
Machine Learning Applications

CS 4644 / 7643-A: LECTURE 5
DANFEI XU

Topics:
• Backpropagation / Automatic Differentiation
• Neural Networks
• Jacobians

Administrivia

• PS1/HW1 due Sep 19th
• Resources:

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment (@41) and matrix calculus (@46)

• Project:
• Teaming thread on piazza
• Proposal due Sep 27th

• Release project registration form soon

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://piazza.com/class/ky0k0ha5vgy1mk?cid=41
https://piazza.com/class/ky0k0ha5vgy1mk?cid=46

To develop a general algorithm for this,
we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations for
gradient descent

A training algorithm will then process
this graph, one module at a time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Recap: Computation Graph

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 4

Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

− 𝐥𝐨𝐠
𝟏

𝟏 + 𝒆!𝒘⋅𝒙

Decomposing a Function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

This time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆!𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

7

f

Slide credit: Stanford CS231n Instructors

A computation node

8

f

“local gradient”

Slide credit: Stanford CS231n Instructors

9

f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors

10

f

“local gradient”

“Upstream
gradient”

Slide credit: Stanford CS231n Instructors

11

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors

12

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors

13

f

“local gradient”

“Upstream
gradient”

“Downstream
gradients”

Slide credit: Stanford CS231n Instructors

14

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 17

+

+

FPROP BPROP

SU
M

CO
PY

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞)

Note that we must store the intermediate outputs of all layers!
⬣ This is because we will need them to compute the gradients (the gradient

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

𝜕𝐿
𝜕𝑞 =

𝜕𝑣
𝜕𝑞
𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤"

=
𝜕𝑣
𝜕𝑤"

𝜕𝐿
𝜕𝑣

𝜕𝐿
𝜕𝑤#

𝜕𝐿
𝜕𝑣

𝑞 = 𝑓!(𝑥)𝑥 𝑣 = 𝑓"(𝑞) 𝐿 = 𝑓#(𝑣)

𝜕𝐿
𝜕𝑤#

=
𝜕𝑣
𝜕𝑤#

𝜕𝐿
𝜕𝑞

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

𝜕𝐿
𝜕𝑤"

𝜕𝐿
𝜕𝑤!

𝜕𝐿
𝜕𝑤#

Gradient Descent!

So far:
• Linear classifiers: a basic model
• Loss functions: measures performance of a model
• Backpropagation: an algorithm to calculate gradients of

loss w.r.t. arbitrary differentiable function
• Gradient Descent: an iterative algorithm to perform

gradient-based optimization

Next:
• What are neural networks?
• How do we run backpropagation on neural nets?

Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear
classifiers

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective

Input

Sigmoid

FC
Tanh

Tanh

FC

Deep Representation Learning

Want: a function that transforms
complex raw data space into a
linearly-separable space.

The function needs to be non-linear!

28

Neural networks: the original linear classifier

(Before) Linear score function:

Slide credit: Stanford CS231n Instructors

29

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: 2 layers

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

30

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: also called fully connected
network

(In practice we will usually add a learnable bias at each layer as well)

“Neural Network” is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

Slide credit: Stanford CS231n Instructors

31

Neural networks: 3 layers

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors

32

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: hierarchical computation

x hW1 sW2

3072 100 10

Slide credit: Stanford CS231n Instructors

The function is called the activation function.
Q: What if we try to build a neural network without one?

33

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

Slide credit: Stanford CS231n Instructors

The function is called the activation function.
Q: What if we try to build a neural network without one?

34

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: why is max operator important?

A: We end up with a linear classifier again!
(Non-linear) activation function allows us to build non-linear
functions / neural networks

Slide credit: Stanford CS231n Instructors

35

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions

Slide credit: Stanford CS231n Instructors

36

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Activation functions ReLU is a good default
choice for most problems

Slide credit: Stanford CS231n Instructors

37
This image by Fotis Bobolas is

licensed under CC-BY 2.0

Slide credit: Stanford CS231n Instructors

Why are they called Neural Networks anyways?

https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

38

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

39

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

40

sigmoid activation function

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

4141

Impulses carried toward cell body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell
body

axon

presynaptic
terminal

Slide credit: Stanford CS231n Instructors

https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

This image is CC0 Public Domain

Biological Neurons:
Complex connectivity patterns

Neurons in a neural network:
Organized into regular layers for
computational efficiency

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

This image is CC0 Public Domain

Biological Neurons:
Complex connectivity patterns

But neural networks with random
connections can work too!

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

Slide credit: Stanford CS231n Instructors

https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

44

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical

system

[Dendritic Computation. London and Hausser]

Be very careful with your brain analogies!

Slide credit: Stanford CS231n Instructors

45

“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Neural networks: Architectures

Slide credit: Stanford CS231n Instructors

46

Example feed-forward computation of a neural network

Slide credit: Stanford CS231n Instructors

47

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Slide credit: Stanford CS231n Instructors

48

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Slide credit: Stanford CS231n Instructors

49

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Slide credit: Stanford CS231n Instructors

50

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors

51

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Define the network

Gradient descent

Forward pass

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors

52

Full implementation of training a 2-layer Neural Network needs ~20 lines:

Calculate the analytical gradients

Slide credit: Stanford CS231n Instructors

How?
matrix

53

Next: Vector Calculus!

Slide credit: Stanford CS231n Instructors

How do we do backpropagation with neural nets?

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Slide credit: Stanford CS231n Instructors

55

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

For each element of x, if it
changes by a small amount,
how much will y change?

Slide credit: Stanford CS231n Instructors

56

Recap: Vector derivatives
Scalar to Scalar

Regular derivative:

If x changes by a
small amount, how
much will y change?

Vector to Scalar

Derivative is Gradient:

Vector to Vector

Derivative is Jacobian:

For each element of x, if it changes
by a small amount, how much will
each element of y change?

Slide credit: Stanford CS231n Instructors

For each element of x, if it
changes by a small amount,
how much will y change?

57

f

Backprop with Vectors

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors

58

f

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors

59

f

“Upstream gradient”

Backprop with Vectors

Dx

Dy

Dz

Loss L still a scalar!

Slide credit: Stanford CS231n Instructors

What’s the shape of $%
$&

?

60

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

61

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

62

f

“local
gradients”

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

63

f

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Dx

Dy

Dz

Dz

Loss L still a scalar!

[Dy x Dz]

[Dx x Dz]

Jacobian
matrices

For each element of z, how
much does it influence L?

Matrix-vector
multiply

Backprop with Vectors

Slide credit: Stanford CS231n Instructors

64

f

“Upstream gradient”

Dx

Dy

Dz

Dz

Loss L still a scalar!

For each element of z, how
much does it influence L?

Dy

Dx

Gradients loss of wrt a variable have same dims as the original variable

Slide credit: Stanford CS231n Instructors

“Downstream
gradients”

65

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

Slide credit: Stanford CS231n Instructors

66

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Upstream
gradient

Slide credit: Stanford CS231n Instructors

What does $&
$'

look like?

67

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

Jacobian dz/dx
[1 0 0 0]
[0 0 0 0]
[0 0 1 0]
[0 0 0 0]

Upstream
gradient

Slide credit: Stanford CS231n Instructors

68

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

Slide credit: Stanford CS231n Instructors

69

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

4D dL/dx:
[4]
[0]
[5]
[0]

Slide credit: Stanford CS231n Instructors

70

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]
[1 0 0 0] [4]
[0 0 0 0] [-1]
[0 0 1 0] [5]
[0 0 0 0] [9]

Upstream
gradient

For element-wise
ops, jacobian is
sparse: off-diagonal
entries always zero!
Never explicitly
form Jacobian --
instead use
Hadamard (element-
wise) multiplication

4D dL/dx:
[4]
[0]
[5]
[0]

Slide credit: Stanford CS231n Instructors

71

f(x) = max(0,x)
(elementwise)

4D input x:
[1]
[-2]
[3]
[-1]

Backprop with Vectors
4D output z:

[1]
[0]
[3]
[0]

4D dL/dz:
[4]
[-1]
[5]
[9]

[dz/dx] [dL/dz]4D dL/dx:
[4]
[0]
[5]
[0]

Upstream
gradient

For element-wise
ops, jacobian is
sparse: off-diagonal
entries always zero!
Never explicitly
form Jacobian --
instead use
Hadamard (element-
wise) multiplication z

Slide credit: Stanford CS231n Instructors

72

f

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

[Dy×My]

[Dz×Mz]

dL/dx always has the
same shape as x!

Slide credit: Stanford CS231n Instructors

73

f

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Slide credit: Stanford CS231n Instructors

74

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

Jacobian
matrices

For each element of z, how
much does it influence L?

For each element of y, how much
does it influence each element of z?

[Dy×My]

[Dz×Mz]

[Dz×Mz]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Slide credit: Stanford CS231n Instructors

75

“local
gradients”

“Upstream gradient”

“Downstream
gradients”

Backprop with Matrices (or Tensors)

[Dx×Mx]

Loss L still a scalar!

[(Dx×Mx)×(Dz×Mz)]

Jacobian
matrices

For each element of z, how
much does it influence L?Flatten the two matrices -> vector-

vector gradients -> jacobian matrices!

[Dy×My]

[Dz×Mz]

[Dz×Mz]
[(Dy×My)×(Dz×Mz)]

[Dx×Mx]

[Dy×My]

dL/dx always has the
same shape as x!

Slide credit: Stanford CS231n Instructors

76

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

Slide credit: Stanford CS231n Instructors

77

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

What does the jacobian matrix look like?

Slide credit: Stanford CS231n Instructors

78

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Jacobians:

dy/dx: [(N×D)×(N×M)]
dy/dw: [(D×M)×(N×M)]

For a neural net with
N=64, D=M=4096

Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!

Slide credit: Stanford CS231n Instructors

79

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?

Slide credit: Stanford CS231n Instructors

* =

𝑥 𝑤 𝑦

80

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Slide credit: Stanford CS231n Instructors

Recall the branching
gradient rule!

* =

𝑥 𝑤 𝑦

81

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Slide credit: Stanford CS231n Instructors

Upstream
gradient

local
gradient

82

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?

Slide credit: Stanford CS231n Instructors

83

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?

Slide credit: Stanford CS231n Instructors

84

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:

Slide credit: Stanford CS231n Instructors

Just a dot product!

85

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]Q: What parts of y

are affected by one
element of x?
A: affects the
whole row

Q: How much
does
affect ?
A:

[N×D] [N×M] [M×D]

Slide credit: Stanford CS231n Instructors

Just a matrix multiplication
No jacobian matrix needed!

86

Backprop with Matrices
x: [N×D]

[2 1 -3]
[-3 4 2]
w: [D×M]

[3 2 1 -1]
[2 1 3 2]
[3 2 1 -2]

Matrix Multiply

y: [N×M]
[13 9 -2 -6]
[5 2 17 1]

dL/dy: [N×M]
[2 3 -3 9]
[-8 1 4 6]

[N×D] [N×M] [M×D] [D×M] [D×N] [N×M]

By similar logic:

Slide credit: Stanford CS231n Instructors

For a neural net layer with
N=64, D=M=4096

The larges matrix (𝑊) takes
up to 0.13 GB memory

Summary:
• Review backpropagation
• Neural networks, activation functions
• Neurons as biological inspirations to DNNs
• Vector Calculus
• Backpropagation through vectors / matrices

Next Time: How to Pick a Project!

88

