CS 4644 / 7643-A: LECTURE 5
DANFEI XU

Topics:
* Backpropagation / Automatic Differentiation
* Neural Networks

 Jacobians



 PS1/HW1 due Sep 19th

* Resources:
* These lectures
 Matrix calculus for deep learning

* Gradients notes and MLP/RelLU Jacobian notes.
* Assignment (@41) and matrix calculus (@46)

* Project:
 Teaming thread on piazza
* Proposal due Sep 27t
* Release project registration form soon


https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
https://piazza.com/class/ky0k0ha5vgy1mk?cid=41
https://piazza.com/class/ky0k0ha5vgy1mk?cid=46

Recap: Computation Graph

To develop a general algorithm for this,
we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations for
gradient descent

A training algorithm will then process
this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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Directed Acyclic Graphs (DAGs)
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Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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This time: Chain rule and Backpropagation!

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun



A computation node
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“local gradient”
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Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

Pess of _  of - \ Chain rule:
g — * 5z Of _ Of aq
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Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher
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Gradients add at branches
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Duality in Fprop and Bprop
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Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |



Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x) v = f,(q)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |



Step 1: Compute Loss on Mini-Batch: Forward Pass

q = f1(x) v = f2(q) L=f3(v)

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

q = f1(x) v = f2(q) L=f3(v)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training Gegrala |



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

dL
ow,

Gradient Descent!

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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So far:
Linear classifiers: a basic model
Loss functions: measures performance of a model

Backpropagation: an algorithm to calculate gradients of
loss w.r.t. arbitrary differentiable function

Gradient Descent: an iterative algorithm to perform
gradient-based optimization

Next:
What are neural networks?
How do we run backpropagation on neural nets?



Neural Network
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Linear
classifiers


http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Deep Representation Learning

Want: a function that transforms
complex raw data space into a
linearly-separable space.

The function needs to be non-linear!

Sigmoid

| |
| Tanh |
I FC |
| Tanh |
I |
| |

FC
Input

https://khalidsaifullaah.github.io/neural-networks-from-linear-algebraic-perspective



Neural networks: the original linear classifier

(Before) Linear score function: f = Wz

r e RP. W e ROXP

Slide credit: Stanford CS231n Instructors



Neural networks: 2 layers

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

r e RP W, e REXP W, e RO*H

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors



Neural networks: also called fully connected
network

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

r e RP W, e REXP W, e RO*H

“Neural Network™ is a very broad term; these are more accurately called
“fully-connected networks” or sometimes “multi-layer perceptrons” (MLP)

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors



Neural networks: 3 layers

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)
or 3-layer Neural Network

f = W3 max(O, W maX(07 Wlx))

r e RP. W, e REXP W, ¢ RH2XH1 17, ¢ ROXH2

(In practice we will usually add a learnable bias at each layer as well)

Slide credit: Stanford CS231n Instructors



Neural networks: hierarchical computation
(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network  f = W3 max(0, Wiz)

X | W1 h @ W2 S

3072 100 10

r e RP W, e REXP W, e RO*H

Slide credit: Stanford CS231n Instructors



Neural networks: why is max operator important?
(Before) Linear score function: f = Wx

(Now) 2-layer Neural Network

f=Ws

max|(0,

Wiz)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

f — WQWl.I'

Slide credit: Stanford CS231n Instructors



Neural networks: why is max operator important?
(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network

f=Ws

max|(0,

Wiz)

The function max(0, z) is called the activation function.
Q: What if we try to build a neural network without one?

J=WaWix Wy = WoW, € ROH f = Wy

A: We end up with a linear classifier again!

(Non-linear) activation function allows us to build non-linear

functions / neural networks

Slide credit: Stanford CS231n Instructors



Activation functions

S|gmo|d Leaky RelL U )
o(z) = i max(0.1z, x)
53 0 To Br—t 10

tanh

Maxout
tanh(x)

max(w{ T + by, wd x + by)

RelLU ELU

max(0,2) ey 220

Slide credit: Stanford CS231n Instructors



. . . ReLU is a good default
Activation functions choice for most problems

Sigmoid Leaky RelLU )
o(z) = i max(0.1z, x)
0 Br—t 10

-10

tanh V Maxout

tanh(a:) ﬂ . max(w{ T + by, wd x + by)

RelLU ELU

max(0,2) ey 220

Slide credit: Stanford CS231n Instructors



Why are they called Neural Networks anyways?

Slide credit: Stanford CS231n Instructors


https://www.flickr.com/photos/fbobolas/3822222947
https://www.flickr.com/photos/fbobolas
https://creativecommons.org/licenses/by/2.0/

Impulses carried toward cell body

\ dendrite

presynaptic
terminal

cell ———
body

Impulses carried away
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

Slide credit: Stanford CS231n Instructors


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body
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This image by Felipe Perucho
is licensed under CC-BY 3.0
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Slide credit: Stanford CS231n Instructors


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/
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Slide credit: Stanford CS231n Instructors


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Impulses carried toward cell body
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from cell body
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This image by Felipe Perucho
is licensed under CC-BY 3.0

f (Z w;x; + b)

cell body
- output axon
def neuron_tick(inputs):

Z w;x; + b
7
: ' o activation
" assume inputs and weights are 1-D numpy arrays and bias is a number """ f tion
cell_body sum = np.sum(inputs * self.weights) + self.bias Wo L9 e
firing rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation func
return firing rate

w11

class Neuron:

Y

Slide credit: Stanford CS231n Instructors


https://thenounproject.com/term/neuron/214105/
https://creativecommons.org/licenses/by/3.0/us/

Biological Neurons: Neurons in a neural network:
Organized into regular layers for
computational efficiency
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Slide credit: Stanford CS231n Instructors


https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Biological Neurons: But neural networks with random
connections can work too!

!‘-"*‘»“:fq

8

Xie et al, “Exploring Randomly Wired Neural Networks for Image Recognition”, arXiv 2019

Slide credit: Stanford CS231n Instructors


https://www.maxpixel.net/Brain-Structure-Neurons-Brain-Network-Brain-Cells-582052
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Be very careful with your brain analogies!

Biological Neurons:
e Many different types
e Dendrites can perform complex non-linear computations
e Synapses are not a single weight but a complex non-linear dynamical
system

[Dendritic Computation. London and Hausser]

Slide credit: Stanford CS231n Instructors



Neural networks: Architectures

output layer
input layer
hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”
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“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

Slide credit: Stanford CS231n Instructors



Example feed-forward computation of a neural network
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forward-pass of a 3-layer neural network:

lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid)
np.random.randn(3, 1) # random input vector of three numbers (3xl)

1 = f(np.dot(Wl, x) + bl) # calculate first hidden layer activations (4xl)

2 = f(np.dot(W2, hl) + b2) # calculate second hidden layer activations (4x1)

out = np.dot(W3, h2) + b3 # output neuron (1x1)

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out) Define the network
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2) Forward pass
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)

grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h x (1 - h))

Calculate the analytical gradients

wl —= le-4 * grad_wl

w2 —= le-4 x grad_wz Gradlent descent

Slide credit: Stanford CS231n Instructors



Full implementation of training a 2-layer Neural Network needs ~20 lines:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
X, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):
h=1/ (1+ np.exp(-x.dot(wl)))
y_pred = h.dot(w2)
loss = np.square(y_pred — y).sum()
print(t, loss)

grad_y_pred = 2.0 x (y_pred - y) ‘\\\\\

grad_w2 = h.T.dot(grad_y_pred) 4\7 matrix Calculate the analytical gradients
grad_h = grad_y_pred.dot(w2.T)

gm¢y1=xJﬂmﬂgm¢h*r1*(1—hH‘ How?

wl —= le-4 * grad_wl
w2 —= le-4 x grad_w2

Slide credit: Stanford CS231n Instructors



Next: Vector Calculus!

(DOAN
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o
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tput layer

hidden layer 1 hidden layer 2
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input layer

How do we do backpropagation with neural nets?

Slide credit: Stanford CS231n Instructors



Recap: Vector derivatives

Scalar to Scalar
reR,yeR

Regular derivative:

dy
-~ €R

If x changes by a
small amount, how
much will y change?

o—

Slide credit: Stanford CS231n Instructors



Recap: Vector derivatives

Scalar to Scalar
reR,yeR
Regular derivative:

dy
oz
If x changes by a

small amount, how
much will y change?

cR

oO—

oo €R (33?),” Oz,

Vector to Scalar
zeRN yeR

Derivative is Gradient;

For each element of x, if it
changes by a small amount,
how much will y change?

™~

Slide credit: Stanford CS231n Instructors



Recap: Vector derivatives

Scalar to Scalar Vector to Scalar Vector to Vector
$ER,y€R QjERN’yER CCERN,yERA[
Regular derivative: Derivative is Gradient: Derivative is Jacobian:

(9y 3y N <8y> oy 8y N (8y> . Ym
- — R X M — =
8(1; = R aflj R dx " dxy, 8’,13 < O n,m Oy,
If x changes by a For each element of x, ifit  For each element of x, if it changes
small amount, how changes by a small amount, by a small amount, how much will
much will y change?  how much will y change? each element of y change?

o~ é

=

Slide credit: Stanford CS231n Instructors




Backprop with Vectors

T Loss L still a scalar!

\
y/’

=—h

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

D
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\
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Loss L still a scalar!

Z| D,

Vi

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

D

L

\
/

Loss L still a scalar!

Z| D,

Vi
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oL
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“Upstream gradient”

What's the shape of Z—i?

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

D

L

\
/

Loss L still a scalar!

Z| D,
oL
0z DZ

“Upstream gradient”

For each element of z, how
much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

Loss L still a scalar!

D, [Z “local
'\ gradients”
Z| D,
/ | @
Dy Y / 92| Dz

“Upstream gradient”

For each element of z, how
much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

D

L

—_
_——

“local

Loss L still a scalar!

gradients”

[Dx X Dz] Z DZ

D, x D,] oLl
Jacobian 0z z

matrices

“Upstream gradient”

For each element of z, how
much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

Loss L still a scalar!

D, [Z “local
\ oracents
3@ D, X D] 71D,
Or 5 ox
‘Downstream Matrix-vector'g f :
onts” 9z :
gradients ultiply =D D
/ [Dy x D] OL|
Dy y 37 8L 0z v4

Jacobian
— 2 matrices “Upstream gradient”
Y For each element of z, how

much does it influence L?

Slide credit: Stanford CS231n Instructors



Gradients loss of wrt a variable have same dims as the original variable

D

L

D,

.\

“Downstream
gradients”

D

y

=

)

Loss L still a scalar!

Z| D,
oL
0z DZ

“Upstream gradient”
For each element of z, how

much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
1] —
(2 ] ——
(3] ——
1] —

f(x) = max(0,x)
(elementwise)

4D output z:
— [ 1]
— [ 0 ]
— [ 3]
—— [ 0]

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
1] —
2 ] ——
(3] ——
1] ——

f(x) = max(0,x)
(elementwise)

What does % look like?

4D output z:
— [ 1]
— [ 3 |
— [ 0]

4D dL/dz:

[ 4 ] —
B D —
[ O |
[ 9 |+

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
1] —
2 ] ——
(3] ——
1] ——

f(x) = max(0,x)
(elementwise)

Jacobian dz/dx
[1000]
[0000]
(0010]
[0000]

4D output z:
— [ 1]

0]
— [ 3]
— [ 0]

4D dL/dz:
4]
B B R
5] ——
91—

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
1] —
(2 ] ——
(3] ——
1] —

f(x) = max(0,x)
(elementwise)

dz/dx] [dL/dz]
[ 1 1[4 ]
(0000][-1]
10][9 ]
O0][9 ]

4D output z:
— [ 1]
— [ 0]
— [ 3]
—— [ 0]

4D dL/dz:
4]
B B R
5] ——
91—

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
1] —
(2 ] ——
(3] ——
1] ——

4D dL/dx:

(4] —
0] — 1
o] — 1
0] ~— 1

f(x) = max(0,x)
(elementwise)

dz/dx] [dL/dZ]
[ 1 1[4 ]
000][-1
10][9 ]
O0][9 ]

4D output z:
— [ 1]
— [ 0]
— [ 3]
—— [ 0]

4D dL/dz:
4]
B B R
5] ——
91—

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

For element-wise
ops, jacobian is
sparse: off-diagonal
entries always zero!
Never explicitly
form Jacobian --
instead use
Hadamard (element-
wise) multiplication

4D input x:
1] —
(2 ] ——
(3] ——
1] ——

4D dL/dx:

(4] —
0] — 1
o] — 1
0] ~— 1

f(x) = max(0,x)
(elementwise)

dz/dx] [dL/dZ]
[ 1 1[4 ]
000][-1

C0Tts |

1[5
0][9 ]

4D output z:
— [ 1]
— [ 0]
— [ 3]
—— [ 0]

4D dL/dz:
4]
B B R
5] ——
91—

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Vectors

4D input x:
L
01—,
For element-wise : :
ETE 3] ——
ops, jacobian is - -
sparse: off-diagonal [ 1] ———
entries always zero!
Never explicitly .
form Jacobian -- 4D _d L_/dX.
instead use (4]«
Hadamard (element- 0 1 <«
wise) multiplication -
51«
01«

f(x) = max(0,x)
(elementwise)

[dz/dx] [dL/dz]

oz

(GL)' if x;, >0 <«

().~

4D output z:
— [ 1]
— [ 0 ]
— [ 3]
—— [ 0]

4D dL/dz:

4]

B D —
otherwise « [ 5 | +——
< [9]+—

Upstream
gradient

Slide credit: Stanford CS231n Instructors



Backprop with Matrices (or Tensors)

[DyxM,]

[DyxM, ]

Loss L still a scalar!

Z

f

Jacobian
matrices

»
>

dL/dx always has the
same shape as x!

[D,xM,]

Slide credit: Stanford CS231n Instructors



Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[D xMx] same shape as x!
[DxM,]
;’Z Z Z| [DxM,]
“Downstream = c?x f ]
gradients” ) oL
DM [J—— 5z | (DMl

0% @ Jacopian
D, xM y 0 matrices “Upstream gradient”
[ y y] For each element of z, how

much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DyxM;] ‘local same shape as x!
gradients”
[DyxM,]
élr Z| [D,xM,]
“Downstream c?x 3 "
radients” S )
9 Ay OL

D XM / L [DZXMZ]
DM Y 57 0L Jacobian 0z

/ .
= Ty 0% matrices “Upstream gradient”
[DyxMy] For each element of z, how
For each element of y, how much ’

does it influence each element of z? Much does it influence L?

Slide credit: Stanford CS231n Instructors



Backprop with Matrices (or Tensors) Loss L still a scalar!

dL/dx always has the

[DyxM,] “lg'calt ) same shape as x!
gradients
D, xM
[ X] % (9(92 7)) [(DxxMx)x(szMz)] v [DZX MZ]
z
“Downstream c?x ]
gradients” 9z [(DyxM,)*(D,xM,)] | *

0
[D,*M,] g—— ¥ a—L [D,*M,]

0% @ Jaco!oian
D . xM ; y 0 JELEDe “Upstream gradient”
[ Y y] . For each element of z, how

Flatten the FWO mat'."ces - VeCtOT‘ much does it influence L?
vector gradients -> jacobian matrices!

Slide credit: Stanford CS231n Instructors



Backprop with Matrices

X
Z
X
S,
v

Matrix Multiply

Yn,m — § Ln,dWd,m
d

A

76

Slide credit: Stanford CS231n Instructors



Backprop with Matrices y: [NxM]

13 9 -2 -6]
x: [NxD] > Matrix Multiply — " [5217 1]
[2 1 -3]

[3 4 2] Ynom = Y Tn,dWd.m dL/dy: [NxM]

w: [DxM] __—— g : [2 3-3 9]

[ 32 1-1] Jacobians: [-8 14 6]

[2 13 2] dy/dx: [(NxD)x(NxM)]

[ 32 1-2] dy/dw: [(DxM)x(NxM)]

What does the jacobian matrix look like?

77 Slide credit: Stanford CS231n Instructors



Backprop with Matrices y: [NxM]
13 9 2 6]

x: [NxD] > Matrix Multiply — " [5217 1]
[2 1 -3]
[3 4 2] Ynom = Y Tn,dWd.m dL/dy: [NxM]
w: [DxM] __—— g : [2 3-3 9]
[ 32 1-1] Jacobians: [-8 14 6]
[2 13 2] dy/dx: [(NxD)x(NxM)]
[ 32 1-2] dy/dw: [(DxM)x(NxM)]

For a neural net with
N=64, D=M=4096
Each Jacobian takes 256 GB of memory!
Must exploit its sparsity!
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Backprop with Matrices y: [NxM]

13 9 -2 -6]
x: [NxD] > Matrix Multiply — " [5217 1]
[ 2 1]-3]

[-3 4 2] Yn,m = Z%dwd,m dL/dy: [NxM]

w: [DxM] __—— g : [ 2 3-3 9]

[ 32 1-1] Q: What parts of y [-8 14 6]

[2 1 3 2] are affected by one

[ 3 2 1-2] element of x? I ]

79 Slide credit: Stanford CS231n Instructors



Backprop with Matrices y: [NxM]
M3 9 -2 -6|]
x: [NxD] > Matrix Multiply — " [5217 1]
[ 2 1]-3]
[-3 4 2] Yn,m = an,dwd,m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[ 32 1-1] Q: What parts of y [-8 14 6]
[2 1 3 2] are affected by one
[ 32 1-2] element of x? [ ]
A:[Tn. d |affects the * =
whole row Yn,,.
X w y

oL N Z OL ayn,.m
axn,d 9yn.m axn.d

m

Recall the branching

gradient rule!
80 Slide credit: Stanford CS231n Instructors



Backprop with Matrices

X: [NxD] > Matrix Multiply
[ 2 11]-3]
(32 =3
w:[DxM] !
[ 32 1-1] Q: What parts of y
[2 1 3 2] are affected by one
[ 3 2 1-2] element of x?
A: |7y 4 |affects the
whole row Yn,,.
OL o aL ayn.m
a-fUn.d : ayn.m axn.d
Upstream local
gradient gradient

A

81
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Backprop with Matrices y: [NxM]
13 9 [-2] -6]]

x: [NxD] > Matrix Multiply — " [5217 1]
[ 2[1]-3]
[-3 4 2] Ynm = ) n,dtWim dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[ 3 2 1-1] Q: What parts of y Q: Howmuch [-8 14 6]
[ 2 1 3 2] are affected by one does|Tn.d
[ 3 2 1-2] element of x? affect| Yn,m|?

A: |7y 4 |affects the
whole row Yn,,.

L Z aL 0’%1 m
(?CE',I d Ol/n m O:En d
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Backprop with Matrices y: [NxM]
13 9 [2] -6
x: [NxD] > Matrix Multiply — " [5217 1]
[ 2 1]-3]
[-3 4 2] Ynm = D Tn.dWd,m dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[ 3 2 1-1] Q: What parts of y Q: Howmuch [-8 14 6]
[ 2 1 3 2] are affected by one does|Tn.d
[ 3 2 1-2] element of x? affect| Yn,m|?
A:|Tn 4 |affects the
whole row Yn,,. Ynn = ) TniWim

o Z OOL ayn m DY

= Wd,m
Yn.m O:L n.d ax”’d

03311 d
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Backprop with Matrices y: [NxM]
13 9 [2] -6
x: [NxD] > Matrix Multiply — " [5217 1]
[ 2 [1]-3]
[-3 4 2] Ynm = D Tn.dWam dLidy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[ 3 2 1-1] Q: What parts of y Q: Howmuch [-8 14 6]
[ 2 13] 2] are affected by one does|Tn.d
[ 3 2 1-2] element of x? affect| Yn,m|?
A:|Tn .4 |affects the A: Wy m
whole row Yn,,.
L aL 0"(/,1 m OL aL T
(?.I'n d Z ayn m 033,1 d B ayn m wdm = (9yn Ay, 4

Just a dot product!
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Backprop with Matrices y: [NxM]
13 9 [2] -6
x: [NxD] > Matrix Multiply — " [5217 1]
[ 2 1]-3]
[3 4 2] Ynm = D Tn,dWam dL/dy: [NxM]
w: [DxM] __—— g : [[2 3-3 9]
[ 3 2 1-1] Q: What parts of y Q: Howmuch [-8 14 6]
[ 2 113] 2] are affected by one does|Tn.d
[ 3 2 1-2] element of x? affect| Yn,m|?
_ ~ A:[Tn,d |affects the A:lwg m
[NxD] [NxM] [MxD] \yhole row Yn.- |

0_L: oL T _Z OL aynmz L 9L
01’ Oy 037 n.d ayn m 033 n.d 0yn.m, RN ayn :

Just a matrix multiplication
No jacobian matrix needed!
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Backprop with Matrices

x: [NxD] > Matrix Multiply
[ 21]-3]
[-3 4 2] Yn,m = an,dwd,m
w: [DxM] __— <
[ 3 2 1-1]
[ 2 13| 2] .y -
(32 1-2] By similar logic:
[NxD] [NxM] [MxD] DxM] [DxN] [NXM:

oL _ (0L s
oz \ Jy

oL _ (9L
ow 0y

A
—r— QO

For a neural net layer with
N=64, D=M=4096
The larges matrix (W) takes
up to 0.13 GB memory
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Summary:

Review backpropagation

Neural networks, activation functions
Neurons as biological inspirations to DNNs
Vector Calculus

Backpropagation through vectors / matrices



Next Time: How to Pick a Project!



