
Machine Learning Applications

CS 4644-DL / 7643-A
DANFEI XU
(SLIDE CREDIT: PROF. ZOLT KIRA)

Topics:
• Backpropagation
• Computation Graph and Automatic Differentiation



Performance Measure for Scores

Recap: Multiclass SVM loss

Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 = #
𝒋#𝒚𝒊

$
𝟎
𝒔𝒋

= #
𝒋#𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

− 𝒔𝒚𝒊 + 𝟏
𝐢𝐟 𝒔𝒚𝒊 ≥ 𝒔𝒋 + 𝟏
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

“Hinge Loss”

𝒔𝒚𝒊𝒔𝒋

𝑳𝒊

scores for other classes

margin

score
score for correct class

Loss = 0:

𝟏



Regularization

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Recap: Regularization
Q: How do we pick between W and 2W?
A: Opt for simpler functions to avoid overfit

How? Regularization!



Want to interpret raw classifier scores as probabilities

Softmax
Function𝑝# 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =

𝒆𝒔𝒚𝒊
∑𝒋𝒆𝒔𝒋

How do we optimize the classifier? We maximize the probability of 𝒑#(𝒚𝒊|𝒙𝒊)!

Finding a set of weights 𝜃 that maximizes the 
probability of correct prediction: argmax

!
∏𝑝! 𝑦" 𝑥"

This is equivalent to:

argmax
!

0ln𝑝! 𝑦" 𝑥"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of 
observed data. In this case, the loss function is the 
Negative Log-Likelihood (NLL).

𝐿" = −ln𝑝! 𝑦" 𝑥" = −ln
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Recap: Softmax Classifier and Cross Entropy Loss

2. Information theory view:
Derive NLL from the cross entropy measurement. 
Also known as the cross-entropy loss

Cross Entropy: 𝐻 𝑝, 𝑞 = −0𝒑 𝒙 ln 𝒒(𝒙)

𝑯𝒊 𝒑, 𝒑! = −0
𝒚∈𝒀

𝒑 𝒚 𝒙𝒊 ln 𝒑! 𝒚 𝒙𝒊

= −ln𝒑! 𝒚𝒊 𝒙𝒊

𝑳 =0𝑯𝒊 𝒑, 𝒑! = −0ln𝒑! 𝒚𝒊 𝒙𝒊 ≡ 𝑵𝑳𝑳

Cross Entropy Loss -> NLL 



Cross-Entropy Loss Example

Q: Why softmax?

𝑝# 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Why this?

Use logistic function as example. Same as softmax
but for binary classification

𝜎 𝑥 =
𝑒%

1 + 𝑒%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative 

likelihood)

1. Squash & clip: no loss, 
no learning!



Cross-Entropy Loss Example

Q: Why softmax?

𝑝# 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Why this?

Use logistic function as example. Same as softmax
but for binary classification

𝜎 𝑥 =
𝑒%

1 + 𝑒%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative 

likelihood)

3. Negative likelihood w/
logistic function: saturated loss 
when classifier is very wrong



Cross-Entropy Loss Example

Q: Why softmax?

𝑝# 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Why this?

Use logistic function as example. Same as softmax
but for binary classification

𝜎 𝑥 =
𝑒%

1 + 𝑒%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative 

likelihood)

2. NLL w/ logistic: Strong guidance 
when classifier is wrong

Only saturate at convergence, 
e.g., 𝜎 3 ≈ 0.95



Cross-Entropy Loss Example

Q: Why softmax?

𝑝# 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Why this?

Use logistic function as example. Same as softmax
but for binary classification

𝜎 𝑥 =
𝑒%

1 + 𝑒%

Consider the following three basis for NLL:
1. Squash and clip value to (0, 1]
2. Logistic function
3. Logistic function but no log (just negative 

likelihood)

A: Many ways to get probabilities. Logistic function / 
softmax make the NLL loss behave well for optimization.

2. NLL w/ logistic: Strong guidance 
when classifier is wrong

Only saturate at convergence, 
e.g., 𝜎 3 ≈ 0.95



The Loss Landscape

As weights change, the 
gradients change as well
⬣ This is often somewhat-

smooth locally, so small 
changes in weights produce 
small changes in the loss

We can therefore think about 
iterative algorithms that take 
current values of weights and 
modify them a bit

Recap: gradient-based optimization



Gradient Descent

Recap: The gradient descent algorithm

⬣ 1. Choose a model: 𝒇 𝒙,𝑾 = Wx

⬣ 2. Choose loss function: 𝑳𝒊 = |𝒚 −𝑾𝒙𝒊|𝟐

⬣ 3. Calculate partial derivative for each parameter: 𝝏𝑳
𝝏𝒘𝒊

⬣ 4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳
𝝏𝒘𝒊

⬣ 5. Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

⬣ Repeat 3-5 



The Loss Landscape

Recap: calculating gradients

⬣ We can find the steepest descent direction by 
computing the derivative:

⬣ Gradient is multi-dimensional derivatives
⬣ Steepest descent direction is the negative gradient
⬣ Intuitively: Measures how the function changes as 

the argument a changes by a small step size
⬣ In Machine Learning: Want to know how to minimize 

loss by changing parameters
⬣ Can consider each parameter separately by 

taking partial derivative of loss function with 
respect to that parameter

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative
#/media/File:Tangent_animation.gif

∆𝒙

𝒇$ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)
𝒉



Decomposing a Function 

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Hard to calculate analytical gradients for complex functions! 

𝐬𝐢𝐧(𝒙)
𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑
− 𝐥𝐨𝐠

𝟏
𝟏 + 𝒆!𝒘⋅𝒙

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆L𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



Decomposing a Function 

This time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆L𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



Functions can be made arbitrarily complex (subject to memory and 
computational limits), e.g.:

𝒇 𝒙,𝑾 = 𝝈(𝑾𝟓𝝈(𝑾𝟒𝝈(𝑾𝟑𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )
We can use any type of differentiable function (layer) we want!

Adding Even More Layers

Loss 
FunctionInput

Label



⬣ We are learning complex models with significant amount of 
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight are 
propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 
Function

𝝏𝑳
𝝏𝒘𝒊
?

Label



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

The backpropagation algorithm will 
then process this graph, one module 
at a time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Decomposing a Function 

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆L𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳

This is a computation graph! 

𝜕𝐿
𝜕𝑝

𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

Backpropagation (roughly):
1. Calculate local gradients for each node (e.g., *+

*,
)

2. Trace the computation graph (backward) to calculate the global 
gradients for each node w.r.t. to the loss function.



18
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

1. Calculate local gradients
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example

1. Calculate local gradients
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

𝑓 = 𝑎 + 𝑏
𝜕𝑓
𝜕𝑎 =

𝜕𝑓
𝜕𝑏 = 1



add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

only the path selected by the 
max operator gets the 
upstream gradient



add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝑓 = 𝑎 V 𝑏
𝜕𝑓
𝜕𝑎

= 𝑏
𝜕𝑓
𝜕𝑏

= 𝑎



+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

…

…

… as long as the branches join at some point in the graph

copy

copy



x

𝑓! = 𝑒"

𝑓# = 𝑥#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝐿 = 𝑓! +𝑓#

Claim: EF
EG
= EF

EH(
EH(
EG
+ EF
EH)

EH)
EG

= 1 > 𝑒I + 1 > 2𝑥
= 𝑒I + 2𝑥

Derivation: 𝐿 = 𝑒I + 𝑥J
𝜕𝐿
𝜕𝑞 = 𝑒I + 2𝑥



x

𝑓! = 𝑒"

𝑓# = 𝑥#

+

Upstream gradients add at fork branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

𝐿 = 𝑓! ∗ 𝑓#

Claim: EFEG =
EF
EH(

EH(
EG +

EF
EH)

EH)
EG

= 𝑥J > 𝑒I + 𝑒I > 2𝑥

Derivation: 𝐿 = 𝑒I ∗ 𝑥J
𝜕𝐿
𝜕𝑞 = 𝑒I > 2𝑥 + 𝑒I > 𝑥J = 𝑥J > 𝑒I + 𝑒I > 2𝑥



Duality in F(orward)prop and B(ack)prop

(C) Dhruv Batra 43
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+

FPROP BPROP
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M
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PY



Given this computation graph, the training 
algorithm will:
⬣ Calculate the current model’s outputs 

(called the forward pass)
⬣ Calculate the gradients for each 

module (called the backward pass)
Backward pass is a recursive algorithm that:
⬣ Starts at loss function where we know 

how to calculate the gradients
⬣ Progresses back through the modules
⬣ Ends in the input layer where we do 

not need gradients (no parameters)
This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

𝒉ℓ'𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!
⬣ This is because we will need them to compute the gradients (the gradient 

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!
⬣ This is because we will need them to compute the gradients (the gradient 

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

need this

to compute this



In the backward pass, we seek to 
calculate the gradients of the loss with 
respect to the module’s parameters
⬣ Assume that we have the 

gradient of the loss with respect 
to the module’s outputs (given 
to us by upstream module)

⬣ We will also pass the gradient of 
the loss with respect to the 
module’s inputs
⬣ This is not required for update 

the module’s weights, but passes 
the gradients back to the 
previous module

⬣ Becomes the upstream 
gradient for the previous module

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:
⬣ We can compute local gradients: 

{ 𝝏𝒉ℓ

𝝏𝒉ℓ*𝟏
, 𝝏𝒉

ℓ

𝝏𝑾
}

⬣ We are given: 𝝏𝑳
𝝏𝒉ℓ

⬣ Compute: { 𝝏𝑳
𝝏𝒉ℓ*𝟏,

𝝏𝑳
𝝏𝑾
}

𝝏𝑳
𝝏𝒉ℓL𝟏

𝝏𝑳
𝝏𝒉ℓ

𝝏𝑳
𝝏𝑾



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



Backpropagation does not really spell out how to efficiently 
carry out the necessary computations

But the idea can be applied to any directed acyclic graph 
(DAG)

⬣ Graph represents an ordering constraining which paths 
must be calculated first

Given an ordering, we can then iterate from the last module 
backwards, applying the chain rule

⬣ We will store, for each node, its gradient outputs for 
efficient computation

⬣ We will do this automatically by tracing the entire graph, 
aggregate and assign gradients at each function / 
parameters, from output to input. 

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph
⬣ Input = Data + Parameters
⬣ Output = Loss
⬣ Scheduling = Topological ordering

Auto-Diff
⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



Deep Learning Framework = Differentiable Programming Engine

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)

(C) Dhruv Batra 56
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Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20)) 

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the flyWriting code == building graph

From pytorch.org



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


⬣ Computation graphs are not 
limited to mathematical 
functions!

⬣ Can have control flows (if 
statements, loops) and 
backpropagate through 
algorithms!

⬣ Can be done dynamically so 
that gradients are computed, 
then nodes are added, repeat

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Program complexity

(optimization)



Power of Automatic Differentiation

⬣ Autodiff from scratch: micrograd repo, video tutorial

https://github.com/karpathy/micrograd
https://www.youtube.com/watch?time_continue=3050&v=VMj-3S1tku0&feature=emb_title


Linear 
Algebra 

View: 
Vector and 

Matrix Sizes



Closer Look at a Linear Classifier

Sizes: 𝒄× 𝒅 + 𝟏 𝒅 + 𝟏 ×𝟏

Where c is number of classes
d is dimensionality of input

𝑾

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝒙𝟏
𝒙𝟐
⋮
𝒙𝒎
𝟏

𝒙



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎 𝑻

and matrix 𝑴 ∈ ℝ𝒌×ℓ

⬣ What is the size of 𝝏𝒗
𝝏𝒔

? ℝ𝒎×𝟏 (column vector of size m	)

⬣ What is the size of 𝝏𝒔
𝝏𝒗

? ℝ𝟏×𝒎 (row vector of size m	)

𝝏𝒗𝟏
𝝏𝒔
𝝏𝒗𝟐
𝝏𝒔
⋮

𝝏𝒗𝒎
𝝏𝒔

𝝏𝒔
𝝏𝒗𝟏

𝝏𝒔
𝝏𝒗𝟏

⋯
𝝏𝒔
𝝏𝒗𝒎



Conventions:

⬣ What is the size of 𝝏𝒗
𝟏

𝝏𝒗𝟐
? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row i

Col j
𝝏𝒗𝟏𝟏

𝝏𝒗𝟏𝟐
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒗𝒊𝟏

𝝏𝒗𝒋𝟐
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:

(Note this is slightly different convention than on Wikipedia)

https://en.wikipedia.org/wiki/Matrix_calculus


Dimensionality of Derivatives

Conventions:

⬣ What is the size of 𝝏𝒔
𝝏𝑴

? 
𝝏𝒔

𝝏𝒎[𝟏,𝟏]
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒔

𝝏𝒎[𝒊,𝒋]
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:



Dimensionality of Derivatives

⬣ What is the size of 𝝏𝑳
𝝏𝑾

?

⬣ Remember that loss is a scalar and W is a matrix:
𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝝏𝑳
𝝏𝒘𝟏𝟏

𝝏𝑳
𝝏𝒘𝟏𝟐

⋯
𝝏𝑳

𝝏𝒘𝟏𝒎

𝝏𝑳
𝝏𝒃𝟏

𝝏𝑳
𝝏𝒘𝟐𝟏

⋯ ⋯
𝝏𝑳

𝝏𝒘𝟐𝒎

𝝏𝑳
𝝏𝒃𝟐

⋯ ⋯ ⋯
𝝏𝑳

𝝏𝒘𝟑𝒎

𝝏𝑳
𝝏𝒃𝟑

WJacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)
Examples:
⬣ Each instance is a vector of size m, our batch is of 

size [𝑩×𝒎]
⬣ Each instance is a matrix (e.g. grayscale image) of 

size 𝑾×𝑯, our batch is [𝑩×𝑾×𝑯]
⬣ Each instance is a multi-channel matrix (e.g. color 

image with R,B,G channels) of size 𝑪×𝑾×𝑯, our 
batch is [𝑩×𝑪×𝑾×𝑯]

Jacobians become tensors which is complicated
⬣ Instead, flatten input to a vector and get a vector of 

derivatives!
⬣ This can also be done for partial derivatives 

between two vectors, two matrices, or two tensors

Flatten

𝒙𝟏𝟏
𝒙𝟏𝟐
⋮
𝒙𝟐𝟏
𝒙𝟐𝟐
⋮
𝒙𝒏𝟏
⋮
𝒙𝒏𝒏

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒏
𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒏
⋮ ⋮ ⋱ ⋮
𝒙𝒏𝟏 𝒙𝒏𝟐 ⋯ 𝒙𝒏𝒏


