
Machine Learning Applications

CS 4644 / 7643-A: LECTURE 5
DANFEI XU

Topics:
• Backpropagation / Automatic Differentiation
• Neural Networks
• Jacobians



Administrivia

• PS1/HW1 due Sep 19th
• Resources: 

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes. 
• Assignment (@41) and matrix calculus (@46)

• Project: 
• Teaming thread on piazza
• Proposal due Sep 27th

• Release project registration form soon

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://piazza.com/class/ky0k0ha5vgy1mk?cid=41
https://piazza.com/class/ky0k0ha5vgy1mk?cid=46


To develop a general algorithm for this, 
we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations for 
gradient descent

A training algorithm will then process 
this graph, one module at a time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Recap: Computation Graph



Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 4



Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

− 𝐥𝐨𝐠
𝟏

𝟏 + 𝒆!𝒘⋅𝒙



Decomposing a Function 

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

This time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳
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Slide credit: Stanford CS231n Instructors

A computation node
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f

“local gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient switcher

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop

(C) Dhruv Batra 17
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Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞)



Note that we must store the intermediate outputs of all layers!
⬣ This is because we will need them to compute the gradients (the gradient 

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

=
𝜕𝑣
𝜕𝑤#

𝜕𝐿
𝜕𝑞



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

𝜕𝐿
𝜕𝑤"

𝜕𝐿
𝜕𝑤!

𝜕𝐿
𝜕𝑤#

Gradient Descent!



So far:
• Linear classifiers: a basic model
• Loss functions: measures performance of a model
• Backpropagation: an algorithm to calculate gradients of 

loss w.r.t. arbitrary differentiable function
• Gradient Descent: an iterative algorithm to perform 

gradient-based optimization

Next:
• What are neural networks?
• How do we run backpropagation on neural nets?



Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear 
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective

Input

Sigmoid

FC
Tanh

Tanh

FC

Deep Representation Learning

Want: a function that transforms
complex raw data space into a
linearly-separable space.

The function needs to be non-linear!
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Neural networks: the original linear classifier

(Before) Linear score function:

Slide credit: Stanford CS231n Instructors
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: also called fully connected 
network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called 
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

Slide credit: Stanford CS231n Instructors
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Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10

Slide credit: Stanford CS231n Instructors



The function                   is called the activation function.
Q: What if we try to build a neural network without one?

33

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

Slide credit: Stanford CS231n Instructors



The function                   is called the activation function.
Q: What if we try to build a neural network without one?

34

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
(Non-linear) activation function allows us to build non-linear
functions / neural networks

Slide credit: Stanford CS231n Instructors
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

Slide credit: Stanford CS231n Instructors
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Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default 
choice for most problems

Slide credit: Stanford CS231n Instructors
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This image by Fotis Bobolas is 

licensed under CC-BY 2.0

Slide credit: Stanford CS231n Instructors

Why are they called Neural Networks anyways?

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/


This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for 
computational efficiency

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en


This image is CC0 Public Domain

Biological Neurons: 
Complex connectivity patterns

But neural networks with random 
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!

Slide credit: Stanford CS231n Instructors
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“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures

Slide credit: Stanford CS231n Instructors
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Example feed-forward computation of a neural network

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Slide credit: Stanford CS231n Instructors



48

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors

How?
matrix
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Next: Vector Calculus!

Slide credit: Stanford CS231n Instructors

How do we do backpropagation with neural nets?



Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Slide credit: Stanford CS231n Instructors
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if it 
changes by a small amount, 
how much will y change?

Slide credit: Stanford CS231n Instructors
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Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a 
small amount, how 
much will y change?

Vector to Scalar

Derivative is Gradient:

Vector to Vector

Derivative is Jacobian:

For each element of x, if it changes 
by a small amount, how much will 
each element of y change?

Slide credit: Stanford CS231n Instructors

For each element of x, if it 
changes by a small amount, 
how much will y change?
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f

Backprop with Vectors

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors
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f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors
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f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors

What’s the shape of $%
$&

?
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors
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f

“local 
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors
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f

“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz] 

[Dx x Dz] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?

Matrix-vector
multiply

Backprop with Vectors

Slide credit: Stanford CS231n Instructors
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f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how 
much does it influence L?

Dy

Dx

Gradients loss of wrt a variable have same dims as the original variable

Slide credit: Stanford CS231n Instructors

“Downstream 
gradients”
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Upstream
gradient

Slide credit: Stanford CS231n Instructors

What does $&
$'

look like?
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

Jacobian dz/dx
[ 1 0 0 0 ] 
[ 0 0 0 0 ] 
[ 0 0 1 0 ] 
[ 0 0 0 0 ] 

Upstream
gradient

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]
[ 1 0 0 0 ] [ 4  ]
[ 0 0 0 0 ] [ -1 ]
[ 0 0 1 0 ] [ 5  ]
[ 0 0 0 0 ] [ 9  ]

Upstream
gradient

For element-wise
ops, jacobian is 
sparse: off-diagonal 
entries always zero! 
Never explicitly 
form Jacobian --
instead use 
Hadamard (element-
wise) multiplication

4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Slide credit: Stanford CS231n Instructors
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f(x) = max(0,x)
(elementwise)

4D input x:
[  1  ]
[ -2  ]
[  3  ]
[  -1 ]

Backprop with Vectors
4D output z: 

[  1  ]
[  0  ]
[  3  ]
[  0  ]

4D dL/dz: 
[  4  ]
[  -1 ]
[  5  ]
[  9  ]

[dz/dx] [dL/dz]4D dL/dx: 
[ 4 ]
[ 0 ]
[ 5 ]
[ 0 ]

Upstream
gradient

For element-wise 
ops, jacobian is 
sparse: off-diagonal 
entries always zero! 
Never explicitly 
form Jacobian --
instead use 
Hadamard (element-
wise) multiplication z

Slide credit: Stanford CS231n Instructors
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f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

[Dy×My]

[Dz×Mz]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors



73

f

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian 
matrices

For each element of z, how 
much does it influence L?

For each element of y, how much 
does it influence each element of z?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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“local 
gradients”

“Upstream gradient”

“Downstream 
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)] 

Jacobian 
matrices

For each element of z, how 
much does it influence L?Flatten the two matrices -> vector-

vector gradients -> jacobian matrices!

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)] 

[Dx×Mx]

[Dy×My]

dL/dx always has the 
same shape as x!

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

What does the jacobian matrix look like?

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net with
N=64, D=M=4096

Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?

Slide credit: Stanford CS231n Instructors

* =

𝑥 𝑤 𝑦
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Slide credit: Stanford CS231n Instructors

Recall the branching 
gradient rule!

* =

𝑥 𝑤 𝑦
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Slide credit: Stanford CS231n Instructors

Upstream 
gradient

local 
gradient
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?  

Slide credit: Stanford CS231n Instructors
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A: 

Slide credit: Stanford CS231n Instructors

Just a dot product!
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]Q: What parts of y 

are affected by one 
element of x?
A:          affects the 
whole row  

Q: How much 
does        
affect          ?
A: 

[N×D]  [N×M] [M×D]  

Slide credit: Stanford CS231n Instructors

Just a matrix multiplication
No jacobian matrix needed!
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Backprop with Matrices
x: [N×D]

[  2   1 -3 ]
[ -3   4   2 ]
w: [D×M]

[  3  2  1 -1]
[  2  1  3  2]
[  3  2  1 -2]

Matrix Multiply

y: [N×M]
[13  9  -2  -6 ]
[  5  2  17  1 ]

dL/dy: [N×M]
[  2  3 -3  9 ]
[ -8  1  4  6 ]

[N×D]  [N×M] [M×D]  [D×M]  [D×N] [N×M]  

By similar logic:

Slide credit: Stanford CS231n Instructors

For a neural net layer with
N=64, D=M=4096

The larges matrix (𝑊) takes 
up to 0.13 GB memory



Summary:
• Review backpropagation
• Neural networks, activation functions
• Neurons as biological inspirations to DNNs
• Vector Calculus
• Backpropagation through vectors / matrices



Next Time: How to Pick a Project!
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