CS 4644 / 7643-A: LECTURE 5 DANFEI XU

Topics:

- Backpropagation / Automatic Differentiation
- Neural Networks
- Jacobians

PS1/HW1 due Sep 19th

- Resources:
 - These lectures
 - Matrix calculus for deep learning
 - Gradients notes and MLP/ReLU Jacobian notes.
 - Assignment (@41) and matrix calculus (@46)

Project:

- Teaming thread on piazza
- Proposal due Sep 27th
- Release project registration form soon

Recap: Computation Graph

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any directed acyclic graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

$$\frac{\partial L}{\partial w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w}$$

This time: Chain rule and Backpropagation!

A computation node

Backpropagation: a simple example

$$f(x,y,z) = (x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Gradients add at branches

Duality in Fprop and Bprop

Note that we must store the **intermediate outputs of all layers!**

This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

So far:

- Linear classifiers: a basic model
- Loss functions: measures performance of a model
- Backpropagation: an algorithm to calculate gradients of loss w.r.t. arbitrary differentiable function
- Gradient Descent: an iterative algorithm to perform gradient-based optimization

Next:

- What are neural networks?
- How do we run backpropagation on neural nets?

Neural Network

This image is CC0 1.0 public domain

Deep Representation Learning

Want: a function that transforms complex raw data space into a linearly-separable space.

The function needs to be non-linear!

https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective

Neural networks: the original linear classifier

(**Before**) Linear score function:
$$f = Wx$$

$$x \in \mathbb{R}^D, W \in \mathbb{R}^{C \times D}$$

Neural networks: 2 layers

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: also called fully connected network

(**Before**) Linear score function: f = Wx (**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

"Neural Network" is a very broad term; these are more accurately called "fully-connected networks" or sometimes "multi-layer perceptrons" (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: 3 layers

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$ or 3-layer Neural Network

$$f=W_3\max(0,W_2\max(0,W_1x))$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H_1 \times D}, W_2 \in \mathbb{R}^{H_2 \times H_1}, W_3 \in \mathbb{R}^{C \times H_2}$$

(In practice we will usually add a learnable bias at each layer as well)

Neural networks: hierarchical computation

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

$$f = W_2 \max(0, W_1 x)$$

$$x \in \mathbb{R}^D, W_1 \in \mathbb{R}^{H \times D}, W_2 \in \mathbb{R}^{C \times H}$$

Neural networks: why is max operator important?

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$

Neural networks: why is max operator important?

(**Before**) Linear score function: f=Wx

(**Now**) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

The function max(0, z) is called the **activation function**.

Q: What if we try to build a neural network without one?

$$f = W_2 W_1 x$$
 $W_3 = W_2 W_1 \in \mathbb{R}^{C \times H}, f = W_3 x$

A: We end up with a linear classifier again! (Non-linear) activation function allows us to build non-linear functions / neural networks

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

ReLU is a good default choice for most problems

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Why are they called Neural Networks anyways?

This image by Fotis Bobolas is licensed under CC-BY 2.0

Impulses carried toward cell body dendrite presynaptic terminal terminal Impulses carried away from cell body

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

Neurons in a neural network: Organized into regular layers for computational efficiency

Biological Neurons: Complex connectivity patterns

This image is CC0 Public Domain

But neural networks with random connections can work too!

Xie et al, "Exploring Randomly Wired Neural Networks for Image Recognition", arXiv 2019

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system

[Dendritic Computation. London and Hausser]

Neural networks: Architectures

Example feed-forward computation of a neural network

hidden layer 1 hidden layer 2

```
# forward-pass of a 3-layer neural network: f = lambda \ x: \ 1.0/(1.0 + np.exp(-x)) \ \# \ activation \ function \ (use \ sigmoid) \\ x = np.random.randn(3, 1) \ \# \ random \ input \ vector \ of \ three \ numbers \ (3x1) \\ h1 = f(np.dot(W1, x) + b1) \ \# \ calculate \ first \ hidden \ layer \ activations \ (4x1) \\ h2 = f(np.dot(W2, h1) + b2) \ \# \ calculate \ second \ hidden \ layer \ activations \ (4x1) \\ out = np.dot(W3, h2) + b3 \ \# \ output \ neuron \ (1x1)
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
 7
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
 9
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad_y_pred = 2.0 * (y_pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 = 1e-4 * qrad w2
```

```
import numpy as np
    from numpy.random import randn
 3
    N, D_in, H, D_out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
 6
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 = 1e-4 * qrad w2
```

Define the network

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
 8
    for t in range(2000):
 9
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y_pred - y).sum()
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 = 1e-4 * qrad w2
```

Define the network

Forward pass

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
17
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
18
      w1 -= 1e-4 * grad w1
19
20
      w2 = 1e-4 * qrad w2
```

Define the network

Forward pass

Calculate the analytical gradients

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
      grad y pred = 2.0 * (y pred - y)
14
      grad_w2 = h.T.dot(grad_y_pred)
15
      grad h = grad y pred.dot(w2.T)
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))
17
18
19
      w1 -= 1e-4 * grad w1
20
      w2 = 1e-4 * grad_w2
```

Define the network

Forward pass

Calculate the analytical gradients

Gradient descent

matrix

```
import numpy as np
    from numpy.random import randn
 3
    N, D in, H, D out = 64, 1000, 100, 10
    x, y = randn(N, D_in), randn(N, D_out)
    w1, w2 = randn(D in, H), randn(H, D out)
    for t in range(2000):
      h = 1 / (1 + np.exp(-x.dot(w1)))
10
      y_pred = h.dot(w2)
11
      loss = np.square(y pred - y).sum()
      print(t, loss)
12
13
14
      grad_y_pred = 2.0 * (y_pred - y)
      grad_w2 = h.T.dot(grad_y_pred) <--</pre>
15
      grad h = grad y pred.dot(w2.T) <
16
      grad_w1 = x.T.dot(grad_h * h * (1 - h))^r
17
18
      w1 -= 1e-4 * grad w1
19
20
      w2 -= 1e-4 * qrad w2
```

Calculate the analytical gradients How?

Next: Vector Calculus!

How do we do backpropagation with neural nets?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of x, if it changes by a small amount, how much will y change?

Recap: Vector derivatives

Scalar to Scalar

$$x \in \mathbb{R}, y \in \mathbb{R}$$

Regular derivative:

$$\frac{\partial y}{\partial x} \in \mathbb{R}$$

If x changes by a small amount, how much will y change?

Vector to Scalar

$$x \in \mathbb{R}^N, y \in \mathbb{R}$$

Derivative is **Gradient**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n}$$

For each element of x, if it changes by a small amount, how much will y change?

Vector to Vector

$$x \in \mathbb{R}^N, y \in \mathbb{R}^M$$

Derivative is **Jacobian**:

$$\frac{\partial y}{\partial x} \in \mathbb{R}^N \quad \left(\frac{\partial y}{\partial x}\right)_n = \frac{\partial y}{\partial x_n} \quad \frac{\partial y}{\partial x} \in \mathbb{R}^{N \times M} \quad \left(\frac{\partial y}{\partial x}\right)_{n,m} = \frac{\partial y_m}{\partial x_n}$$

For each element of x, if it changes by a small amount, how much will each element of y change?

Gradients loss of wrt a variable have same dims as the original variable

For element-wise ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use Hadamard (element-wise) multiplication

For element-wise ops, jacobian is sparse: off-diagonal entries always zero! Never explicitly form Jacobian -- instead use Hadamard (element-wise) multiplication

Loss L still a scalar!

dL/dx always has the same shape as x!

 $[D_7 \times M_7]$

"Upstream gradient"
For each element of z, how much does it influence L?

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Jacobians:

 $dy/dx: [(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

What does the jacobian matrix look like?

y: [N×M]

[13 9 -2 -6]

[52171]

dL/dy: [N×M]

[23-39]

[-8 1 4 6]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Jacobians:

dy/dx: $[(N\times D)\times (N\times M)]$ dy/dw: $[(D\times M)\times (N\times M)]$

For a neural net with N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

y: [N×M]

2 1 3 2]

[3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

y: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

[2 1 3 2] [3 2 1 -2]

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \underbrace{\frac{\partial y_{n,m}}{\partial x_{n,d}}}_{\text{Upstream gradient gradient}} \underbrace{\frac{\partial y_{n,m}}{\partial x_{n,d}}}_{\text{gradient}}$$

[3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: How much does $x_{n,d}$ affect $y_{n,m}$?

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

dL/dy: [N×M] [2 3 -3 9]

[3 2 1 -2]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}}$$

 $w_{d,m}$ dL/dy: [N×M] [2 3 - 3 9] Q: How much [-8 1 4 6]

does $x_{n,d}$ affect $y_{n,m}$?

$$\frac{\partial y_{n,m}}{\partial x_{n,d}} = w_{d,m}$$

3 2 1 -21

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

Q: What parts of y are affected by one element of x?

A: $x_{n,d}$ affects the whole row $y_{n,\cdot}$

Q: How much does $x_{n,d}$ affect $y_{n,m}$?
A: $w_{d,m}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m} = \frac{\partial L}{\partial y_{n}} w_{d}^{T}$$

Just a dot product!

$[N\times D]$ $[N\times M]$ $[M\times D]$

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

A:
$$x_{n,d}$$
 affects the whole row $y_{n,\cdot}$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{n,d} \frac{\partial L}{\partial x_{n,d}} = \sum_{n,d}$$

Q: How much does
$$x_{n,d}$$

affect $y_{n,m}$?

A:
$$w_{d,m}$$

$$\frac{\partial L}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} \frac{\partial y_{n,m}}{\partial x_{n,d}} = \sum_{m} \frac{\partial L}{\partial y_{n,m}} w_{d,m} = \frac{\partial L}{\partial y_{n}} w_{d}^{T}$$

Just a matrix multiplication No jacobian matrix needed! dL/dy: [N×M]

Matrix Multiply

$$y_{n,m} = \sum_{d} x_{n,d} w_{d,m}$$

By similar logic:

3 2 1 -21

$$\frac{\partial L}{\partial x} = \left(\frac{\partial L}{\partial y}\right) w^T$$

$$\frac{\partial L}{\partial w} = x^T \left(\frac{\partial L}{\partial y} \right)$$

For a neural net layer with N=64, D=M=4096
The larges matrix (W) takes up to 0.13 GB memory

Summary:

- Review backpropagation
- Neural networks, activation functions
- Neurons as biological inspirations to DNNs
- Vector Calculus
- Backpropagation through vectors / matrices

Next Time: How to Pick a Project!