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• Linear Classifier (cont.)
• SVM / Hinge Loss
• Softmax Classifier and Cross-Entropy Loss
• Gradient Descent



Reinforcement 
Learning

⬣ Supervision in 
form of reward

⬣ No supervision on 
what action to take

Types of Machine Learning

Unsupervised 
Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 
density estimation, 
etc.

Supervised 
Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output: 
𝑓 ∶ 𝑋 → 𝑌, 
e.g. 𝑃(𝑦|𝑥)

Very often combined, sometimes within the same model!

Recap:



Types of Errors and Generalization
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Linear Classifier: Three Viewpoints Adapted from from CS 231n slides

Algebraic 
Viewpoint

𝒇(𝒙,𝑾) = 𝑾𝒙

Visual 
Viewpoint

One template 
per class

Geometric 
Viewpoint

Hyperplanes 
cutting up space

Recap:



Loss Function and Optimization

This time:
𝒇(𝒙,𝑾) = 𝑾𝒙

1.Define a loss function that 
quantifies our unhappiness with the 
scores across the training data.

2. Come up with a way of efficiently 
finding the parameters that minimize 
the loss function. (optimization)



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Given a dataset of examples:

Where 𝒙𝒊 is image and 
𝒚𝒊 is (integer) label

Loss over the dataset is a sum 
of loss over examples:

{ 𝒙𝒊, 𝒚𝒊 }𝒊2𝟏𝑵

𝑳 =
𝟏
𝑵
*𝑳(𝒇 𝒙𝒊,𝑾 , 𝒚𝒊)

A loss function that tells how 
good the current classifier is

High Loss High LossLow Loss



Performance Measure for Scores

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 = 7
𝒋#𝒚𝒊

8
𝟎
𝒔𝒋

= 7
𝒋#𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

− 𝒔𝒚𝒊 + 𝟏
𝐢𝐟 𝒔𝒚𝒊 ≥ 𝒔𝒋 + 𝟏
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

Notation: 𝒔𝒚𝒊is the score given by the classifier for 
the correct label class of the i-th example (𝑦%)



Performance Measure for Scores

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 = 7
𝒋#𝒚𝒊

8
𝟎
𝒔𝒋

= 7
𝒋#𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

− 𝒔𝒚𝒊 + 𝟏
𝐢𝐟 𝒔𝒚𝒊 ≥ 𝒔𝒋 + 𝟏
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

“Hinge Loss”

𝒔𝒚𝒊𝒔𝒋

𝑳𝒊

scores for other classes

margin

score
score for correct class

Loss = 0:

𝟏



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 2.9

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

= max(0, 5.1 - 3.2 + 1) + 
max(0, -1.7 - 3.2 + 1)
= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9



SVM Loss Example

Adapted from from CS 231n slides

cat
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4.9
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

0.0

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

= max(0, 1.3 - 4.9 + 1) + 
max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

Losses: 2.9



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:
Given an example (𝒙𝒊,𝒚𝒊)
where 𝒙𝒊 is the image and 
where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 
scores vector: 𝒔 = 𝒇(𝒙𝒊,𝑾)

the SVM loss has the form:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3 
= 5.27



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

Q: What happens to loss if 
car image scores change a 
bit (e.g., ± 0.1)?
No change for small values



SVM Loss Example

Adapted from from CS 231n slides

cat
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

Q: What is min/max of loss 
value?

[0,inf]



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:

𝑳𝒊 =+
𝒋$𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

Q: At initialization W is 
close to 0 so all s ≈ 0.
What is the loss?

num_class - 1



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:

𝑳𝒊 =
𝟏
𝑪
+

𝒋$𝒚𝒊
𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

Q: What if we used mean 
instead of sum?

No difference
Scaling by constant



SVM Loss Example

Adapted from from CS 231n slides
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Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Multiclass SVM loss:
𝑳𝒊 =+

𝒋$𝒚𝒊
𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊 + 𝟏)

𝟐

Q: What if we used 
squared hinge loss?

𝒔𝒚𝒊𝒔𝒋

𝑳𝒊

𝟏
• Smooth loss around hinge
• Sensitive to outliers (larger 

penalty)



SVM Loss Example

Multiclass SVM loss:

Adapted from from CS 231n slides



SVM Loss Example

E.g. Suppose that we found a W such that L = 0. 
Q: Is this W unique?

Adapted from from CS 231n slides

Let’s look at an example



SVM Loss Example

Adapted from from CS 231n slides

Multiclass SVM loss:
Before:
= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)
= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

With W twice as large:
= max(0, 2.6 - 9.8 + 1)

+max(0, 4.0 - 9.8 + 1)
= max(0, -6.2) + max(0, -4.8)
= 0 + 0
= 0

cat

frog
car

3.2
5.1
-1.7

4.9
1.3

2.0 -3.1
2.5
2.2

Suppose: 3 training examples, 3 classes.
With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:



SVM Loss Example

E.g. Suppose that we found a W such that L = 0. 
Q: Is this W unique?

Adapted from from CS 231n slides

No, 2W also has L=0
How do we choose between W, 2W, and 1e+7W?



Regularization

x

y
Train Data

Adapted from from CS 231n slides

Regularization intuition: fitting a polynomial function



Regularization

Regularization intuition: fitting a polynomial function

x

y
f1 f2

Train Data

Adapted from from CS 231n slides



Regularization

f1

x

y
f1 f2

Regularization balances the simplicity of the function and 
loss, so we don’t overfit to the noises in the data

Train Data

Test Data

Adapted from from CS 231n slides

Regularization intuition: fitting a polynomial function



Regularization

Regularization

Regularization: Prevent the model 
from doing too well on training data

Data loss: Model predictions 
should match training data

Adapted from from CS 231n slides



Regularization

Regularization

Data loss: Model predictions 
should match training data

Regularization: Prevent the model 
from doing too well on training data

= regularization strength
(hyperparameter)

Simple examples
L2 regularization: 
L1 regularization: 
Elastic net (L1 + L2): 

More complex (DNN-specific):
Dropout
Batch/layer normalization
Stochastic depth, fractional pooling, etc



Regularization

Regularization: Implement a simple L2 regularizer



Performance Measure using Probabilities

3.2cat

frog
car 5.1

-1.7 Cat

Class Probabilities

Car Frog

0.13

0.87

0.0

?
Raw class scores

What if we want probabilities? 

We need a different classifier!*

*Technically we can get probability from SVM classifiers too, see Platt scaling

https://en.wikipedia.org/wiki/Platt_scaling


𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽)

3.2cat

frog
car 5.1

-1.7
Unnormalized log-

probabilities / logits

24.5
164.0
0.18

exp

Unnormalized 
probabilities

0.13
0.87
0.00

normalize

Probabilities

Adapted from from CS 231n slides

How do we compute 
the loss?

Probabilities 
must be >= 0

Probabilities must sum to 1



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽) 𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋

3.2cat

frog
car 5.1

-1.7
Unnormalized log-

probabilities / logits

0.13
0.87
0.00

softmax

Predicted 
Probs 

(softmax)

Finding a set of weights 𝜃 that maximizes the 
probability of correct prediction: argmax

!
∏𝑝! 𝑦" 𝑥"

This is equivalent to:

argmax
!

3ln𝑝! 𝑦" 𝑥"

1. Maximum Likelihood Estimation (MLE):
Choose weights to maximize the likelihood of 
observed data. In this case, the loss function is the 
Negative Log-Likelihood (NLL).

We maximize the probability of 𝒑'(𝒚𝒊|𝒙𝒊)!

𝐿" = −ln𝑝! 𝑦" 𝑥" = −ln
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋 = −ln(0.13)



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Adapted from from CS 231n slides

1.00
0.00
0.00
Correct
probs

maximize
agreement3.2cat

frog
car 5.1

-1.7
Unnormalized log-

probabilities / logits

0.13
0.87
0.00

softmax

Predicted 
Probs 

(softmax)

2. Information theory view

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽) 𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Adapted from from CS 231n slides

Cross Entropy: 𝐻 𝑝, 𝑞 = −3𝒑 𝒙 ln 𝒒(𝒙)

𝑯𝒊 𝒑, 𝒑! = −3
𝒚∈𝒀

𝒑 𝒚 𝒙𝒊 ln 𝒑! 𝒚 𝒙𝒊

= −ln𝒑! 𝒚𝒊 𝒙𝒊

𝑳 =3𝑯𝒊 𝒑, 𝒑! = −3ln𝒑! 𝒚𝒊 𝒙𝒊 ≡ 𝑵𝑳𝑳

3.2cat

frog
car 5.1

-1.7
Unnormalized log-

probabilities / logits

0.13
0.87
0.00

softmax

Predicted 
Probs 

(softmax)

1.00
0.00
0.00
Correct
probs

Cross Entropy Loss -> NLL 

maximize
agreement

2. Information theory view

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽) 𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
NLL and CrossEntropy are different loss functions in PyTorch!

Expects log 
probabilities as input 
(do it yourself!)

Expects unformalized 
logits as input (the 
function will apply 
softmax & log on top)



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Adapted from from CS 231n slides

Q: What is the min/max of 
possible loss L_i?

Infimum is 0, max is unbounded (inf)

𝐿% = −log(𝑝& 𝑦% 𝑥% )
Cross-entropy loss:

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽) 𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋



Cross-Entropy Loss Example

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Adapted from from CS 231n slides

𝐿% = −log(𝑝& 𝑦% 𝑥% )
Cross-entropy loss:

Q: At initialization all s will be 
approximately equal; what is 
the loss?

Log(C), e.g. log(3) ≈ 1.1

Softmax
Function

𝒔 = 𝒇(𝒙𝒊; 𝜽) 𝑝' 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒚𝒊
∑𝒋𝒆

𝒔𝒋



SVM and Softmax Classifier

Loss functions: SVM and Softmax Classifier
• Loss function: performance measure to improve

• Find weights that better satisfies the objective

• Multiclass SVM Classifier
• Predicts class score

• Hinge loss: “maximum margin” objective: 𝐿% = ∑'#("𝑚𝑎𝑥(0, 𝑠' − 𝑠(" + 1)

• Regularization
• Prevent overly complex function that only works well on the training set

• Softmax Classifier
• Predicts class probabilities
• NLL and Cross Entropy Loss



Loss Function and Optimization

⬣ Input (and representation)
⬣ Functional form of the model

⬣ Including parameters
⬣ Performance measure to improve

⬣ Loss or objective function
⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model
Data: Image

Car

Class Scores

Coffee 
Cup

Bird

Model
𝒇 𝒙,𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee 
Cup

Bird

Loss Function

Optimizer



Optimization

Strategy #1: A first very bad idea solution: Random search



Optimization

Lets see how well this works on the test set...

15.5% accuracy! not bad!
(SOTA is ~99.7%)

Adapted from from CS 231n slides



Optimization

Given a model and loss function, finding the 
best set of weights is a search problem
⬣ Find the best combination of weights 

that minimizes our loss function

Several classes of methods:
⬣ Random search
⬣ Genetic algorithms (population-based 

search)
⬣ Gradient-based optimization

In deep learning, gradient-based methods 
are dominant although not the only 
approach possible

Loss

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

Gradient

1. Calculate the gradients of a loss 
function with respect to a set 
of parameters (w’s).

2. Update the parameters 
towards the gradient direction 
that minimizes the loss.



Gradient Descent: Follow the Slope!



The Loss Landscape

As weights change, the 
gradients change as well
⬣ This is often somewhat-

smooth locally, so small 
changes in weights produce 
small changes in the loss

We can therefore think about 
iterative algorithms that take 
current values of weights and 
modify them a bit



Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative:

⬣ Gradient is multi-dimensional derivatives
⬣ Steepest descent direction is the negative gradient
⬣ Intuitively: Measures how the function changes as 

the argument a changes by a small step size
⬣ In Machine Learning: Want to know how to minimize 

loss by changing parameters
⬣ Can consider each parameter separately by 

taking partial derivative of loss function with 
respect to that parameter

𝒇$ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)
𝒉

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative
#/media/File:Tangent_animation.gif

∆𝒙



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

Calculate gradients: finite differences



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322

Calculate gradients: finite differences



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Calculate gradients: finite differences



Computing Gradients

Several ways to compute 𝝏𝑳𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

More on autodiff: 
https://www.cs.toronto.edu/~rgrosse/courses/csc421_201
9/readings/L06%20Automatic%20Differentiation.pdf

https://www.cs.toronto.edu/~rgrosse/courses/csc421_2019/readings/L06%20Automatic%20Differentiation.pdf


Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

Almost all differentiable functions that you can think of have 
analytical gradients implemented in popular libraries, e.g., 
PyTorch, TensorFlow.

If you want to derive your own gradients, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



Decomposing a Function 

Compose into a

complex function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Composing simple functions creates complex analytical gradients

𝐬𝐢𝐧(𝒙)
𝐥𝐨𝐠(𝒙)

𝐜𝐨𝐬(𝒙)

𝐞𝐱𝐩(𝒙)

𝒙𝟑
− 𝐥𝐨𝐠

𝟏
𝟏 + 𝒆'𝒘⋅𝒙

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆V𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



Decomposing a Function 

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Next time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆V𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



Gradient Descent

The gradient descent algorithm

⬣ 1. Choose a model: 𝒇 𝒙,𝑾 = Wx

⬣ 2. Choose loss function: 𝑳𝒊 = |𝒚 −𝑾𝒙𝒊|𝟐

⬣ 3. Calculate partial derivative for each parameter: 𝝏𝑳
𝝏𝒘𝒊

⬣ 4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳
𝝏𝒘𝒊

⬣ 5. Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳
𝝏𝒘𝒊

⬣ Repeat 3-5 



Decomposing a Function 

Next time: Chain rule and Backpropagation!

𝜕𝐿
𝜕𝑤

=
𝜕𝐿
𝜕𝑝
𝜕𝑝
𝜕𝑢

𝜕𝑢
𝜕𝑤

𝒘 ⋅ 𝒙 𝟏
𝟏 + 𝒆V𝒖

−𝐥𝐨𝐠 𝒑
𝒖 𝒑 𝑳



Linear 
Algebra 

View: 
Vector and 

Matrix Sizes



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎 𝑻

and matrix 𝑴 ∈ ℝ𝒌×ℓ

⬣ What is the size of 𝝏𝒗
𝝏𝒔

? ℝ𝒎×𝟏 (column vector of size m	)

⬣ What is the size of 𝝏𝒔
𝝏𝒗

? ℝ𝟏×𝒎 (row vector of size m	)

𝝏𝒗𝟏
𝝏𝒔
𝝏𝒗𝟐
𝝏𝒔
⋮

𝝏𝒗𝒎
𝝏𝒔

𝝏𝒔
𝝏𝒗𝟏

𝝏𝒔
𝝏𝒗𝟏

⋯
𝝏𝒔
𝝏𝒗𝒎



Conventions:

⬣ What is the size of 𝝏𝒗
𝟏

𝝏𝒗𝟐
? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row i

Col j
𝝏𝒗𝟏𝟏

𝝏𝒗𝟏𝟐
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒗𝒊𝟏

𝝏𝒗𝒋𝟐
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:

(Note this is slightly different convention than on Wikipedia)

https://en.wikipedia.org/wiki/Matrix_calculus


Dimensionality of Derivatives

Conventions:

⬣ What is the size of 𝝏𝒔
𝝏𝑴

? 
𝝏𝒔

𝝏𝒎[𝟏,𝟏]
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒔

𝝏𝒎[𝒊,𝒋]
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

A matrix:



Dimensionality of Derivatives

⬣ What is the size of 𝝏𝑳
𝝏𝑾

?

⬣ Remember that loss is a scalar and W is a matrix:
𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝝏𝑳
𝝏𝒘𝟏𝟏

𝝏𝑳
𝝏𝒘𝟏𝟐

⋯
𝝏𝑳

𝝏𝒘𝟏𝒎

𝝏𝑳
𝝏𝒃𝟏

𝝏𝑳
𝝏𝒘𝟐𝟏

⋯ ⋯
𝝏𝑳

𝝏𝒘𝟐𝒎

𝝏𝑳
𝝏𝒃𝟐

⋯ ⋯ ⋯
𝝏𝑳

𝝏𝒘𝟑𝒎

𝝏𝑳
𝝏𝒃𝟑

WJacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)
Examples:
⬣ Each instance is a vector of size m, our batch is of 

size [𝑩×𝒎]
⬣ Each instance is a matrix (e.g. grayscale image) of 

size 𝑾×𝑯, our batch is [𝑩×𝑾×𝑯]
⬣ Each instance is a multi-channel matrix (e.g. color 

image with R,B,G channels) of size 𝑪×𝑾×𝑯, our 
batch is [𝑩×𝑪×𝑾×𝑯]

Jacobians become tensors which is complicated
⬣ Instead, flatten input to a vector and get a vector of 

derivatives!
⬣ This can also be done for partial derivatives 

between two vectors, two matrices, or two tensors

Flatten

𝒙𝟏𝟏
𝒙𝟏𝟐
⋮
𝒙𝟐𝟏
𝒙𝟐𝟐
⋮
𝒙𝒏𝟏
⋮
𝒙𝒏𝒏

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒏
𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒏
⋮ ⋮ ⋱ ⋮
𝒙𝒏𝟏 𝒙𝒏𝟐 ⋯ 𝒙𝒏𝒏


