. 1). The value of scene graph represen-
tation has been proven in a wide range of visual tasks, such
as semantic image retrieval [18], 3D scene synthesis [4],
and visual question answering [37]. Anderson et al. re-
cently proposed SPICE [1] as an enhanced automated cap-
tion evaluation metric defined over scene graphs. However,
these models that use scene graphs either rely on ground-
truth annotations [18], synthetic images [37], or extract a
scene graph from text domain [1, 4]. To truly take advan-
tage of such rich structure, it is crucial to devise a model
that automatically generates scene graphs from images.

In this work, we address the problem of scene graph gen-
eration, where the goal is to generate a visually-grounded
scene graph from an image. In a generated scene graph,
an object instance is characterized by a bounding box with
an object category label, and a relationship is characterized
by a directed edge between two bounding boxes (i.e., ob-

1

ar
X

iv
:1

70
1.

02
42

6v
2

 [c
s.C

V
]

12
 A

pr
 2

01
7

An anatomy of a (computer vision) paper

Introduction:
• (very high level) why is the

problem important?
• What have researchers

done to address the issue.
• What are their limitations?
• How is our method

different?
• What is our key result?

Scene Graph Generation by Iterative Message Passing

Danfei Xu1 Yuke Zhu1 Christopher B. Choy2 Li Fei-Fei1

1Department of Computer Science, Stanford University
2Department of Electrical Engineering, Stanford University
{danfei, yukez, chrischoy, feifeili}@cs.stanford.edu

Abstract

Understanding a visual scene goes beyond recognizing
individual objects in isolation. Relationships between ob-
jects also constitute rich semantic information about the
scene. In this work, we explicitly model the objects and
their relationships using scene graphs, a visually-grounded
graphical structure of an image. We propose a novel end-
to-end model that generates such structured scene repre-
sentation from an input image. The model solves the scene
graph inference problem using standard RNNs and learns
to iteratively improves its predictions via message passing.
Our joint inference model can take advantage of contex-
tual cues to make better predictions on objects and their
relationships. The experiments show that our model signif-
icantly outperforms previous methods for generating scene
graphs using Visual Genome dataset and inferring support
relations with NYU Depth v2 dataset.

1. Introduction
Today’s state-of-the-art perceptual models [15, 32] have

mostly tackled detecting and recognizing individual objects
in isolation. However, understanding a visual scene often
goes beyond recognizing individual objects. Take a look
at the two images in Fig. 1. Even a perfect object detec-
tor would struggle to perceive the subtle difference between
a man feeding a horse and a man standing by a horse. The
rich semantic relationships between these objects have been
largely untapped by these models. As indicated by a series
of previous works [26, 34, 41], one crucial step towards a
deeper understanding of visual scenes is building a struc-
tured representation that captures objects and their semantic
relationships. Such representation not only offers contex-
tual cues for fundamental recognition tasks [27, 29, 38, 39]
but also provide values in a larger variety of high-level vi-
sual tasks [18, 44, 40].

The recent success of deep learning-based recognition
models [15, 21, 36] has surged interest in examining the de-
tailed structures of a visual scene, especially in the form of

man horse

ob
je

ct

de
te

ct
io

n
sc

en
e

gr
ap

h
ge

ne
ra

tio
n horse

bucket

eat fromholding

feedingman

wearing glasses...

Figure 1. Object detectors perceive a scene by attending to indi-
vidual objects. As a result, even a perfect detector would produce
similar outputs on two semantically distinct images (first row). We
propose a scene graph generation model that takes an image as in-
put, and generates a visually-grounded scene graph (second row,
right) that captures the objects in the image (blue nodes) and their
pairwise relationships (red nodes).

object relationships [5, 20, 26, 33]. Scene graph, proposed
by Johnson et al. [18], offers a platform to explicitly model
objects and their relationships. In short, a scene graph is
a visually-grounded graph over the object instances in an
image, where the edges depict their pairwise relationships
(see example in Fig. 1). The value of scene graph represen-
tation has been proven in a wide range of visual tasks, such
as semantic image retrieval [18], 3D scene synthesis [4],
and visual question answering [37]. Anderson et al. re-
cently proposed SPICE [1] as an enhanced automated cap-
tion evaluation metric defined over scene graphs. However,
these models that use scene graphs either rely on ground-
truth annotations [18], synthetic images [37], or extract a
scene graph from text domain [1, 4]. To truly take advan-
tage of such rich structure, it is crucial to devise a model
that automatically generates scene graphs from images.

In this work, we address the problem of scene graph gen-
eration, where the goal is to generate a visually-grounded
scene graph from an image. In a generated scene graph,
an object instance is characterized by a bounding box with
an object category label, and a relationship is characterized
by a directed edge between two bounding boxes (i.e., ob-

1

ar
X

iv
:1

70
1.

02
42

6v
2

 [c
s.C

V
]

12
 A

pr
 2

01
7

An anatomy of a (computer vision) paper

Related Work
• Who has done what?
• How is the work related to

the proposed method?
• How is the proposed

method different?

ject and subject) with a relationship predicate (red nodes in
Fig. 1). The major challenge of generating scene graphs
is reasoning about relationships. Much effort has been ex-
pended on localizing and recognizing semantic relation-
ships in images [6, 8, 26, 34, 39]. Most methods have
focused on making local predictions of object relation-
ships [26, 34], which essentially simplify the scene graph
generation problem into independently predicting relation-
ships between pairs of objects. However, by doing lo-
cal predictions these models ignore surrounding context,
whereas joint reasoning with contextual information can of-
ten resolve ambiguity due to local predictions in isolation.

To capture this intuition, we propose a novel end-to-
end model that learns to generate image-grounded scene
graphs (Fig. 2). The model takes an image as input and out-
puts a scene graph that consists of object categories, their
bounding boxes, and semantic relationships between pairs
of objects. Our major contribution is that instead of in-
ferring each component of a scene graph in isolation, the
model passes messages containing contextual information
between a pair of bipartite sub-graphs of the scene graph,
and iteratively refines its predictions using RNNs. We eval-
uate our model on a new scene graph dataset based on Vi-
sual Genome [20], which contains human-annotated scene
graphs on 108,077 images. On average, each image is anno-
tated with 25 objects and 22 pairwise object relationships.
We show that relationship prediction in scene graphs can
be significantly improved by our model. Furthermore, we
also apply our model to the NYU Depth v2 dataset [28],
establishing new state-of-the-art results in reasoning about
spatial relations, such as horizontal and vertical supports.

In summary, we propose an end-to-end model that gen-
erates visually-grounded scene graphs from images. The
model uses a novel inference formulation that iteratively re-
fines its prediction by passing contextual messages along
the topological structure of a scene graph. We demonstrate
its use for generating semantic scene graphs from a new
scene graph dataset as well as predicting support relations
using the NYU Depth v2 dataset [28].

2. Related Work
Scene understanding and relationship prediction. Visual
scene understanding often harnesses the statistical patterns
of object co-occurrence [11, 22, 30, 35] as well as spa-
tial layout [2, 9]. A series of contextual models based on
surrounding pixels and regions have also been developed
for perceptual tasks [3, 13, 25, 27]. Recent works [6, 31]
exploits more complex structures for relationship predic-
tion. However, these works focus on image-level predic-
tions without detailed visual grounding. Physical rela-
tionships, such as support and stability, have been studied
in [17, 28, 42]. Lu et al. [26] directly tackled the semantic
relationship detection by combining visual inputs with lan-

CNN+RPN Graph
Inference

object proposalimage scene graph

horse

face of

man

riding

wearing

wearing

hat

shirt

mountain behind

Figure 2. An overview of our model architecture. Given an image
as input, the model first produces a set of object proposals using
a Region Proposal Network (RPN) [32], and then passes the ex-
tracted features of the object regions to our novel graph inference
module. The output of the model is a scene graph [18], which
contains a set of localized objects, categories of each object, and
relationship types between each pair of objects.

guage priors to cope with the long-tail distribution of real-
world relationships. However, their method predicts each
relationship independently. We show that our model out-
performs theirs with joint inference.

Visual scene representation. One of the most popular
ways of representing a visual scene is through text descrip-
tions [14, 34, 44]. Although text-based representation has
been shown to be helpful for scene classification and re-
trieval, its power is often limited by ambiguity and lack
of expressiveness. In comparison, scene graphs [18] of-
fer explicit grounding of visual concepts, avoiding referen-
tial uncertainty in text-based representation. Scene graphs
have been used in many downstream tasks such as image re-
trieval [18], 3D scene synthesis [4] and understanding [10],
visual question answering [37], and automatic caption eval-
uation [1]. However, previous work on scene graphs shied
away from the graph generation problem by either using
ground-truth annotations [18, 37], or extracting the graphs
from other modalities [1, 4, 10]. Our work addresses the
problem of generating scene graphs directly from images.

Graph inference. Conditional Random Fields (CRF) have
been used extensively in graph inference. Johnson et al.
used CRF to infer scene graph grounding distributions for
image retrieval [18]. Yatskar et al. [40] proposed situation-
driven object and action prediction using a deep CRF
model. Our work is closely related to CRFasRNN [43] and
Graph-LSTM [23] in that we also formulate the graph infer-
ence problem using an RNN-based model. A key difference
is that they focus on node inference while treating edges as
pairwise constraints, whereas we enable edge predictions
using a novel primal-dual graph inference scheme. We also

2

An anatomy of a (computer vision) paper

Method: overview and problem setup
• What’s the high-level idea of the

method? What components does the
method include?

• Introduce the formal problem setup
• Introduce notations

share the same spirit as Structural RNN [16]. A crucial
distinction is that our model iteratively refines its predic-
tions through message passing, whereas the Structural RNN
model only makes one-time predictions along the temporal
dimension, and thus cannot refine its past predictions.

3. Scene Graph Generation
A scene graph, as defined by Johnson et al. [18], is a

structured representation of an image, where nodes in a
scene graph correspond to object bounding boxes with their
object categories, and edges correspond to their pairwise re-
lationships between objects. The task of scene graph gen-
eration is to generate a visually-grounded scene graph that
most accurately correlates with an image. Intuitively, indi-
vidual predictions of objects and relationships can benefit
from their surrounding context. For instance, knowing “a
horse is on grass field” is likely to increase the chance of
detecting a person and predicting the relationship of “man
riding horse”. To capture this intuition, we propose a joint
inference framework to enable contextual information to
propagate through the scene graph topology via a message
passing scheme.

Inference on a densely connected graph can be very ex-
pensive. As shown in previous work [19] and [43], dense
graph inference can be approximated by mean field in Con-
ditional Random Fields (CRF). Our approach is inspired by
Zheng et al. [43], which designs fully differentiable lay-
ers to enable end-to-end learning with recurrent neural net-
works (RNN). Yet their model relies on purpose-built RNN
layers. To achieve greater flexibility in a more principled
training framework, we use a generic RNN unit instead, in
particular a Gated Recurrent Unit (GRU) [7]. At each iter-
ation, each GRU takes its previous hidden state and an in-
coming message as input, and produces a new hidden state
as output. Each node and edge in the scene graph main-
tains its internal state in its corresponding GRU unit, where
all nodes share the same GRU weights (node GRUs), and
all edges share the other set of GRU weights (edge GRUs).
This setup allows the model to pass messages (i.e., aggre-
gation of GRU hidden states) among the GRU units along
the scene graph topology. We also propose a message pool-
ing function that learns to dynamically aggregate the hidden
states of the GRUs into messages.

We further observe that the unique structure of scene
graphs forms a bipartite structure of message passing chan-
nels. Since messages only pass along the topological struc-
ture of a scene graph, the set of edge GRUs and the set of
node GRUs form a bipartite graph, where no message is
passed inside each set. Inspired by this observation, we
formulate two disjoint sub-graphs that are essentially the
dual graph to each other. The primal graph defines chan-
nels for messages to pass from edge GRUs to node GRUs.
The dual graph defines channels for messages to pass from

node GRUs to edge GRUs. With such primal-dual formu-
lation, we can therefore improve inference efficiency by
iteratively passing messages between these sub-graphs in-
stead of through a densely connected graph. Fig. 3 gives an
overview of our model.

3.1. Problem Formulation
We first lay out the mathematical formulation of our

scene graph generation problem. To generate a visually
grounded scene graph, we need to obtain an initial set of
object bounding boxes. These bounding boxes can be ei-
ther from ground-truth human annotation or algorithmically
generated. In practice, we use the Region Proposal Network
(RPN) [32] to automatically generate a set of object bound-
ing box proposals BI from an image I as the base input to
the inference procedure (Fig. 3(a)).

For each object box proposal, we need to infer two types
of object-centric variables: 1) an object class label, and 2)
four bounding box offsets relative to the proposal box co-
ordinates, which are used for refining the proposal boxes.
In addition, we need to infer a relationship-centric variable
between every pair of proposal boxes, which denotes the
predicate type of the relationship between the correspond-
ing object pair. Given a set of object classes C (including
background) and a set of relationship types R (including
none relationship), we denote the set of all variables to be
x = {xcls

i , xbbox
i , xi!j |i = 1 . . . n, j = 1 . . . n, i 6= j},

where n is the number of proposal boxes, xcls
i 2 C is the

class label of the i-th proposal box, xbbox
i 2 R4 is the

bounding box offsets relative to the i-th proposal box coor-
dinates, and xi!j 2 R is the relationship predicate between
the i-th and the j-th proposal boxes.

At the high level, the inference task is to classify objects,
predict their bounding box offsets, and classify relationship
predicates between each pair of objects. Formally, we for-
mulate the scene graph generation problem as finding the
optimal x⇤ = argmaxx Pr(x|I, BI) that maximizes the
following probability function given the image I and box
proposals BI :

Pr(x|I, BI) =
Y

i2V

Y

j 6=i

Pr(xcls
i , xbbox

i , xi!j |I, BI). (1)

In the next subsection, we introduce a way to approx-
imate the inference procedure using an iterative message
passing scheme modeled with Gated Recurrent Units [7].

3.2. Inference using Recurrent Neural Network
We use mean field to perform approximate inference. We

denote the probability of each variable x as Q(x|·), and as-
sume that the probability only depends on the current state
of each node and edge at each iteration. In contrast to
Zheng et al. [43], we use a generic RNN module to compute

3

An anatomy of a (computer vision) paper

Method: “the meat”
• Details of the method
• What makes the method works better

than other methods, in theory.
• (Optional) new theorem, lemma
• (Optional) a figure illustration of the

method

edge
GRU

node
GRU

primal
graph

edge
feature

node
feature

node
state

outbound
edge states

inbound
edge states

dual
graph

edge
state

subject
state

object
state

edge
GRU

node
GRU

node
message

edge
message

node message pooling

message
passing

edge
GRU

node
GRU

node message
pooling

edge message
pooling

message
passing

edge message pooling

edge
GRU

node
GRU

...

T = 0 T = 1 T = 2 T = N

horse

face of

man

riding

wearing

wearing

hat

shirt

mountain behind

object proposal

scene graph

(a) (b) (c) (d)

Figure 3. An illustration of our model architecture (Sec. 3). The model first extracts visual features of nodes and edges from a set of object
proposals, and edge GRUs and node GRUs then take the visual features as initial input and produce a set of hidden states (a). Then a node
message pooling function computes messages that are passed to the node GRU in the next iteration from the hidden states. Similarly, an
edge message pooling function computes messages and feed to the edge GRU (b). The � symbol denotes a learnt weighted sum. The
model iteratively updates the hidden states of the GRUs (c). At the last iteration step, the hidden states of the GRUs are used to predict
object categories, bounding box offsets, and relationship types (d).

the hidden states. In particular, we choose Gated Recurrent
Units [7] due to its simplicity and effectiveness. We use the
hidden state of the corresponding GRU, a high-dimensional
vector, to represent the current state of each node and each
edge. As all the nodes (edges) share the same update rule,
we share the same set of parameters among all the node
GRUs, and the other set of parameters among all the edge
GRUs (Fig. 3). We denote the current hidden state of node
i as hi and the current hidden state of edge i ! j as hi!j .
Then the mean field distribution can be formulated as

Q(x|I, BI) =
nY

i=1

Q(xcls
i , xbbox

i |hi)Q(hi|fv
i)

Y

j 6=i

Q(xi!j |hi!j)Q(hi!j |fe
i!j)

(2)

where fv
i is the visual feature of the i-th node, and fe

i!j

is the visual feature of the edge from the i-th node to the
j-th node. In the first iteration, the GRU units take the vi-
sual features fv and fe as input (Fig. 3(a)). We use the
visual feature of the proposal box as the visual feature fv

i

for the i-th node. We use the visual feature of the union box
over the proposal boxes bi, bj as the visual feature fe

i!j for
edge i 2 j. These visual features are extracted by an ROI-
pooling layer [12] from the image. In later iterations, the
inputs are the aggregated messages from other GRU units
of the previous step. We talk about how the messages are
aggregated and passed in the next subsection.

3.3. Primal Dual Update and Message Pooling
Sec. 3.2 offers a generic formulation for solving graph

inference problem using RNNs. However, we observe that

we can further improve the inference efficiency by leverag-
ing the unique bipartite structure of a scene graph. In the
scene graph topology, the neighbors of the edge GRUs are
node GRUs, and vice versa. Passing messages along this
structure forms two disjoint sub-graphs that are the dual
graph to each other. Specifically, we have a node-centric
primal graph, in which each node GRU gets messages from
its inbound and outbound edge GRUs. In the edge-centric
dual graph, each edge GRU gets messages from its sub-
ject node GRU and object node GRU (Fig. 3(b)). We can
therefore improve inference efficiency by iteratively passing
messages between these two sub-graphs instead of through
a densely connected graph (Fig. 3(c)).

As each GRU receives multiple incoming messages, we
need an aggregation function that can fuse information from
all messages into a meaningful representation. A naı̈ve ap-
proach would be standard pooling methods such as average-
or max-pooling. However, we found that it is more effective
to learn adaptive weights that can modulate the influences of
incoming messages and only keep the relevant information.
We introduce a message pooling function that computes the
weight factors for each incoming message and fuse the mes-
sages using a weighted sum. We provide an empirical anal-
ysis of different message pooling functions in Sec. 4.

Formally, given the current GRU hidden states of nodes
and edges hi and hi!j , we denote the messages to update
the i-th node as mi, which is computed by a function of its
own hidden state hi, and the hidden states of its outbound
edge GRUs hi!j and inbound edge GRUs hj!i. Similarly,
we denote the message to update the edge from the i-th node
to the j-th node as mi!j , which is computed by a function
of its own hidden state hi!j , the hidden states of its subject

4

An anatomy of a (computer vision) paper

Method: implementation details
• Some details that help others to

reproduce the method
• This may include (for deep learning

paper): network architecture, choice of
optimizers, hyperparameters, training
procedure, hardware requirement.

node GRU hi and its object node GRU hj . To be more
specific, mi and mi!j are computed by the following two
adaptively weighted message pooling functions:

mi =
X

j:i!j

�(vT
1 [hi, hi!j])hi!j +

X

j:j!i

�(vT
2 [hi, hj!i])hj!i

(3)

mi!j = �(wT
1 [hi, hi!j])hi + �(wT

2 [hj , hi!j])hj (4)

where [·] denotes a concatenation of vectors, and � denotes
a sigmoid function. w1, w2 and v1, v2 are learnable param-
eters. These two equations describe the primal-dual update
rules, as shown in (b) of Fig. 3.

3.4. Implementation Details
Our final output layers follow closely with the faster R-

CNN setup [32]. We use a softmax layer to produce the final
scores for the object class as well as relationship predicate.
We use a fully-connected layer to regress to the bounding
box offsets for each object class separately. We use the cross
entropy loss for the object class and the relationship predi-
cate. We use `1 loss for the bounding box offsets.

We use an MS COCO-pretrained VGG-16 network to ex-
tract visual features from images. We freeze the weights of
all convolution layers, and only finetune the fully connected
layers, including the GRUs. The node GRUs and the edge
GRUs have both 512-dimensional input and output. Dur-
ing training, we first use NMS to select at most 2,000 boxes
from all proposed boxes BI , and then randomly select 128
boxes as the object proposals. Due to the quadratic number
of edges and sparsity of the annotations, we first sample all
edges that have labels. If an image has less than 128 labeled
edges, we fill the rest with unlabeled edges. At test time,
we use NMS to select at most 50 boxes from the object pro-
posals with an IoU threshold of 0.3. We make predictions
on all edges except the self-connections at the test time.

4. Experiments
We evaluate our method for generating scene graphs

from images. We compare our model against a recently
proposed model on visual relationship prediction [26]. Our
goal is to analyze our model in datasets with both sparse and
dense relationship annotations. We use a new scene graph
dataset based on the VisualGenome dataset [20] in our main
experiment. We also evaluate our model on the support re-
lation inference task in the NYU Depth v2 dataset. The key
difference between these two datasets is that scene graph
annotation is very sparse: among all possible pairing of
objects, only 1.6% of them are labeled with a relationship
predicate. The NYU Depth v2 dataset, on the other hand,
exhaustively annotates the support of every labeled object.

Our experiments show that our model outperforms the base-
line model [26], and can generalize to other types of rela-
tionships, in particular support relations [28], without any
architecture change.

Visual Genome We introduce a new scene graph dataset
based on the Visual Genome dataset [20]. The original VG
scene graph dataset contains 108,077 images with an aver-
age of 38 objects and 22 relationships per image. However,
a substantial fraction of the object annotations have poor-
quality and overlapping bounding boxes and/or ambiguous
object names. We manually cleaned up per-box annota-
tions. On average, this annotation refinement process cor-
rected 22 bounding boxes and/or names, deleted 7.4 boxes,
and merged 5.4 duplicate bounding boxes per image. The
new dataset contains an average of 25 distinct objects and
22 relationships per image. In this experiment, we use the
most frequent 150 object categories and 50 predicates for
evaluation. As a result, each image has a scene graph of
around 11.5 objects and 6.2 relationships. We use 70% of
the images for training and the remaining 30% for testing.

NYU Depth V2 We also evaluate our model on the support
relation graphs from the NYU Depth v2 dataset [28]. The
dataset contains 1,449 RGB-D images captured in 27 indoor
scenes. Each image is annotated with instance segmenta-
tion, region class labels, and support relations between re-
gions. We use the standard split, with 795 images used for
training and 654 images for testing.

4.1. Semantic Scene Graph Generation
Setup Given an image, the scene graph generation task
is to localize a set of objects, classify their category labels,
and predict relationships between each pair of the objects.
We evaluate our model on the new scene graph dataset. We
analyze our model in three setups below.

1. The predicate classification (PREDCLS) task is to
predict the predicates of all pairwise relationships of
a set of localized objects. This task examines the
model’s performance on predicate classification in iso-
lation from other factors.

2. The scene graph classification (SGCLS) task is to
predict the predicate as well as the object categories
of the subject and the object in every pairwise relation-
ship given a set of localized objects.

3. The scene graph generation (SGGEN) task is to si-
multaneously detect a set of objects and predict the
predicate between each pair of the detected objects.
An object is considered to be correctly detected if it
has at least 0.5 IoU overlap with the ground-truth box.

We adopted the image-wise recall evaluation metrics,
R@50 and R@100, that are used in Lu et al. [26] for

5

An anatomy of a (computer vision) paper

Experiment: setup
• What hypothesis are we trying to verify

through the experiment?
• What dataset / environment /

benchmark are we using?
• What evaluation metric are we

reporting the results with?

node GRU hi and its object node GRU hj . To be more
specific, mi and mi!j are computed by the following two
adaptively weighted message pooling functions:

mi =
X

j:i!j

�(vT
1 [hi, hi!j])hi!j +

X

j:j!i

�(vT
2 [hi, hj!i])hj!i

(3)

mi!j = �(wT
1 [hi, hi!j])hi + �(wT

2 [hj , hi!j])hj (4)

where [·] denotes a concatenation of vectors, and � denotes
a sigmoid function. w1, w2 and v1, v2 are learnable param-
eters. These two equations describe the primal-dual update
rules, as shown in (b) of Fig. 3.

3.4. Implementation Details
Our final output layers follow closely with the faster R-

CNN setup [32]. We use a softmax layer to produce the final
scores for the object class as well as relationship predicate.
We use a fully-connected layer to regress to the bounding
box offsets for each object class separately. We use the cross
entropy loss for the object class and the relationship predi-
cate. We use `1 loss for the bounding box offsets.

We use an MS COCO-pretrained VGG-16 network to ex-
tract visual features from images. We freeze the weights of
all convolution layers, and only finetune the fully connected
layers, including the GRUs. The node GRUs and the edge
GRUs have both 512-dimensional input and output. Dur-
ing training, we first use NMS to select at most 2,000 boxes
from all proposed boxes BI , and then randomly select 128
boxes as the object proposals. Due to the quadratic number
of edges and sparsity of the annotations, we first sample all
edges that have labels. If an image has less than 128 labeled
edges, we fill the rest with unlabeled edges. At test time,
we use NMS to select at most 50 boxes from the object pro-
posals with an IoU threshold of 0.3. We make predictions
on all edges except the self-connections at the test time.

4. Experiments
We evaluate our method for generating scene graphs

from images. We compare our model against a recently
proposed model on visual relationship prediction [26]. Our
goal is to analyze our model in datasets with both sparse and
dense relationship annotations. We use a new scene graph
dataset based on the VisualGenome dataset [20] in our main
experiment. We also evaluate our model on the support re-
lation inference task in the NYU Depth v2 dataset. The key
difference between these two datasets is that scene graph
annotation is very sparse: among all possible pairing of
objects, only 1.6% of them are labeled with a relationship
predicate. The NYU Depth v2 dataset, on the other hand,
exhaustively annotates the support of every labeled object.

Our experiments show that our model outperforms the base-
line model [26], and can generalize to other types of rela-
tionships, in particular support relations [28], without any
architecture change.

Visual Genome We introduce a new scene graph dataset
based on the Visual Genome dataset [20]. The original VG
scene graph dataset contains 108,077 images with an aver-
age of 38 objects and 22 relationships per image. However,
a substantial fraction of the object annotations have poor-
quality and overlapping bounding boxes and/or ambiguous
object names. We manually cleaned up per-box annota-
tions. On average, this annotation refinement process cor-
rected 22 bounding boxes and/or names, deleted 7.4 boxes,
and merged 5.4 duplicate bounding boxes per image. The
new dataset contains an average of 25 distinct objects and
22 relationships per image. In this experiment, we use the
most frequent 150 object categories and 50 predicates for
evaluation. As a result, each image has a scene graph of
around 11.5 objects and 6.2 relationships. We use 70% of
the images for training and the remaining 30% for testing.

NYU Depth V2 We also evaluate our model on the support
relation graphs from the NYU Depth v2 dataset [28]. The
dataset contains 1,449 RGB-D images captured in 27 indoor
scenes. Each image is annotated with instance segmenta-
tion, region class labels, and support relations between re-
gions. We use the standard split, with 795 images used for
training and 654 images for testing.

4.1. Semantic Scene Graph Generation
Setup Given an image, the scene graph generation task
is to localize a set of objects, classify their category labels,
and predict relationships between each pair of the objects.
We evaluate our model on the new scene graph dataset. We
analyze our model in three setups below.

1. The predicate classification (PREDCLS) task is to
predict the predicates of all pairwise relationships of
a set of localized objects. This task examines the
model’s performance on predicate classification in iso-
lation from other factors.

2. The scene graph classification (SGCLS) task is to
predict the predicate as well as the object categories
of the subject and the object in every pairwise relation-
ship given a set of localized objects.

3. The scene graph generation (SGGEN) task is to si-
multaneously detect a set of objects and predict the
predicate between each pair of the detected objects.
An object is considered to be correctly detected if it
has at least 0.5 IoU overlap with the ground-truth box.

We adopted the image-wise recall evaluation metrics,
R@50 and R@100, that are used in Lu et al. [26] for

5

An anatomy of a (computer vision) paper

Experiment: results
• Quantitative results: tables, barcharts,

plots, …
• Discuss what the results mean to our

hypothesis.

Figure 4. Predicate classification performance (R@100) using our
models with different numbers of training iterations. Note that the
baseline model is equivalent to our model with zero iteration, as it
feeds the node and edge visual features directly to the classifiers.

all the three setups. The R@k metric measures the
fraction of ground-truth relationship triplets (subject-
predicate-object) that appear among the top k most
confident triplet predictions in an image. The choice of this
metric is, as explained in [26], due to the sparsity of the rela-
tionship annotations in Visual Genome — metrics like mAP
would falsely penalize positive predictions on unlabeled re-
lationships. We also report per-type recall@5 of classifying
individual predicate. This metric measures the fraction of
the time the correct predicate is among the top 5 most con-
fident predictions of each labeled relationship triplet. As
shown in Table 2, many predicates have very similar seman-
tic meanings, for example, on vs. over and hanging
from vs. attached to. The less frequent predicates
would be overshadowed by the more frequent ones during
training. We use the recall metric to alleviate such an effect.

4.1.1 Network Models

We evaluate our final model and a number of baseline mod-
els. One of the key components in our primal-dual for-
mulation is the message pooling functions that use learnt
weighted sum to aggregate hidden states of nodes and edges
into messages (see Eq. 3 and Eq. 4). In order to demon-
strate its effectiveness, we evaluate variants of our model
with standard pooling methods. The first is to use average-
pooling (avg. pool) instead of the learnt weighted sum to
aggregate the hidden states. The second is similar to the first
one, but uses max-pooling (max pool). We also evaluate
our models against a relationship detection model proposed
by Lu et al. [26]. Their model consists of two components
– a vision module that makes predictions from images, and
a language module that captures language priors. We com-
pare with their vision module, which uses the same inputs
as ours; their language module is orthogonal to our model,
and can be added independently. Note that this model is
equivalent to our final model without any message passing.

Table 1. Evaluation results of the scene graph generation task on
the Visual Genome dataset [20]. We compare a few variations of
our model against a visual relationship detection module proposed
by Lu et al. [26] (Sec. 4.1.1).

[26] avg. pool max pool final

PREDCLS
R@50 27.88 32.39 34.33 44.75
R@100 35.04 39.63 41.99 53.08

SGCLS
R@50 11.79 15.65 16.31 21.72
R@100 14.11 18.27 18.70 24.38

SGGEN
R@50 0.32 2.70 3.03 3.44
R@100 0.47 3.42 3.71 4.24

Table 2. Predicate classification recall. We compare our final
model (trained with two iterations) with Lu et al. [26]. Top 20
most frequent types (sorted by frequency) are shown. The evalua-
tion metric is recall@5.

predicate [26] ours predicate [26] ours
on 99.71 99.25 under 28.64 52.73
has 98.03 97.25 sitting on 31.74 50.17
in 80.38 88.30 standing on 44.44 61.90
of 82.47 96.75 in front of 26.09 59.63

wearing 98.47 98.23 attached to 8.45 29.58
near 85.16 96.81 at 54.08 70.41
with 31.85 88.10 hanging from 0.00 0.00

above 49.19 79.73 over 9.26 0.00
holding 61.50 80.67 for 12.20 31.71
behind 79.35 92.32 riding 72.43 89.72

4.1.2 Results

Table 1 shows the performances of our model and the base-
lines. The baseline model [26] makes individual predictions
on objects and relationships in isolation. The only infor-
mation that the predicate classifier takes is a bounding box
covering the union of the two objects, making it likely to
confuse the subject and the object. We showcase some of
the errors later in a qualitative analysis. Our final model
with learnt weighted sum over the connecting hidden states
greatly outperforms the baseline model (18% gain on pred-
icate classification with R@100 metric) and the model vari-
ants. This shows that learning to modulate the information
from other hidden states enables the network to extract more
relevant information and yields superior performances.

Fig. 4 shows the predicate classification performances of
our models trained with different numbers of iterations. The
performance of our final model peaks at training with two it-
erations, and gradually degrades afterward. We hypothesize
that this is because as the number of iterations increases,
noisy messages start to permeate through the graph and
hamper the final prediction. The max-pooling and average-
pooling models, on the other hand, barely improve after the
first iteration, showing ineffective message passing due to
these naı̈ve aggregation methods.

Finally, Table 2 shows results of per-type predicate re-

6

An anatomy of a (computer vision) paper

Experiment: results
• Qualitative results: show examples of

the system input / output
• Discuss what the results mean to our

hypothesis.

N
um

. of training iterations (N
)

N=1

N=2

N=2

N=0
(baseline)

(a) (b) (c)

horseeye riding

man

riding

wearing

wearing

hat

shirt

unknown on

umbrella holding

unknown wearing man
holding

buildingunknown1 on

glass wearing

head wearing

vase

on in

flower

in

counter

onon

bear

on

horse

face of

man

riding

wearing

wearing

hat

shirt

mountain behind

vase

on in

flower

in

table

inat

bear

on

umbrella on

snow on

woman
holding

buildingtree behind

glass of

head of

vase

on with

flower

in

table

underunder

bear

on

horse

face of

man

riding

wearing

wearing

hat

shirt

mountain behind umbrella behind

window on

man
holding

buildingtree near

glass on

head of

arm

man

has

has

has

wearing

wearing

wearing

shirt

on
hat

arm1

hand holding racket

pant
on

man

wearing

wearing

pole on fence

shirt

short
on

shoe on

windowwindow1 on

number on

leg of

sign on sign1

man

wearing near near

horse horse1pant

on

hat

on

shoe

on

window

on

train

has

building

near

window1

on

tree

near

face of

horsemountain behind

man

on

has

has

hat

shirt

vase

on has

table

hashas

flower

in

bear

on

umbrella over

street on

man
holding

buildingtree in front of

glass of

head of
ground
truth

Figure 5. Sample predictions from the baseline model and our final model trained with different numbers of message passing iterations. The
models take images and object bounding boxes as input, and produce object class labels (blue boxes) and relationship predicates between
each pair of objects (orange boxes). In order to keep the visualization interpretable, we only show the relationship (edge) predictions for
the pairs of objects (nodes) that have ground-truth relationship annotations.

call. Both the baseline model and our final model perform
well in predicting frequent predicates. However, the gap be-
tween the models expands for less frequent predicates. This
is because our model uses contextual information to cope
with the uneven distribution in the relationship annotations,
whereas the baseline model suffers more from the skewed
distribution by making predictions in isolation.

4.1.3 Qualitative results

Fig. 5 shows qualitative results that compare our final model
trained with different numbers of iterations and the baseline
model. The results show that the baseline model tends to
confuse about the subject and the object in a relationship.
For example, it predicts (umbrella-holding-man)
in (b) and (counter-on-vase) in (c). Our fi-

7

An anatomy of a (computer vision) paper

Discussion & conclusions
• Reiterate the key message
• Main takeaways
• Limitations / future works

Table 3. Evaluation results of support graph generation task. t-ag
stands for type-agnostic and t-aw stands for type-aware.

Support Accuracy PREDCLS
t-ag t-aw R@50 R@100

Silberman et al. [28] 75.9 72.6 - -
Liao et al. [24] 88.4 82.1 - -
Baseline [26] 87.7 85.3 34.1 50.3
Final model (ours) 91.2 89.0 41.8 55.5

nal model trained with one iteration is able to resolve
some of the ambiguity in the object-subject direction.
For example, it predicts (umbrella-on-woman) and
(head-of-man) in (b), but it still predicts cyclic re-
lationships like (vase-in-flower-in-vase). Fi-
nally, the final model trained with two iterations is
able to make semantically correct predictions, e.g.,
(umbrella-behind-man), and resolves the cyclic
relationships, e.g., (vase-with-flower-in-vase).
Our model also often predicts predicates that are seman-
tically more accurate than the ground-truth annotations,
e.g., our model predicts (man-wearing-hat) in (a) and
table-under-vase in (c), whereas the ground-truth la-
bels are (man-has-hat) and (table-has-vase),
respectively. The bottom part of Fig. 5 showcases more
qualitative results.

4.2. Support Relation Prediction

We then evaluate on the NYU Depth v2 dataset [28] with
densely labeled support relations. We show that our model
can generalize to other types of relationships and is effective
on both sparsely and densely labeled relationships.

Setup The NYU Depth v2 dataset contains three types
of support relationships: an object can be supported by
an object from behind, by an object from below, or sup-
ported by a hidden object. Each object is also labeled with
one of the four structure classes: {floor, structure,
furniture, prop}. We define the support graph gen-
eration task as to predicting both the support relation type
between objects and the structure class of each object. We
take the smallest bounding box that encloses an object seg-
mentation mask as its object region. We assume ground-
truth object locations in this task.

We compare our final model with two previous mod-
els [28, 24] on the support graph generation task. Follow-
ing the metric used in previous work, we report two types
of support relation accuracies [28]: type-aware and type-
agnostic. We also report the performance with R@50 and
R@100 measurements of the predicate classification task
introduced in Sec. 4.1. Note that both [28] and [24] use
RGB-D images, whereas our model uses only RGB images.

Figure 6. Sample support relation predictions from our model on
the NYU Depth v2 dataset [28]. !: support from below, (:
support from behind. Red arrows are incorrect predictions. We
also color code structure classes: ground is in blue, structure is
in green, furniture is in yellow, prop is in red. Purple indicates
missing structure class. Note that the segmentation masks are only
shown for visualization purpose.

Results Our model outperforms previous work, achiev-
ing new state-of-the-art performance using only RGB im-
ages. Our results show that having contextual informa-
tion further improves support relation prediction, even com-
pared to purpose-built models [24, 28] that used RGB-D im-
ages. Fig. 6 shows some sample predictions using our final
model. Incorrect predictions typically occur in ambiguous
supports, e.g., books in shelves can be mistaken as being
supported from behind (row 1, column 2). Geometric struc-
tures that have weak visual features also cause failures. In
row 2, column 1, the ceiling at the top left corner of the
image is predicted as supported from behind instead of sup-
ported below by the wall, but the boundary between the ceil-
ing and the wall is nearly invisible. Such visual uncertainty
may be resolved by having additional depth information.

5. Conclusions
We addressed the problem of automatically generating a

visually grounded scene graph from an image by a novel
end-to-end model. Our model performs iterative message
passing between the primal and dual sub-graph along the
topological structure of a scene graph. This way, it improves
the quality of node and edge predictions by incorporating
informative contextual cues. Our model can be considered
a more generic framework for graph generation problem. In
this work, we have demonstrated its effectiveness in predict-
ing Visual Genome scene graphs as well as support relations
in indoor scenes. A possible future direction would be to ex-
plore its capability in other structured prediction problems
in vision and other problem domains.

8

The first pass: a quick scan

Goal: get bird’s-eye view of the paper (5~10 min)

What to read:
- Title, abstract, introduction and conclusion
- Section and sub-section headings
- Main figures
- Scan of bibliography

You should be able to answer:
- What type of paper is this?
- What are the main contributions?

Let’s try it!

1. Category: What type of paper is this? A dataset paper? An
analysis of an existing system? A description of a new algorithm?
2. Context: Which other papers is it related to? Which problem
setup were used to analyze the problem?
3. Correctness: Do the assumptions appear to be valid?
4. Contributions: What are the paper’s main contributions?
5. Clarity: Is the paper well written?

The second pass: grasp the content

Goal: get a good understanding of the ”meat” of the paper

How to read:
- Look carefully at figures, diagrams and examples
- Take notes of questions, unread references etc.
- Ignore proofs, appendix, extensions etc.

You should be able to:
- Summarize main thrusts of the paper, with supporting
evidence, to someone else

The third pass: all about the details

Goal: think about what you would have done if you were to re-
implement such an idea

How to read:
- Challenge every assumption
- Compare your version with the actual paper

- Often leads to questions like: why not do it this way?

You should be able to:
- Identify hidden assumptions/potential design flaws
- Get ideas for future work

How to do a literature review

1. Pick your favorite academic search engine (e.g., Google scholar)
and start with keywords
2. Find 3-5 recent and highly cited papers

From reputable venues and by reputable institution/author
If you find a survey paper, start from the survey paper

3. Do the first pass to identify key papers and researchers that these
works cite
4. Track down these papers/researchers
5. Iterate as needed

Tools
Backward influence: influential citations in the papers that you’ve read

How: reading
Forward influence: papers citing the ones that you’ve read

How : Google Scholar’s “Cited By”
Relatedness: contemporaneous but not citing

How: Google Scholar’s “Related articles”

Top conferences and journals
* Just search for “<acronym> + conference”
Machine Learning

NeurIPS, ICLR, ICML, AISTATS, AAAI, JMLR (journal)
Computer Vision

CVPR, ECCV, ICCV, BMVC, T-PAMI (journal), IJCV (journal)
Natural Language Processing

ACL, EMNLP, NAACL,
Robotics:

RSS, ICRA, IROS, CORL, T-RO (journal), IJRR (journal)

Lecture 6

NEXT TIME

Backprop with vectors (cont.)
Convolution
Convolutional Neural Networks

