CS 4803-DL / 7643-A: LECTURE 22
DANFEI XU

Topics:

e Self-supervised Learning
* Pretext task from image transformation
e Contrastive learning



Administrative

Final project report due EOD Dec 4th, grace period EOD Dec 6t

Poster session Dec 6t 12:30-2pm
 Two sessions, 35min each. You’'ll get assigned at the event.
* Check out other posters if you are presenting at a different session.

* We will have hors d'oeuvre and dessert available.
 We will announce a best project award at the end of the poster session (1:45-2pm).

 The event is open to the GT community. Expect many attendees, so bring your best
work. And tell your friends to come too!



Deep Learning for Decision Making

Deep Neural action
Nets — output \
art
ET) reward r; +— @

Problem: we don’t know the correct action label to supervise the output!

state
input

All we know is the step-wise task reward

Can we directly backprop reward???



Policy Gradient: Just backprop from reward (sort of)!

forward pass

v

log probabilities
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Image Source: http://karpathy.github.io/2016/05/31/rl/

Supervised Learning
(correct label is provided)

Increase the likelihood of
selecting action dim = 0!

Policy Gradient

—— sample an action:

A

eventual reward -1.0

Decrease the likelihood of
selecting action dim = 1!



Brief derivation of policy gradient (REINFORCE)

Vo (0) = Errpy(r)[Vo log o (T)R(7)

mo(7) = p(so) [ [ po (ar | s0) - p (541 | 50, a0)

Doesn’t depend on

T T
Vo |lespton) + > logmo(as|s:) + Z*@gp@ﬁrﬁ-w-m)] Transition probabilities!
t=1 t=1

- T
=K o (r) ZV@ log mg(at|st) ZR St, Qt)
t=1 1

AN | ”
\ \ \ R
\ \\55 b \ \
\ X \ 4 \ N \ \ \
{‘\\‘ N\ \ \ 13 \ [\ \ [\s2 \
1 =
\r it 2 - 3[ pl | 8 =
24| SN2\ 3 \ X N - \
\ s \\ \ 384 384 256 3
\ \ Max
\ 256
\ \ Max Max s
2\ [ Strige\_og | Pooting pooling
\[| or 2

pooling 4056 4036

Can use continuous action space!



Policy Gradient Methods
* REINFORCE: Vg/(mg) = Eq-r,[Vglog mg(als)R(s,a)]
* Actor-critic (AC): VgJ () = Eq,[Vglog mg(als)Q(s, a)]

* Advantage Actor-critic (A2C): V] (1tg) = Eqr, [Vglog mg(als)A(s, a)]



Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Idea: domain randomization
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https://lilianweng.github.io/posts/2019-05-05-domain-randomization/
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Recap: Reinforcement Learning

It turns out we can directly backprop from reward (sort of)!

Naive policy gradient (REINFORCE) has high variance due to the use of
episodic reward. Credit assignment is hard.

Use Action Value Function (Q) instead!

— Actor-Critic: learn Q value function jointly with policy

— Advantage Actor-Critic: estimate advantage A using V value function
Advanced policy gradient methods: TRPO, PPO

Still pretty expensive to train! Mostly used in simulation.



Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Unsupervised

Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
generative modeling
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Self-supervised Learning

In short: still supervised learning, with two important distinctions:

1. Learn from labels generated autonomously instead of human annotations.

2. The goalis to learn good representations for other target tasks.

dataset (no labels)

pre-training
model

pretext
task

knowledge
transfer

target
task

target model

Source: Noroozi et al., 2018



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images

Y
. -
5

image completion rotation prediction “jigsaw puzzle” colorization

1. Solving the pretext tasks allow the model to learn good features.
2. We can automatically generate labels for the pretext tasks.



Generative vs. Self-supervised Learning
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Left: Drawing of a dollar bill from memory. Right: Drawing subsequently made with a
dollar bill present. Image source: Epstein, 2016

Learning to generate pixel-level details is often unnecessary; learn high-level
semantic features with pretext tasks instead

Source: Anand, 2020



https://aeon.co/essays/your-brain-does-not-process-information-and-it-is-not-a-computer
https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html

How to evaluate a self-supervised learning method?

We usually don’t care about the performance of the self-supervised learning

task, e.g., we don’t care if the model learns to predict image rotation
perfectly.

Evaluate the learned feature encoders on downstream target tasks



How to evaluate a self-supervised learning method?

feature

self-supervised extractor
E> Ieafning E> (e.g., a
convnet)
lots of
unlabeled
data ;\ 90°
—

conv fc

1. Learn good feature extractors from
self-supervised pretext tasks, e.g.,
predicting image rotations



How to evaluate a self-supervised learning method?

feature
I:'; self-supervised : extractor supervised evaluate on the
learning (e.g., a = learning = [ target task }
convnet)
e.g. classification, detection
lots of
unlabeled
data 90° A bird
smaII amount of
N labeled data on the
conv fc target task Imear
classifier
1. Learn good feature extractors from 2. Attach a shallow network on the
self-supervised pretext tasks, e.g., feature extractor; train the shallow
predicting image rotations network on the target task with small

amount of labeled data



roader picture

computer vision

Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence
and Manuelli et al., 2018)

Today’s lecture

language modeling

Language Models are Few-Shot Learners
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Abstract

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training
ona large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic
in architecture, this method still requires task-specific finc-tuning datasets of thousands or tens of
thousands of examples. By contrast, humans can generally perform a new language task from only
a few examples or from simple instructions — something which current NLP systems still largely
struggle to do. Here we show that scaling up language models greatly improves task-agnostic,
few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-
tning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion
‘parameters, 10x more than any previous non-sparse language model, and test its performance in
the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning,
‘with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3
achieves strong performance on many NLP datasets, including translation, question-answering, and
cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as
unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same.
time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some
datascts where GPT3 faces methodological issues related to training on large web corpora. Finally,
we find that GPT-3 can generate samples of news articles which human evaluators have difficulty
distinguishing from articles written by humans. We discuss broader societal impacts of this finding
and of GPT-3 in general.

GPT3 (Brown, Mann, Ryder,
Subbiah et al., 2020)

speech synthesis
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Wavenet (van den Oord et al.,
2016)



Today’s Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring
Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC



Today’s Agenda

Pretext tasks from image transformations
- Rotation, inpainting, rearrangement, coloring



Pretext task: predict rotations

90° rotation 270° rotation 180° rotation 0° rotation 270° rotation

Hypothesis: a model could recognize the correct rotation of an object only if it
has the “visual commonsense” of what the object should look like
unperturbed.

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

Rotate 0 degrees

Rotated image: X"

-zl -

Rotate 90 degrees

Rotated image: X'

Rotate 180 degrees

4,
Rotated image: X’

e - -
Rotate 270 degrees

Rotated image: X°

Self-supervised
learning by rotating the
entire input images.

The model learns to
predict which rotation
is applied (4-way
classification)

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict rotations

| Objectives:
ConvNet M b.
—» g(X,y=0) m(())rtli:l I?(.) axggz;g;ro |
‘ | redi 1 - H
Rotate 0 degrees Rotated image: X" | Predict 0 degrees rotation (y=0) | S e If_S u p ervise d
D . learning by rotating the
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(Image source: Gidaris et al. 2018)

Rotated image: X°



https://arxiv.org/abs/1803.07728

Evaluation on semi-supervised learning

Test accuracy

100

90
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701
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/ /
Ours - Semi-supervised
— Supervised

20 100 400
# Training examples

1000

5000

Self-supervised learning on
CIFAR10 (entire training set).

Freeze convl + conv2

Learn conv3 + linear layers with
subset of labeled CIFAR10 data
(classification).

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Transfer learned features to supervised learning

Classification  Detection Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | f6-8  all all all Pretrained with full
ImageNet labels ‘ 789 79.9 56.8 48.0 ImageNet su per\“Slon
Random 53.3 43.4 19.8 ..
Random rescaled Krihenbiihl et al. (2015) | 39.2  56.6 45.6 32.6 No pretraining
Egomotion (Agrawal et al., 2015) 310 542 439
Context Encoders (Pathak et al., 2016b) 346  56.5 44.5 29.7 . .
Tracking (Wang & Gupta, 2015) 556  63.1 474 Self-supervised learning on
Context (Doersch et al., 2015) 55.1 65.3 51.1 . .
Colorization (Zhang et al., 2016a) 615 65.6 46.9 35.6 ImageNEt (entl re traini ng
BIGAN (Donahue et al., 2016) 523  60.1 46.9 34.9 with AlexNet.
Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 53.2 37.6 SEt) t exNet
NAT (Bojanowski & Joulin, 2017) 56.7 65.3 49.4
Split-Brain (Zhang et al., 2016b) 630 67.1 46.7 36.0 .
ColorProxy (Larsson et al., 2017) 65.9 38.4 Finetune on labeled data
Counting (Noroozi et al., 2017) - 67.7 51.4 36.6 from Pascal VOC 2007.

[ (Ours) RotNet 70.87 72.97 54.4 39.1 ]

Self-supervised learning with rotation source: Gidaris et al. 2018

prediction


https://arxiv.org/abs/1803.07728

Visualize learned visual attentions

Convl 27 x 27 Conv313 x 13 Conv56 X 6 Convl 27 x 27 Conv313 x 13 Conv56 x 6

(a) Attention maps of supervised model (b) Attention maps of our self-supervised model

(Image source: Gidaris et al. 2018)



https://arxiv.org/abs/1803.07728

Pretext task: predict relative patch locations

Example:

(Image source: Doersch et al., 2015)



https://arxiv.org/abs/1505.05192

Pretext task: solving “jigsaw puzzles”

-~

N

L |

w

B

(]

Permutation Set

index permutation Reorder patches according to
the selected permutation

L |

o]

TR S B

64 9.4,68325,1,7

~O

) ANERS V

11x11x96  5x5x256 3x3x384 3x3x384 3x3x256

(Image source: Noroozi & Favaro, 2016)



https://arxiv.org/abs/1603.09246

Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results
of the other methods are taken from Pathak et al. [30].

Method Pretraining time Supervision Classification Detection Segmentation
Krizhevskyet al. [25] 3 days 1000 class labels 78.2% 56.8% 48.0%
Wang and Gupta[39] 1 week motion 58.4% 44.0% -
Doersch et al. [10] 4 weeks context 55.3% 46.6% -
Pathak et al. [30] 14 hours context 56.5% 44.5% 29.7%
Ours 2.5 days context 67.6% 53.2% 37.6%

“Ours” is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro,
2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)



https://arxiv.org/abs/1603.09246

Pretext task: predict missing pixels (inpainting)

Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Source: Pathak et al.,

2016


https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction
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Learning to reconstruct the missing pixels

Source: Pathak et al.,
2016



https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction

Source: Pathak et al.,
2016



https://arxiv.org/pdf/1604.07379.pdf

Learning to inpaint by reconstruction

Loss = reconstruction + adversarial learning

L(CE) — Lrecon (m) + Ladv (CE)
Lyceon () = ||M * (z — Fp((1 — M) x z))||5
Lqdy = maxp Ellog(D(z))] + log(1 — D(F((1 — M) * z)))]

Adversarial loss between “real” images and inpainted images

Source: Pathak et al.,
2016



https://arxiv.org/pdf/1604.07379.pdf

Inpainting evaluation

Input (context) reconstruction adversarial recon + adv

Source: Pathak et al.,
2016



https://arxiv.org/pdf/1604.07379.pdf

Transfer learned features to supervised learning

Pretraining Method Supervision Pretraining time Classification Detection Segmentation
ImageNet [26] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [1] egomotion 10 hours 52.9% 41.8% -
Wang et al. [39] motion 1 week 58.7% 47.4% -
Doersch et al. [7] relative context 4 weeks 55.3% 46.6% -

Ours context 14 hours 56.5% 44.5% 30.0%

Self-supervised learning on ImageNet training set, transfer to classification
(Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation

(Pascal VOC 2012)
Source: Pathak et al.,

2016



https://arxiv.org/pdf/1604.07379.pdf

Pretext task: image coloring

F
. wz:';‘ V,,g—
Grayscale image: L channel Color information: ab channels
X € RHXWXl ?E]RHXWX2

T

Source: Richard Zhang / Phillip
Isola



Pretext task: image coloring

Grayscale image: L channel

X c RHXWXI

L

Concatenate (L,ab) channels

(X,Y)

ab

Source: Richard Zhang / Phillip
Isola



Learning features from colorization:
Split-brain Autoencoder

Idea: cross-channel predictions

><)

Split-Brain Autoencoder
Source: Richard Zhang / Phillip

Isola



Learning features from colorization:
Split-brain Autoencoder

Input Image X

Source: Richard Zhang / Phillip
Isola



Learning features from colorization:
Split-brain Autoencoder

RGB channels

RGB-HHA
image

HHA depth channels

RGB channels

HHA depth channels

"\ Predicted

RGB-HHA
image

Source: Richard Zhang / Phillip
Isola



Transfer learned features to supervised learning

@@ Places-labels
50 _|IHE ImageNet-labels

©-@ Pathak et al.
@-@® Zhang et al.

@@ Kraehenbuehletal. OO Owens et al.
V-V Gauss ©-@® Donahue et al. . .
45][0-0 Doerschetal. < Spitgrain Auto(cich Self-supervised learning on
@-@® Wang & Gupta . o .
_ ImageNet (entire training set).
a0} supervised
>
9]
£ 35 ——— Use concatenated features
2 6 s O —— thi from F,and F
= 30| : ~— this paper 1 2
= h
25} Labeled data is from the
. 8 Places (Zhou 2016).
®—
15 : :
(’0(\\\'\' Co(\\‘ X Co(\\‘s 00\6

Source: Zhang et al., 2017



https://arxiv.org/abs/1611.09842

Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola



Pretext task: image coloring

Source: Richard Zhang / Phillip
Isola



Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594

Pretext task: video coloring

Idea: model the temporal coherence of colors in videos

reference frame how should | color these frames?
Should be the same color!

pros

Hypothesis: learning to color video frames should allow model to learn to

track regions or objects without labels!
Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594

Learning to color videos

Reference Frame Input Frame

Learning objective:

Establish mappings
between reference and
target frames in a learned
feature space.

Use the mapping as
“pointers” to copy the
correct color (LAB).

Reference Colors Target Colors

Source: Vondrick et al.,
2018



https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A A‘f i Aci Reference
Frame @ Ik o Colors

Target

Predicted
Frame | @ A

A/f(J ® Agj Colors

attention map on the reference
frame

__exp(fff))
> exp (fi f)

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video Embeddings
Reference A B A I ¢ ACi Reference
Frame = © @ j\; o Colors
i l
Target f Predicted
Frame © A A/fj o A ; | Colors

attention map on the reference  predicted color = weighted
frame sum of the reference color

exp (f f5) _
A = = Ajjc;
=S () WM

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594

Learning to color videos

Grayscale Video

Reference A
Frame ®
Target
Frame | @ A

attention map on the reference
frame

__exp(fff))
>k exp (fi £5)

Embeddings

X

\
R |
A

® 4
IA J

Afi

AC

O /
A,

predicted color = weighted
sum of the reference color

Y; = Z Az’jci
i

Reference
Colors

Predicted
Colors

loss between predicted color

and ground truth color

m@mZ E (yj, Cj)

J

Source: Vondrick et al.,

2018


https://arxiv.org/abs/1806.09594

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Colorizing videos (qualitative)

reference frame target frames (gray) predicted color

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate segmentation masks using learned attention

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Tracking emerges from colorization

Propagate pose keypoints using learned attention

gL T

Source: Google Al blog
post



https://ai.googleblog.com/2018/06/self-supervised-tracking-via-video.html

Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

® We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).



Summary: pretext tasks from image transformations

® Pretext tasks focus on “visual common sense”, e.g., predict rotations,
inpainting, rearrangement, and colorization.

e The models are forced learn good features about natural images, e.g.,
semantic representation of an object category, in order to solve the pretext
tasks.

® We don’t care about the performance of these pretext tasks, but rather how
useful the learned features are for downstream tasks (classification, detection,

segmentation).

® Problems: 1) coming up with individual pretext tasks is tedious, and 2) the
learned representations may not be general.



Pretext tasks from image transformations

image rotation “jigsaw puzzle” colorization
completion prediction

Learned representations may be tied to a specific pretext task!
Can we come up with a more general pretext task?



A more general pretext task?

same object



A more general pretext task?

same object

different object



Contrastive Representation Learning

attract




Today’s Agenda

Contrastive representation learning

- Intuition and formulation

- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC



Contrastive Representation Learning

attract




Contrastive Representation Learning

L reference
CE+

positive

L  negative




A formulation of contrastive learning

What we want:

score(f(z), f(xT)) >> score(f(z), f(z7))

x: reference sample; x* positive sample; x negative sample

Given a chosen score function, we aim to learn an encoder

function f that yields high score for positive pairs (x, x*) and low
scores for negative pairs (x, x).



A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-FEx

exp(s(f(z), f(a:*))

log

exp(s(f(z),

f(z

)+ 20 exp(s(f(2), f(z;

i)




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(z ™))
exp(s(f(z), f(z+)) + 32,5 exp(S(f(fE) f(fE i)

L=—-Ex |log




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

L=-Ex

exp(s(f(z), f(fv+))

log _
exp(s(f(z), f(z1)) + 3,2, exp(s(f(z), f(z]))_
score for the positive score for the N-1 negative
pair pairs

This seems familiar ...




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

= —-Ex log

exp(s(f(z), f(fL'*))

exp(s(f(z),

f(z

) + 3,5, exp(s(f(2), f(x

score for the positive

pair

This seems familiar ...

)

Cross entropy loss for a N-way softmax classifier!

l.e., learn to find the positive sample from the N samples

score for the N-1 negative

pairs




A formulation of contrastive learning

Loss function given 1 positive sample and N - 1 negative samples:

exp(s(f(z), f(w+))
exp(s(f(x), f(zF)) + 3,2 exp(s(f(2), f(2)) |

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

L = —IEX lOg

A lower bound on the mutual information between f(x) and f(x?*)
MI[f(z), f(z*)] - log(N) > ~L
The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019



https://arxiv.org/abs/1807.03748
https://arxiv.org/pdf/1905.06922.pdf

SimCLR: A Simple Framework for Contrastive Learning

Cosine similarity as the score function:

$(u, V) = e

Use a projection network h(-) to project
features to a space where contrastive learning

is applied

Generate positive samples through data

augmentation:
® random cropping, random color
distortion, and random blur.

Maximize agreement

2 - > Zj
90| lo0)
h; <— Representation —> h;
f@) fQ)
T i

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SimCLR: generating positive samples from data
augmentation

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

Algorithm 1 SimCLR’s main learning algorithm.
g galg
Si m C L R input: batch size IV, constant 7, structure of f, g, 7.

for sampled minibatch {z;}_, do
forallk e {1,....N}do

draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

Generate a positive pair _—"

hor—1 = J (@2k—1) # representation
by sampling data Zor—1 = g(har_1) # projection
augmentation functions # the second augmentation
T Top = t’(wk)
hoy = f(T2k) # representation
Zor = g(hax) # projection
end for
foralli € {1,...,2N}andj € {1,...,2N} do
si; = z; zi/(|zillll%]) # pairwise similarity
end for

exp(s;,5/7)
N Likozi) exp(ss,6/T)

L= 30 [6(2k—1,2k) + £(2k, 2k—1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

define £(z, j) as £(z,7)=—log 52
k

Source: Chen et al.,
2020
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SImCLR

Generate a positive pair
by sampling data
augmentation functions

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t~7, t' ~T
/ # the first augmentation

Tok—1 = t(xk)

— Pok—1 = J(®2k—1)
zok—1 = g(hog—1)
# the second augmentation
i:gk = t’(wk)
hor = f(®2x)
2ok = g(hak)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz])  #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020



https://arxiv.org/pdf/2002.05709.pdf

SImCLR

et

Generate a positive pair
by sampling data
augmentation functions

Iterate through and use
each of the 2N sample as
reference, compute
average loss

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size IV, constant 7, structure of f, g, 7.
for sampled minibatch {z;}_, do

forallk € {1...

.. Nldo

draw two augmentation functions t~7, t' ~T

# the first augmentation

Tok—1 = t(xk)

/

hok—1 = [ (®2k-1)

zok—1 = g(hok-1)
# the second augmentation

i:gk = t’(wk)

hop, = f(x2r)
zok = g(hax)
end for

# representation
# projection

# representation
# projection

foralli € {1,...,2N}andj € {1,...,2N} do
sij =z zi/(|zillllz])  #

end for
define (3, j) as

pairwise similarity

exp(s;,5/7)

K(Z’]) = IOg Ei

N Likozi) exp(ss,6/T)

—— L =00 [6(2k—1,2k) + £(2k, 2k—1)]

update networks f and g to minimize £

end for

return encoder network f(-), and throw away g(-)

InfoNCE loss:

Use all non-positive
samples in the batch
as x-

Source: Chen et al.,
2020
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SimCLR: mini-batch training

— encoder

list of positive

pai
> encoder

7 C R2N><D

I
_/
Each 2k and 2k + 1

element is a positive
pair

N

Si,j =

T, .
Zi Zj

IEAINEAL

“Affinity matrix”

2N

2N



SimCLR: mini-batch training 8;; = % 2
R | T

“Affinity matrix”

—  encoder — Z C RzNXD .!
2N
list of positive g
pai
—»  encoder —/
Each 2k and 2k + 1

element is a positive 2N

air e .
P .= classification label for each
row




Training linear classifier on SImCLR features

*Supervised *SimCLR (4x)
— 75} —— |
8\0/ ,,,...-.‘»--""*S'mCLR ) Train feature encoder on ImageNet
§ eCPCv2-L (entire training set) using SimCLR.
§ ’OF %sSimCLR oCMG JMoCo (4x)
< Q :aglé:éi) AMDIM Freeze feature encoder, train a linear
g: T QCPCv2 PIRL-ens. classifier on top with labeled data.
~ PIRL .
- eBigBiGAN
% eok QMoCo
5 LA
Q
£ A eRotation
o9 e|nstDisc
25 50 100 200 400 626

Number of Parameters (Millions)

Source: Chen et al.,
2020
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Semi-supervised learning on SimCLR features

Label fraction

Method Architecture 1% 10%

Top 5
Supervised baseline ResNet-50 484 804 Train feature encoder on Ima ge Net
Methods using other label-propagation: ; H ; :
Brcadioabot =0 - (entire training set) using SimCLR.
VAT+Entropy Min. ResNet-50 470 834
UDA (w. RandAug) ResNet-50 - 88.5 . . o o
FixMatch (w. RandAug) ResNet.50 ) 20,1 Finetune the encoder with 1% / 10%
S4L (Rot+VAT+En. M.) ResNet-50 (4x) - 91.2 of labeled data on ImageNet.
Methods using representation learning only:
InstDisc ResNet-50 392 774
BigBiGAN RevNet-50 (4x) 55.2  78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(x) 779 912

SimCLR (ours) ResNet-50 75.5 87.8
SimCLR (ours) ResNet-50 (2x) 83.0 91.2
SimCLR (ours) ResNet-50 (4x)

Table 7. ImageNet accuracy of models trained with few labels.

Source: Chen et al.,
2020
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SimCLR design choices: projection head

60 I II II Linear / non-linear projection heads improve
— . .
250 | Projection representation learning.
= B Linear

40 |mmm Non-linear . .

m—tone A possible explanation:
30 [ ] . . . .
bc Qb‘%

® contrastive learning objective may discard
£l \}‘b 2N . .
useful information for downstream tasks

Projection output dlmensmnallty . . .

® representation space z is trained to be

Maximize agreement invariant to data transformation.
Zi Zj . N .
[ 0] o0 ] ® by leveraging the projection head g(*), more

i« Representation—> by information can be preserved in the h

f(gg éf(-) representation space

Source: Chen et al.,

2020
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SimCLR design choices: large batch size

Large training batch size is crucial for

SimCLR!
65.0
62.5 .

— Large batch size causes large memory

260.0 . . .

S Batch N footprint during backpropagation:
57.5 ﬁg requires distributed training on TPUs
550 1024 (ImageNet experiments)

2048
52.5 4096

8192
500 [ LT ([ []]

100 200 300 400 500 600 700 800 900 1000
Training epochs

Figure 9. Linear evaluation models (ResNet-50) trained with differ-
ent batch size and epochs. Each bar is a single run from scratch. '
Source: Chen et al.,

2020
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Momentum Contrastive Learning (MoCo)

contrastive loss Key differences to SimCLR:

no_grad
| similarity / e Keep a running queue of keys (negative
| samples).
q kO kl k2 XX e Compute gradients and update the
encoder only through the queries.

‘ queue |
e Decouple mini-batch size with the
momentum

encoder number of keys: can support a large
encoder )
number of negative samples.

ke ke ke
query Yy Yy Yy
i i 0 T 1 X 9 ces

Source: He et al., 2020
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Momentum Contrastive Learning (MoCo)

contrastive loss no_grad Key differences to SimCLR:
, similarity / e Keep arunning queue of keys (negative
| samples).
q kO kl k2 XX e Compute gradients and update the
‘ queue encoder only through the queries.
e Decouple min-batch size with the number
momentum .
encoder oncodar of key.s. can support a large number of
negative samples.
| | e The key encoder is slowly progressing through
pduery xl(;ey Z,lliey 3;12{63’ o the momentum update rules:

O <+ mby + (1 o m)9q

Source: He et al., 2020
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Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

# f_qg, f_k: encoder networks for query and key
MOCO # queue: dictionary as a queue of K keys (CxK)
# m: momentum
# t: temperature
f_k.params = f_g.params # initialize
H : for x in loader: # load a minibatch x with N samples
Generate a pOSItlve palr X_gq = aug(x) # a randomly augmented version
. x_k = aug(x) # another randomly augmented version
by sampling data ~.
. . g = f_qg.forward(x_qg) # queries: NxC
augmenta“on functions k = f k.forward(x k) # kevs: NxC
k = k.detach() # no gradient to keys]
# positive logits: Nx1 :
. 1l_pos = bmm(g.view(N,1,C), k.view(N,C,1)) Use the runnlng queue
No gradient through } rerE Lo R <« of keys as the negative
ey e 1 = .vi N,C), .vi C,K
the p05|t|ve Sample _neg mm (qg.view ( ), queue.view ( )) Samples

# logits: Nx(1+K)
logits = cat([l_pos, 1l_neg], dim=1)

# contrastive loss, Egn. (1)

labels = zeros(N) # positives are the 0-th
: D —— N
loss = CrossEntropyLoss (logits/t, labels) I fONCE IOSS

# SGD update: query network
loss.backward ()
update (f_g.params)

# momentum update: key network Update f k through
f_k.params = mxf_k.params+ (1-m)*f_qg.params | €——— -
momentum

Update the FIFO negatlve # update dictionary
-

enqueue (queue, k) # enqueue the current m1n1batch|
sample queue

dequeue (queue) # dequeue the earliest minibatch

bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation. S ource: H e et a I 2 O 2 O
. .y
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“MoCo V2~

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He
Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:
® From SimCLR: non-linear projection head and strong data
augmentation.
e From MoCo: momentum-updated queues that allow training on a
large number of negative samples (no TPU required!).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet VOC detection

case MLP aug+ cos epochs acc. APsyg AP APys
supervised 76.5 81.3 53.5 58.8
MoCo vl 200 60.6 81.5 559 62.6
(a) v 200 66.2 82.0 564 62.6

®) v 200 63.4 82.2 56.8 63.2

(©) v v 200 67.3 82.5 572 639

(d v v v 200 67.5 824 57.0 63.6

(e v v v 800 71.1 82.5 574 64.0

Table 1. Ablation of MoCo baselines, evaluated by ResNet-50 for
(1) ImageNet linear classification, and (ii) fine-tuning VOC object
detection (mean of 5 trials). “MLP”: with an MLP head; “aug+”:
with extra blur augmentation; “cos”: cosine learning rate schedule.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

unsup. pre-train ImageNet

case MLP aug+ ~cos epochs batch acc.
MoCo v1 [6] 200 256 60.6
SimCLR [2] v v v 200 256 61.9
SimCLR [2] v v v 200 8192 66.6
MoCo v2 v v v 200 256 67.5
results of longer unsupervised training follow:

SimCLR [2] v v v 1000 4096 69.3
MoCo v2 v v v 800 256 71.1

Table 2. MoCo vs. SimCLR: ImageNet linear classifier accuracy
(ResNet-50, 1-crop 224 x224), trained on features from unsuper-
vised pre-training. “aug+” in SImCLR includes blur and stronger
color distortion. SimCLR ablations are from Fig. 9 in [2] (we
thank the authors for providing the numerical results).

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

Source: Chen et al.,
2020
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MoCo vs. SImCLR vs. MoCo V2

mechanism  batch  memory/GPU time/200-ep.

MoCo 256 5.0G 53 hrs
end-to-end 256 7.4G 65 hrs
end-to-end 4096 93.0GT n/a

Table 3. Memory and time cost in 8 V100 16G GPUs, imple-
mented in PyTorch. ': based on our estimation.

Key takeaways:

Non-linear projection head and strong
data augmentation are crucial for
contrastive learning.

Decoupling mini-batch size with negative
sample size allows MoCo-V2 to
outperform SimCLR with smaller batch
size (256 vs. 8192).

... all with much smaller memory
footprint! (“end-to-end” means SimCLR
here)

Source: Chen et al.,
2020
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Instance vs. Sequence Contrastive Learning

Predictions
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Source: van den Oord et al., 2018

Instance-level contrastive learning: Sequence-level contrastive learning:
contrastive learning based on contrastive learning based on
positive & negative instances. sequential / temporal orders.

Examples: SimCLR, MoCo Example: Contrastive Predictive Coding (CPC)
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Contrastive Predictive Coding (CPC)

Ct Predictions
Contrastive: contrast between “right”
@ @ @ @ and “wrong” sequences using
2 Zt+1 *2t+2 +2t+3 *%-}—4 contrastive |earning.

/genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ /genc\ Predictive: the m.odel has to predict

future patterns given the current

| T3 | T2 | Tt Tit1 42 \ i+ | Tita

context.
. . . - Coding: the model learns useful
. . . positive feature vectors, or “code”, for
downstream tasks, similar to other
context . - self-supervised methods.
negative

Figure source Source: van den Oord et al,,

2018,
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Contrastive Predictive Coding (CPC)
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1. Encode all samples in a sequence
into vectors z; = gepc(X:)

Source: van den Oord et al.,

2018,
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Contrastive Predictive Coding (CPC)

Bafiot 1. Encode all samples in a sequence

( N\
Ct
f‘ffff?fff_:::?ifijj """" s into vectors z; = gend(X¢)
(2 )—()—(o) @ R 2. Summarize context (e.g., half of a
zt i zt+2 *m *w sequence) into a context code ¢, using

/gnc\/ \/gnc\ /gnc\/ \/gnc\ /gnc\/ \ an auto-regressive model (g,,).

| Te-3 | T2 | T | T | T | Ty | Teq43 | Teqa |
EEEE
/
=TT

negative

Source: van den Oord et al.,

Figure source
2018,
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Contrastive Predictive Coding (CPC)

.
Ct Bz 1. Encode all samples in a sequence
::jj_‘ffffffffj::ii?:':j: ~~~~ into vectors z; = gepc(X:)
(s —(o)—p(2) ! 2. Summarize context (e.g., half of a
kzm *zﬂz %Zws *ztﬂ sequence) into a context code ¢, using

Z,
. t .
an auto-regressive model (g,,).
genc genc genc /anC\ /genc\ /genc\ /genc\ /genc\

3. Compute InfoNCE loss between the
context ¢, and future code z,,, using

. ' . . the following time-dependent score

. . positive function:
/
context . - sk(zeiks ) = 2, Wher

) , Where W, is a trainable matrix.
negative

| T3 \ Ti—2 \ Ti—1 Tt+1 42 \ Tt+3 l Tt+4

Figure source Source: van den Oord et al.,
2018,
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CPC example: modeling audio sequences

Predictions

M () ;
* 2t+1 * 2t42 + 2t+3 Zt4+4
genc genc genc / genc \ / genc \ / genc \ / genc \ genc

i3 Tt—1 Ti4+1 Ti42 Zt+3 Ti+a |

WWWWWMWW*MWWWWWWWW

Source: van den Oord et al.,

2018,
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CPC example: modeling audio sequences

Method | ACC

Phone classification
Random initialization 27.6

MEFCC features 39.7
CPC 64.6
Supervised 74.6

Speaker classification
Random initialization 1.87

MEFCC features 17.6
Figure 2: t-SNE visualization of audio (speech) gPCr ‘sed g;g
representations for a subset of 10 speakers (out upervise :
of 251). Every color represents a different _ o _
speaker. Linear classification on trained
representations (LibriSpeech
dataset)

Source: van den Oord et al.,

2018,
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CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a
sequence. l.e., use top rows as context to predict bottom rows.

gar - output
Genc - output
I T o
B o [Ctim
e i A
“TeT 227 - - .{//
64 px =27 .7 ‘/_///,
A -7 s - /’ ‘
_- /// e s zt+2 <t — Pk '/
o Zi+3| l«F1 7 -~ Predictions
/// ,/, Zt_|_4 < 1 -
50% overlap

-—-—1

4 input image

Source: van den Oord et al.,

2018,
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CPC example: modeling visual context

Method | Top-1ACC e Compares favorably with other pretext task-
Using AlexNet conv5 based self-supervised learning method.
Video [28] 29.8 ’ . _
Relative Position [11] 304 e Doesn’tdoas well compared to newer |.nstance
BiGan [35] 34.8 based contrastive learning methods on image
Colorization [10] 35.2 .
Tigsaw [29] * 381 feature learning.
% Supervised .k SIMCLR (4x)
Using ResNet-V2 | *SIimCLR (2x)
Motion Segmentation [36] 27.6 >
Exemplar [36] 31.5 € 70F 4simCLR some dMoCo @)
Relative Position [36] 36.2 8 °PIRL-c2x AMDIM
Colorization [36] 39.6 7 65 'Jgr—%?,ﬁ\ R eto.x
CPC 48.7 P oBigBIGAN
% 6o} Q&’CO
Table 3: ImageNet top-1 unsupervised classifi- >
cation results. *Jigsaw is not directly compa- E 55} T °Rotation
rable to the other AlexNet results because of . . . . P
25 50 100 200 400 626

architectural differences. Number of Parameters (Millions)

Source: van den Oord et al.,

2018,
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Summary: Contrastive Representation Learning

A general formulation for contrastive learning:

score(f(x), f(z")) >> score(f(z), f(z7))

InfoNCE loss: N-way classification among positive and negative samples
exp(s(f(z), f(z ™))

L =—-Ex |log N1 —
exp(s(f(z), f(z1)) + 22,21 exp(s(f(2), f(z;))

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and f(x*)

MI|[f(z), f(z")] — log(N) = —L
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Summary: Contrastive Representation Learning

SimCLR: a simple framework for contrastive , Maximize agreement

representation learning
e Key ideas: non-linear projection head to allow .
flexible representation learning hi ¢ Representation —
e Simple to implement, effective in learning visual
representation
® Requires large training batch size to be effective;
large memory footprint



Summary: Contrastive Representation Learning

MoCo (v1, v2): contrastive learning using momentum

sample encoder

e Decouples negative sample size from minibatch
size; allows large batch training without TPU

® MoCo-v2 combines the key ideas from SimCLR,
i.e., nonlinear projection head, strong data
augmentation, with momentum contrastive

learning

contrastive loss

similarity
q ko k1 ko ...
queue
encoder momentum
encoder
ke ke ke
xqmﬂy xOY'$1Y'x2Y'“.



Summary: Contrastive Representation Learning

CPC: sequence-level contrastive learning
e Contrast “right” sequence with “wrong”

sequence.
e InfoNCE loss with a time-dependent score
fu n Ctio n M enc gCllC C ‘enc ,n

Tr+1 Ti42 | Teg3 | Ir+4

e Can be applied to a variety of learning

problems, but not as effective in learning E ﬁ . .

image representations compared to instance- . . ‘ positive
/

level methods. context E m F'

negative



Other examples

Contrastive learning between image and natural language sentences

1. Contrastive pre-training 2. Create dataset classifier from label text

pepper the Text
aussie pup R Encoder a photo of Text
] 1 1 1 a {object}. Encoder
T ) T3 Tn
— L I LT, IrTs I Ty
— I, LT, LT, IT; - Iy 3. Use for zero-shot prediction
T T T3 Tn
Image .
Encoder Iz IsTy I3T, I3Ts IsTy
Image
; : : : ; . ; y Encoder & 20N DR RS B Iy
— Iy Iy InT, IyTs - IyTy {

a photo of
adog.

CLIP (Contrastive Language—Image Pre-training) Radford et al., 2021



Other examples

Contrastive learning on pixel-wise feature descriptors

(c) Background Randomization (d) Cross Object Loss

Dense Object Net, Florence et al., 2018



Other examples

Dense Object Net, Florence et al., 2018



Final Lecture: Robot Learning Overview and Deep Learning Frontiers



