CS 4803-DL / 7643-A: LECTURE 21
DANFEI XU

Topics:
* Reinforcement Learning Part 2
* Policy Gradient
* Actor-Critic
* Advanced Policy Gradient Methods

* Frontiers

RL: Sequential decision making in an environment with evaluative feedback.

Agent

| State, Reward, Action,
St! mu|95, Gain, Payoff, Response,
Situation Cost Control

Environment |
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.

Seeking to maximize cumulative reward in the long run.

) What is Reinforcement Learning? Gegrala |

=

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a,s’) : Transition probability distribution, also written as p(s’ls,a)
”Y : Discount factor
Experience: ... S¢, Q¢, Te41, St4+1, Qt+1,Tt4+2, St+2,5 - - -

Markov property: Current state completely characterizes state of the
environment

Assumption: Most recent observation is a sufficient statistic of history
p(St—l—l = 3/|St = s8¢, Ay = a4, S¢—1 = S¢—1,...50 = 80) = p(St—l—l = 3/|St = 8¢, Ay = at)

) Markov Decision Processes (MDPs) Gegrgla |

=

Algorithm: Value Iteration
Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged: . :
For each state: | V*'! (s) < max Zp(8'|8, a) [7“(3» a) + ’YVZ(S/)]
a
S/

Repeat until convergence (no change in values)
Vi Vvis vl oV SV

Time complexity per iteration O(|S | 2 |.A|)

) Value Iteration Gegrgia |

=

Q-Learning: a model-free method for RL

|dea: represent the Q value table as a parametric function Qg (s, a)!

How do we learn the function?

Q'(star) = (1 — a)Q(sg, ap) + afry + y max Q(st41,a)]
=Q(spap) +a(ry + VmC?XQ(St+1r a) — Q(st ar))

Now, at optimum, Q(s¢, ar) = Q'(s¢, ar) = Q*(st, ap); This gives us:

0=0+a(r + VmO?XQ(St+1; a) — Q(s¢ az))

Learning problem:
argming||ry + y max Qo(St+1,a) — Qo (st ar)) |

\ }

|
Target Q value

Minibatch of { (s, a, s, 7); 12,

Forward pass:

State — Q-Network » Q-Values per action
B x D B x Nactions
2
Compute loss: (Qnew(s, a) — (r + ymax Qo (s, a)))
\ Y J @ \ Y J
Hnew HOld [FC-4 Qvalues) |

| FC-256 |

Backward pass: 8L 0SS

aenew

={ |-

=

) Deep Q-Learning Gograta |

Wgather — Environment > Data {(s,a,s",1); ﬁvzl

Train

Update
Mgather

Ttrained

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

How to gather experience? Gograla)

=

What should TTgather be?

Greedy? -> no exploration, always choose the most confident action

arg max (s, a; 0)
a
An exploration strategy:
e-greedy

argmax Q(s,a) with probability 1 — ¢
at — &
random action with probability €

) Exploration Problem Gograta |

=

Correlated data: addressed by using experience replay

" /
A replay buffer stores transitions (S, a,Ss ,7“)

Continually update replay buffer as game (experience) episodes are
played, older samples discarded

Train Q-network on random minibatches of transitions from the replay
memory, instead of consecutive samples

Larger the buffer, lower the correlation

) Experience Replay Gegrgla |

=

Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capacity N .
Initialize action-value function () with random weights Experience Replay
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1.T do _
With probability € select a random action a;, EpS' Ion-g reedy
otherwise select a; = max, Q*(d(s;).a; 0)
Execute action a; in emulator and observe reward r; and image x;;
Set 8;.1 = 84, a4, Ty, and preprocess @y.1 = O(8111)
Store transition (¢, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S B { r for terminal ¢, Q Update
Y=Y : ol el &
ri +ymaxy Q(¢;r1,a';6) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(d;, a;; 6?))2 according to equation 3
end for
end for

) Deep Q-Learning Algorithm Gegth

!5

=

Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Georgia

Case study: Playing Atari Games Tech@]

=

Atari Games

-
:

https://www.youtube.com/watch?v=V1eYniJORnk

Case study: Playing Atari Games Gogrola |

=

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Different RL Paradigms

Value-based RL
(Deep) Q-Learning, approximating Q* (s, a) with a deep Q-network

Policy-based RL
Directly approximate optimal policy 7° with a parametrized policy 7

Model-based RL
Approximate transition function T'(s’, a, s) and reward function R(s, a)
Plan by looking ahead in the (approx.) future!

Deep Learning for Decision Making

gt
- action
state > 09 Deep Neural
input | Nets — output \
? =
~ reward 1y +— @

Problem: we don’t know the correct action label to supervise the output!

N

All we know is the step-wise task reward

Deep Learning for Decision Making

Deep Neural action
Nets — output \
art
ET) reward r; +— @

Problem: we don’t know the correct action label to supervise the output!

state
input

All we know is the step-wise task reward

Can we directly backprop reward???

Policy Gradient: Just backprop from reward (sort of)!

forward pass

<
B

log probabilities

image

block of differentiable compute
(e.g. neural net)

backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

-1.2 | -0.36
gradients
1.0 0

Supervised Learning
(correct label is provided)

Policy Gradient: Just backprop from reward (sort of)!

forward pass | - Supervised Learning
> log probabilities (correct label is provided)
-1.2 |-0.36
. block of differentiable compute . BRI ST
inage (e.g. neural net) AR abel = 0
1.0 0
backward pass
forward pass Policy Gradient
» log probabilities
-12 |-0.36 | —— sample an action:
, block of differentiable compute :
image (e.g. neural net) P gradients)
Y. /
0 -1.0 /

7 eventual reward -1.0

A
{

backward pass
Image Source: http://karpathy.github.io/2016/05/31/rl/

Brief derivation of policy gradient (REINFORCE)

Let 7 = (SO, ag,...ST, UJT) denote a trajectory

Brief derivation of policy gradient (REINFORCE)

Let 7 = (SQ, ag,...ST, CLT) denote a trajectory

Distribution of trajectories given a policy parameterized by 6 is:
po(T) = po (s0,a0,---ST,aT)

T
— p(s0) [T oo (as | 56) -0 (se01 | 51 ar)
t=0

Brief derivation of policy gradient (REINFORCE)

Let 7 = (So, ag,...ST, CLT) denote a trajectory

Distribution of trajectories given a policy parameterized by 6 is:
po(T) = po (s0,a0,---ST,aT)
T
= p(s0) [[pe (ac | 5¢) - p (5041 | 50,a0)
t=0

Optimization objective:

arg m@ax E’rwpe (1) [R(T)]

Brief derivation of policy gradient (REINFORCE)

Let 7 = (SQ, ag,...ST, CLT) denote a trajectory

Distribution of trajectories given a policy parameterized by 6 is:
po(T) = po (s0,a0,---ST,aT)
T
= p(s0) [[pe (ac | 5¢) - p (5041 | 50,a0)
t=0

Optimization objective:

arg ngX E’rwpe (1) [R(T)]

What we need (policy gradient):
VHJ(Q) — VQ]ETNPQ (1) [R(T)]

Brief derivation of policy gradient (REINFORCE)

V@J(Q) = VO]ETNPO(T) [R(T)]

= Vy /WH(T)R(T)CZT Expectation as integral

= /V@W@(T)R(T)dT Exchange integral and gradient

_ /VMO(T) To(T) R(T)dr N cdlogf(x) _ f'(x)
7o (T) Log derivative rule: P

_ / 7o(r)Vologmp(YR(T)dr Vylogm(r) = V;ZTT()T)

Brief derivation of policy gradient (REINFORCE)

Vo (0) = Errpy(r)[Vo log o (T)R(7)

mo(7) = p(so) [[po (ar | s0) - p (541 | 50, a0)

Doesn’t depend on

T T
Vo |lespton) + > logmo(as|s:) + Z*@gp@ﬁrﬁ-w-m)] Transition probabilities!
t=1 t=1

- T
=K o (r) ZV@ log mg(at|st) ZR St, Qt)
t=1 1

AN | ”
\ \ \ R
\ \\55 b \ \
\ X \ 4 \ N \ \ \
{‘\\‘ N\ \ \ 13 \ [\ \ [\s2 \
1 =
\r it 2 - 3[pl | 8 =
24| SN2\ 3 \ X N - \
\ s \\ \ 384 384 256 3
\ \ Max
\ 256
\ \ Max Max s
2\ [Strige_og | Pooting pooling
\[| or 2

pooling 4056 4036

Can use continuous action space!

Policy gradient: algorithm sketch

Sample trajectories 7, = {s1,aq,...sr,ar}; by acting according to 7T¢

Compute policy gradient as

N T
1
VoJ(0) = NZ ZVglogw@ aj | s;) ZR s; | ay)
t=1 t=1

i
Update policy parameters:) <— 6 + o'V J(Q)

Run th li d C t li
un the pq icy ar\ : ompu g policy
sample trajectories gradient

t I

— Update policy

Slide credit: Sergey Levine

Policy gradient intuition

log g (als)
t WIN
! LOSE
! LOSE
t WIN

Image Source: http://karpathy.github.io/2016/05/31/rl/

Issues with Policy Gradients

e Credit assignment is hard!
— Which specific action led to increase in reward
— Suffers from high variance = leading to unstable training

Can we do better?

What if instead of just reward per episode, we know the expected future
return of taking an action? (This should remind you of something ...)

Q value function Q(s, a)!

Actor-Critic

* Learn both policy and Q function

— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

Actor-Critic

* Learn both policy and Q function

— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

* REINFORCE: VyJ(7g) = Eqmr, [Volog mg(als)R(s,a)]

* Actor-critic: Vo J(mg) = Eqr, [Vologmg(als)Q™ (s, a)]

Actor-Critic

* Initialize 8 (policy network) and 8 (Q network)

Actor-Critic

* Initialize 8 (policy network) and 8 (Q network)
* For each step:

— sample action a ~ my (- |s), take action to get s’ and r

Actor-Critic

* Initialize 8 (policy network) and 8 (Q network)
* For each step:

— sample action a ~ my (- |s), take action to get s’ and r

— evaluate “actor” using “critic” Q4 (s, a) and update policy:

0 « 0+ aVy(logmy(als)Qp(s,a))

Actor-Critic

* Initialize 8 (policy network) and 8 (Q network)
* For each step:

— sample action a ~ my (- |s), take action to get s’ and r

— evaluate “actor” using “critic” Q4 (s, a) and update policy:

0 < 0+ aVg(logmg(als)Qp(s, a))
— Update “critic”:
* Q-learning using argming[Qz (s, a) — (r + Q(s',a ~ my (s’))]

Actor-Critic

* Initialize 8 (policy network) and 8 (Q network)
* For each step:

— sample action a ~ my (- |s), take action to get s’ and r

— evaluate “actor” using “critic” Q4 (s, a) and update policy:

0 < 0+ aVg(logmg(als)Qp(s, a))
— Update “critic”:
* Q-learning using argming[Qz (s, a) — (r + Q(s',a ~ my (s’))]

2
Note the difference to DQN: (Qnew(sa a) — (r+ ymax Qoia(s’, a)))

Actor-Critic

Actor-critic: Vo] (1g) = Eq-ry[Vglog mg(als)Qp(s, a)]

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

— Good news: s is a great state to be in!

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

— Good news: s is a great state to be in!
— Bad news: hard to tell the policy to prefer a, over a,

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

— Good news: s is a great state to be in!
— Bad news: hard to tell the policy to prefer a, over a,

Idea: use advantage function A(s,a) = Q(s,a) — V(s)

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

— Good news: s is a great state to be in!
— Bad news: hard to tell the policy to prefer a, over a,

Idea: use advantage function A(s,a) = Q(s,a) — V(s)
- V(s): How much better is taking action a over the average value at state s

Actor-Critic

Actor-critic Policy Gradient: Vo J(g) = Eq.,[Vglog mg(als)Qp (s, a)]

Consider a situation where Q3 (s,a;) = 10.1 and Qz(s, a,) = 10.5

— Good news: s is a great state to be in!
— Bad news: hard to tell the policy to prefer a, over a,

Idea: use advantage function A(s,a) = Q(s,a) — V(s)
- V(s): How much better is taking action a over the average value at state s
- Say V(s) = 10.0, we have A(s,a,) = 0.1 and A(s,a,) = 0.5

Advantage Actor-Critic (A2C)

Advantage Actor-critic Gradient: V] (7g) = Eqp,[Vglog mg (als)A(s, a)]

Advantage Actor-Critic (A2C)

Advantage Actor-critic Gradient: V] (7g) = Eqp,[Vglog mg (als)A(s, a)]

Problem: need to learn both Q and V to calculate 4

Advantage Actor-Critic (A2C)

Advantage Actor-critic Gradient: V] (7g) = Eqp,[Vglog mg (als)A(s, a)]
Problem: need to learn both Q and V to calculate 4

Idea: use state value of experience sample to approximate Q:
A(s,a) =Q(s,a) = V(s)=r+V(s') —V(s)

Policy Gradient Methods
* REINFORCE: Vg/(mg) = Eq-r,[Vglog mg(als)R(s,a)]
* Actor-critic (AC): VgJ () = Eq,[Vglog mg(als)Q(s, a)]

* Advantage Actor-critic (A2C): V] (1tg) = Eqr, [Vglog mg(als)A(s, a)]

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

* Issue with vanilla actor critic: policy may receive huge update!
— Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

* Issue with vanilla actor critic: policy may receive huge update!
— Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

* Issue with vanilla actor critic: policy may receive huge update!
— Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

* |dea: constrain the update to a trust region using off-policy policy gradient

mo(als) -

J(O) =E oo, (a|s) Aeold(s7 a)]

s
s~p eold ’a’Nﬂ-eold [

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

* Issue with vanilla actor critic: policy may receive huge update!
— Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

* |dea: constrain the update to a trust region using off-policy policy gradient

mo(als) -

J(O) =E oo, (a|s) Aeold(s7 a)]

s
s~p eold ’a’Nﬂ-eold [

Subiject to:
E, 70 DKL (T, [8) [ma(. |8)] < 6

Advanced policy gradient methods

Trust Region Policy Gradient (TRPO, Schulman 2017)

* Issue with vanilla actor critic: policy may receive huge update!
— Big parameter update -> drastic change in behavior -> may stuck in low-reward region!

* |dea: constrain the update to a trust region using off-policy policy gradient

mo(als)
0014 (Cl| S) Aoold (3, a)]

J(O) =E

s
s~p eold ’a’Nﬂ-eold [

Subiject to:
E, 70 DKL (T, [8) [ma(. |8)] < 6

Optimizing this objective requires calculating Hessian
(second-order optimization)!

Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization
(calculating Hessian).

Advanced policy gradient methods

Proximal Policy Optimization (PPO, Schulman 2017)

Issue with TRPO: objective too complicated! Requires second-order optimization
(calculating Hessian).

Idea: Approximate trust-region constraint with a penalty term

maximize I@t[mo(2: | st)
0 9,4 (3t | St

)At] — BRKL [(- | 5t), 7o(- | 50)]]

Advanced policy gradient methods

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
1000
2000 2500 8000
800
1500
2000 6000
LY 1500 600
4000
500 1000 400
0 500 2000 200
=500 1
0 0 0
0 1000000 0 1000000 0 1000000 0 1000000
Reacher-v1 Swimmer-v1 Walker2d-v1
— A2C
120 .
-20 —— A2C + Trust Region
’____gﬁaz 100 3000 —— CEM
-40 80 —— PPO (Clip)
60 & 2000 Vanilla PG, Adaptive
—— TRPO
-80 40 e ——— ——————
20 [T \PAFSs sy 1000
-100
W 0
-120 0
0 1000000 0 1000000 0 1000000

Schulman 2017

Welcome to continuous control!

DQN: limited to discrete action space VyJ(mg) = Eq.q,[Vglog mg(als)A(s, a)]

Policy net can output anything!

FC-4 (Q-values)

FC-256

T

Q-Network

State

But Deep RL is still pretty expensive to train ...

—— PPO (Clip)
Vanilla PG, Adaptive
—— TRPO

Idea: transfer policy trained in simulation (cheap) directly
to the real world (expensive)!

Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Potential gaps (not an exhaustive list):

* Position, shape, and color of objects,
* Material texture,

e Lighting condition,

e Other measurement noise

* Position, orientation, and field of view of the camera in the simulator.
* Mass and dimensions of objects,
 Mass and dimensions of robot bodies,
* Damping, kp, friction of the joints,

e @Gains for the PID controller (P term),

e Joint limit,

e Action delay,

e Observation noise.

Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Idea: domain randomization

Calibrated sim Reality /,”/,_——~-\\ R
AT e N
- N
stem y ; P T
Syst T ’ -~ 1
i p . - MO ’
Identification /07 .Talibratedsim |\ | 1 Reality

! 1 1

7
A distribution of
domain-randomized sims

1 1 N Iy

s -— o 4 -—a_ " \ - s
’ TS Y S RN (I N Seeo- PR)
K //Cahbrated\sm; K Reality *, L N Domain

P . Vo _-~ -7 Randomization
: -
\ \\
\ \
A ~
N

\ -
; - -
/' Domain', ’
. ! \ .
“~___-" _Adaptation, “~___-")/
e N .

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/

Simulation to Real World Transfer (Sim2Real)

Issue: simulators is a very crude approximation of the real world!

Idea: domain randomization

Calibrated sim Reality PR ‘, ————- e S
. ‘ o I SN
System Rl G o
Identification - .Talibrated sim | | I Reality
¢ 1 1 I
A distribution of
domain-randomized sims
P @ & %

Al s e~ S l \ b ~ il e s 7
7 By N - o ., .
/ /Calibrated,sifn /7 Reality | (N _.-7 _-" 7 Domain
. . v ‘ --~7" __-7 _.”Randomization
1o \ .
1 .
L% /' Domain',
\ ~ 4 P ~ 4 ’
. “~__--" _Adaptation, “~___-" ,
~ R o .

https://lilianweng.github.io/posts/2019-05-05-domain-randomization/

L

Deep RL for Robotics

Learning to Walk in Minutes
Using Massively Parallel
Deep Reinforcement Learning

Nikita Rudin, David Hoeller, Philipp Reist, and Marco Hutter

Rubber Glove

Source: OpenAl Source: ETH Zurich

Deep RL beyond robotics / games

PrefixRL Agent PrefixRL Environment
Sample architecture A with
probability p Q values
| + ‘:' - Clrcult
‘:T':"‘" —n - Synthes:s
Trains a child network r P (area, delay),
The controller (RNN) with architecture 4 to t N
get reward R -A(area)
Q-network e -A(delay)
Compute gradient of p and scale “" - Circuit
it by R to update the controller . symhesis
(3.0'1!.0[(:,2\ ,3) 5"1 i
(area, delay),,4
Neural Architecture Search Chip Design

Zoph and Le, 2016 Roy, 2022

Deep RL beyond robotics / games ...

Data Center Cooling Plasma Control (nuclear fusion)
Lazic, 2018 Degrave, 2022

Summary

It turns out we can directly backprop from reward (sort of)!

Naive policy gradient (REINFORCE) has high variance due to the use of
episodic reward. Credit assignment is hard.

Use Action Value Function (Q) instead!

— Actor-Critic: learn Q value function jointly with policy

— Advantage Actor-Critic: estimate advantage A using V value function
Advanced policy gradient methods: TRPO, PPO

Still pretty expensive to train! Mostly used in simulation.

