CS 4644-DL / 7643-A

DANFEI XU
(SLIDE CREDIT: PROF. ZOLT KIRA)

Topics:
* Backpropagation
 Computation Graph and Automatic Differentiation



Recap: Multiclass SVM loss

Loss = 0:
I I margin I

L T
Given an example (x; v; . . >
ple (x; y;) 1 I i1 ! score

where x; !S the wpage and scores for other classes score for correct class
where y; is the (integer) label,

and using the shorthand for the . i
scores vector: s = f(x;, W) Hinge Loss

the SVM loss has the form:

L_z"o ifs, >s;+1
i sj— Sy, +1 otherwise .y Sy

J*Yi S]' 1

= 2 max(0,s; — s, + 1) \ /
J#Yi

i




Recap: Regularization

Q: How do we pick between W and 2W? © Train Data y
A: Opt for simpler functions to avoid overfit () Test vata C

How? Regularization!

Z Li(f(z;, W),y;) + AR(W) . = regularization strength
\N / (hyperparameter)

N

Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data




Recap: Softmax Classifier and Cross Entropy Loss

Want to interpret raw classifier scores as probabilities

es}’i

— v.|X = v.) — Softmax
pe(y - yllx - xl) Z] es]-

Function

Class Probabilities

Cat 3'2 0.87
car | 5.1 |—
frog - 1 " 7 Cat Car :r:g

Raw class scores

How do we optimize the classifier? We maximize the probability of pg(y;i|x;)!

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of
observed data. In this case, the loss function is the
Negative Log-Likelihood (NLL).

Finding a set of weights 6 that maximizes the
probability of correct prediction: argmax [[ pg (y;]x;)
6

This is equivalent to:
argmax Z Inpg (y;x;)
L; = —Inpg(y;lx;) = —ln< )

2. Information theory view:
Derive NLL from the cross entropy measurement.

Also known as the cross-entropy loss

Cross Entropy: H(p,q) = — 2 p(x)In
Cross Entropy Loss -> NLL
Hi(p,p0) == ) pOla) Inp, (7l

yeY
= —Inp,(yilx)

L= Hip,ps) == ) Inp, (i) = NLL



Q: Why softmax? cat | 3.2 Class Probabltes Why this?
car 51 |[— l' eSvi
f -1 '7 Cat Car :rfg Y = i X - i) —
rc)gF{aw class scores p9 ( yl | xl) Z] esj

Use logistic function as example. Same as softmax
but for binary classification

_ e” > — Lix)= ~log{x), x € [0, 1]
a(x) = 1 4+ eX N Lix) = —logaix)
- L(x)= —alx)
Consider the following three basis for NLL.: i
1. Squash and clip value to (0, 1] 27
2. Logistic function 14
3. Log!stlc function but no log (just negative —

likelihood) \¥

_1 4
4 =2 0 2 2

1. Squash & clip: no loss,
no learning!



Q: Why softmax? cat | 3.2 Class Probabltes Why this?
car 51 |[— l' eSvi
f -1 '7 Cat Car :rfg Y = i X - i) —
rc)gF{aw class scores p9 ( yl | xl) Z] esj

Use logistic function as example. Same as softmax
but for binary classification

_ e’ > — L(x)= —log{x), xE[0,1]
O-(x) - 1 + ex N L(x)= —logoix)
- L(x)= —alx)
Consider the following three basis for NLL.: i
1. Squash and clip value to (0, 1] 27
2. Logistic function 14
3. Logistic function but no log (just negative . —

likelihood) f\¥

_1 4

4 I =2 o0 2 3
3. Negative likelihood w/
logistic function: saturated loss
when classifier is very wrong



Q: Why softmax? cat | 3.2 Class Probabltes Why this?
A i D
Raw clas.s scores o Pe (Y a yilX - xi) B Z j e’
Use logistic function as example. Same as softmax 2. NLL w/ logistic: Strong guidance
but for binary classification . when classifier is wrong
o) = Tz NS e
— Lix)=—-olx)

Consider the following three basis for NLL.: i

1. Squash and clip value to (0, 1] 27
2. Logistic function 14
3. Logistic function but no log (just negative —

likelihood) ° \\L
N

-4 -2 0 / 4

Only saturate at convergence,
e.g.,0(3) = 0.95



Q: Why softmax? cat | 3.2 Class Probabltes Why this?
A i D
Raw clas.s scores o Pe (Y a yilX - xi) B Z j e’
Use logistic function as example. Same as softmax 2. NLL w/ logistic: Strong guidance
but for binary classification . when classifier is wrong
o) = Tz NS e
— Lix)=—-olx)

Consider the following three basis for NLL.: i

1. Squash and clip value to (0, 1] 27
2. Logistic function 14
3. Logistic function but no log (just negative —

likelihood) ' \\L
_1 4

A: Many ways to get probabilities. Logistic function / - - 0 / 4
softmax make the NLL loss behave well for optimization. Only saturate at convergence,

e.g.,0(3) = 0.95



Recap: gradient-based optimization

As weights change, the
gradients change as well

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

CE

We can therefore think about
iterative algorithms that take
current values of weights and

modify them a bit




Recap: The gradient descent algorithm

1. Choose a model: f(x, W) = Wx

2. Choose loss function: L; = |y — Wx;|?

3. Calculate partial derivative for each parameter: oL

Wi

JL

6w,-

4. Update the parameters: w; = w; —

oL

aWi

5. Add learning rate to prevent too big of a step: w; = w; — «a

Repeat 3-5



Recap: calculating gradients

We can find the steepest descent direction by
computing the derivative:

fla+h) - f(a)
h

f'(a) = lim

Gradient is multi-dimensional derivatives
Steepest descent direction is the negative gradient

Intuitively: Measures how the function changes as
the argument a changes by a small step size

In Machine Learning: Want to know how to minimize
loss by changing parameters

Can consider each parameter separately by
taking partial derivative of loss function with
respect to that parameter

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative
#/media/File: Tangent_animation.gif




Hard to calculate analytical gradients for complex functions!

Compose into a

= )

—W-X
complicate function 1+e

wex —— -logp) —

1+e™u

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun



u 1 p

W:-*'X — R
) 1+e™ |~

dL  JL dp du

ow  0p oudw

—log(p)

This time: Chain rule and Backpropagation!




Functions can be made arbitrarily complex (subject to memory and
computational limits), e.g.:
f,W) = o(Wsa(W4o(W30(Wr0(W1x))

We can use any type of differentiable function (layer) we want!




@ We are learning complex models with significant amount of
parameters (millions or billions)

© How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

@ Intuitively, want to understand how small changes in weight are
propagated to affect the loss function at the end




To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

The backpropagation algorithm will
then process this graph, one module
at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



This is a computation graph!

—log(p)

u 1 p
W:- X — —
1 1+e ™ |

Jdu ap

ow u

dL 0dLOJpou

ow  0p oudw

Backpropagation (roughly):

1. Calculate local gradients for each node (e.g., 3—:;)

2. Trace the computation graph (backward) to calculate the global
gradients for each node w.r.t. to the loss function.



Backpropagation: a simple example

f(:z:,y,z) = (:13 +y)z




Backpropagation: a simple example

X

q

f(mayvz):(m—'_y)z .

z




Backpropagation: a simple example

X -2

g 3

f(a:’y’z):(m—'_y)z y5
eg.x=-2,y=95,z=-4

z 4




Backpropagation: a simple example

X -2

g 3

f(a:’y’z):(m—'_y)z y5
eg.x=-2,y=95,z=-4

z 4

af of of

Want:; . ? ay, 9z




Backpropagation: a simple example

X -2

g 3

f(x’y7z):(m+y)z y5
i
eg.x=-2,y=95,z=-4 =
z 4
0 o
1. Calculate local gradients
8f Of of

Want:; . ? ay, 9z




Backpropagation: a simple example

X -2

g 3

f(x’y?z):(w+y)z y5
i
eg.x=-2,y=95,z=-4 =
z 4
g=z+y 3: =1,2 3y =1
1. Calculate local gradients
of _ _ of
f: gz 6_(1 2 62; —

af of of

Want:; . ? ay, 9z

)



Backpropagation: a simple example

X -2

g 3

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

Y. i
f -12

X z 4 f
_ q
q=x+Yy am_l’ay 1 ]
o
of _ _ of of
f:qz B_q ’62: i
af of é8f
Want:; 9 7ay,8z

)




Backpropagation: a simple example

X -2

g 3

f(x’y?z):(w+y)z y5
eg.x=-2,y=95,z=-4 1

z 4

_ g —
q=x+Yy o 1, ay =1
9
aF 3f 0z
f — gz B_q % 0z —d
of 0of Of
Want:; . ? ay =

)




Backpropagation: a simple example

X -2

g 3

f(x’y?z):(w+y)z y5
eg.x=-2,y=95,z=-4 1

_ g 3 —
q=x+Yy o 1, ay =5 |
9
of _ _ of 0z
f: qz B_q 5 0z i
of OoOf oOf
Want:; . ? ay, 9z

)




Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

_ g
q=x+Yy o 1, ay =1
ar 6f
f — gz B_q 5 9z i
of of of
Want:; . ? ay =

)




Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

_ g
q=x+Yy o 1, ay =1
ar 6f
f — gz B_q 5 9z i
of of of
Want:; . ? ay =

)




Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

f—q g5 _ o0 Chain rule: Oy
g — * 5z Of _ Of aq
aF OF BF Oy  0q oy
Want: 8y 0z Upstr/;am chal
gradient  gradient

)




Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

f—q g5 _ o0 Chain rule: Oy
g — * 5z Of _ Of aq
aF OF BF Oy  0q oy
Want: 8y 0z Upstr/;am chal
gradient  gradient

)




Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

qg=zT+vy gi = 1, 3y =
@ .8
f — gz a_q 2y 62: —q
of of of % 9 o
Want: ) (‘)y’ 0z Upstr/;am Lgcal

gradient gradient

Georgia | |
Teéeh ”



Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=95,z=-4

qg=zT+vy gi = 1, 3y =
@ .8
f — gz a_q 2y 62: —q
of of of % 9 o
Want: ) (‘)y’ 0z Upstr/;am Lgcal

gradient gradient

Georgia | |
Teéh ”



Patterns in backward flow

10.00 (55 -20.00
et




Patterns in backward flow

Q: What is an add gate?

-1000@2\ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor

f=a+b
af of
—=—=1 -10.00 /% -20.00
da 0b 2.00 @ 100




Patterns in backward flow

add gate: gradient distributor
Q: What is a max gate?

-10400@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

only the path selected by the
max operator gets the
upstream gradient

-10400@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

Q: What is a mul gate?

-10400@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

-10.00 /% -20.00
f =a-b 2.00 @ 1.00
of B af B

da- 2 =




Upstream gradients add at fork branches

&

... as long as the branches join at some point in the graph

copy




Upstream gradients add at fork branches

0L _ L 3fy | 9L 3f

Derivation: L = e* + x2

"9q  98f1 09 0f; 9q oL
=1’ex+1'2x _=ex+2x
=eX + 2x dq

)




Upstream gradients add at fork branches

% [F()g ()] = fC)g' ) + /() g (x)

Claim: 2k = 0L 9A | 0L Of Derivation: L = e* * x2
0q Jdf,0q  0f, 0q oL
=x2.e¥+e¥.2x a—=ex~2x+ex-x2=x2-ex+ex'2x
q

)




Duality in F(orward)prop and B(ack)prop

.Q
.
‘e
L 4




Given this computation graph, the training
algorithm will:

Calculate the current model’s outputs Input Function Output
(called the forward pass)

-1
Calculate the gradients for each h
module (called the backward pass)

Backward pass is a recursive algorithm that:

Starts at loss function where we know
how to calculate the gradients

Progresses back through the modules w

Ends in the input layer where we do Parameters

not need gradients (no parameters)
This algorithm is called backpropagation

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

@ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass

%52 need this

3 <«—— to compute this

brmediate outputs of all layers!

d them to compute the gradients (the gradient
ith the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun




In the backward pass, we seek to aL
calculate the gradients of the loss with dht-1
respect to the module’s parameters

Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

_ Problem:
We will also pass the gradient of We can compute local gradients:
the loss with respect to the onf  on’

module’s inputs {
This is not required for update

ant-1’ aw

We are given:

the module’s weights, but passes ont
' L IL
the gradlents back to the Compute { L
previous module ant-1 aw
Becomes the upstream Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

gradient for the previous module



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

oL Backpropagation is the application of

gradient descent to a computation
ow; graph via the chain rule!

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by tracing the entire graph,
aggregate and assign gradients at each function /
parameters, from output to input.

This is called reverse-mode automatic differentiation

) A General Framework Gegrgia |

=



Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Gograta |

=



Deep Learning Framework = Differentiable Programming Engine

 Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)




Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

def

def

#...

class ComputationalGraph(object):

forward(inputs):

# 1. [pass inputs to input gates...]

# 2. forward the computational graph:

for gate in self.graph.nodes topologically sorted():
gate.forward()

return loss # the final gate in the graph outputs the loss

backward():

for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients



Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z = Xty
return z
def backward(dz):
# dx = ... #todo
#dy:...#todo 8—
return [dx, dy] z
(x,y,z are scalars) \

oL
ox




Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
z = X%y
self.x = x # must keep these around!
self.y = y
return z
)/ def backward(dz):

(X,y,z are SCalarS) dx = self.y * dz # [dz/dx * dL/dz]

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]




Writing code == building graph

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(260, 20))
W_x = Variable(torch.randn(260, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

) Computation Graphs in PyTorch Gograta |



Neural Turing Machine

//

input image

loss \



https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not Program Space
limited to mathematical
functions!

Software 1.0 o
Can have control flows (if

statements, loops) and
backpropagate through

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation Gegroia |

=



Autodiff from scratch: micrograd repo, video tutorial

Power of Automatic Differentiation Gegroia |

=


https://github.com/karpathy/micrograd
https://www.youtube.com/watch?time_continue=3050&v=VMj-3S1tku0&feature=emb_title

Linear
Algebra

View:
Vector and
Matrix Sizes

Georgia
grgia |



_xl_

w11 Wiz 0 Wq,, bl
w w e W p2| | *2
21 W22 2m :
W31 Wszz -+ W3y, b3 X
m
| 1 .
W X

Sizes: [cx(d+1)] [(d+ 1)x1]
Where ¢ is number of classes

d is dimensionality of input

) Closer Look at a Linear Classifier

Georgia
Tech

!&1

=



Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R1, vector v € R™, i.e. v = [v4, V3, ..., V]

and matrix M € Rk*? L
6171

as
What is the size of % ? R™1 (column vector of size m) | av,
Qs
What is the size of % ? RY*™ (row vector of size m) v,
L ds -

ds O0s ds ]

v, 0v4 v,

) Dimensionality of Derivatives Gograta |

=



Conventions:

1 .
What is the size of a_vz ? A matrix: Col j
dv - 1 -
0vq
2
ov7
Row J avl_l
2
dv;

This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia)

) Dimensionality of Derivatives Gograta |

=


https://en.wikipedia.org/wiki/Matrix_calculus

Conventions:

What is the size of ;—:4 ? A matrix:
as
am[l,l]

ds
amy;

Dimensionality of Derivatives Gograta |

=



. . oL
9% 9
What is the size of -

Remember that loss is a scalar and W is a matrix:

W11 Wiz 0 Wy b1
W21 Wiz - Wy b2
W31 W3z - W3y b3
Jacobian is also a matrix: W
- dL dL JL dL
6w11 6W12 6W1m 6b1
dL JL JL
W w, b,
JL JL
aW3m abg_

Dimensionality of Derivatives Gograta |

=



Batches of data are matrices or tensors (multi- X11 X12  * X1n]
dimensional matrices) X1 Xz v Xop
Examples: : : ’ :
Each instance is a vector of size m, our batch is of [ Xn1 Xn2 7 Xanl
size [Bxm]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size WxH, our batch is [BXW xH|
. . . . X117
Each instance is a multi-channel matrix (e.g. color X
image with R,B,G channels) of size CxW xH, our :12
batch is [BXCXW xH] '
i . : X21
Jacobians become tensors which is complicated Xy
Instead, flatten input to a vector and get a vector of :
NSV
derivatives! Xn1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | Xy

=

) Jacobians of Batches Gegroia |



